Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (193)

Search Parameters:
Keywords = inverse-dispersion model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 13124 KB  
Article
Numerical Investigation of Hydrogen Leakage Quantification and Dispersion Characteristics in Buried Pipelines
by Yangyang Tian, Jiaxin Zhang, Gaofei Ren and Bo Deng
Materials 2025, 18(19), 4535; https://doi.org/10.3390/ma18194535 - 29 Sep 2025
Abstract
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried [...] Read more.
As a clean energy carrier, hydrogen is essential for global low-carbon energy transitions due to its unique combination of safe transport properties and energy density. This investigation employs computational fluid dynamics (ANSYS Fluent) to systematically characterize hydrogen dispersion through soil media from buried pipelines. The research reveals three fundamental insights: First, leakage orifices smaller than 2 mm demonstrate restricted hydrogen migration regardless of directional orientation. Second, dispersion patterns remain stable under both low-pressure conditions (below 1 MPa) and minimal thermal gradients, with pipeline temperature variations limited to 63 K and soil fluctuations under 40 K. Third, dispersion intensity increases proportionally with higher leakage pressures (exceeding 1 MPa), greater soil porosity, and larger particle sizes, while inversely correlating with burial depth. The study develops a predictive model through Sequential Quadratic Programming (SQP) optimization, demonstrating exceptional accuracy (mean absolute error below 10%) for modeling continuous hydrogen flow through moderate-porosity soils under medium-to-high pressure conditions with weak inertial effects. These findings provide critical scientific foundations for designing safer hydrogen transmission infrastructure, establishing robust risk quantification frameworks, and developing effective early-warning systems, thereby facilitating the practical implementation of hydrogen energy systems. Full article
Show Figures

Figure 1

18 pages, 2878 KB  
Article
Development of a Semi-Analytical Solution for Simulating the Migration of Parent and Daughter Contaminants from Multiple Contaminant Sources, Considering Rate-Limited Sorption Effects
by Thu-Uyen Nguyen, Yi-Hsien Chen, Heejun Suk, Ching-Ping Liang and Jui-Sheng Chen
Hydrology 2025, 12(10), 249; https://doi.org/10.3390/hydrology12100249 - 25 Sep 2025
Abstract
Most existing multispecies transport analytical models primarily focus on inlet boundary sources, limiting their applicability in real-world contaminated sites where contaminants often arise from multiple internal sources. This study presents a novel semi-analytical model for simulating multispecies contaminant transport driven by multiple time-dependent [...] Read more.
Most existing multispecies transport analytical models primarily focus on inlet boundary sources, limiting their applicability in real-world contaminated sites where contaminants often arise from multiple internal sources. This study presents a novel semi-analytical model for simulating multispecies contaminant transport driven by multiple time-dependent internal sources. The model incorporates key transport mechanisms, including advection, dispersion, rate-limited sorption, and first-order degradation. In particular, the inclusion of rate-limited sorption addresses limitations in traditional equilibrium-based models, which often underestimate pollutant concentrations for degradable species. The derivation of this semi-analytical model utilizes the Laplace transform, finite cosine Fourier transform, generalized integral transform, and a sequence of inverse transformations. Results indicate that the concentrations of contaminants and their degradation products are highly sensitive to the variations in time-dependent sources. The model’s most significant contribution lies in its capability to simulate the contaminant transport from multiple internal pollution sources at a contaminated site under the influence of rate-limited sorption. By enabling the representation of multiple time-varying sources, this model fills a critical gap in analytical approaches and provides a necessary tool for accurately assessing contaminant transport in complex, realistic pollution scenarios. Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
Show Figures

Figure 1

17 pages, 4717 KB  
Article
Intelligent Fast Calculation of Petrophysical Parameters of Clay-Bearing Shales Based on a Novel Dielectric Dispersion Model and Machine Learning
by Jianshen Gao and Jing Li
Appl. Sci. 2025, 15(19), 10381; https://doi.org/10.3390/app151910381 - 24 Sep 2025
Viewed by 25
Abstract
Dielectric dispersion and its interpretation process through clay-bearing shales is very complicated, which makes the saturation evaluation of clay-bearing shales difficult. This paper focuses on developing a model that considers the clay effect on the dielectric dispersion of clay-bearing shales. The effects of [...] Read more.
Dielectric dispersion and its interpretation process through clay-bearing shales is very complicated, which makes the saturation evaluation of clay-bearing shales difficult. This paper focuses on developing a model that considers the clay effect on the dielectric dispersion of clay-bearing shales. The effects of water saturation, clay content, and other factors on the dielectric dispersion characteristics of clay-bearing shale rocks are analyzed. By combining a dielectric dispersion response database with backpropagation neural network (BPNN) models, this paper develops a calculation model that can simultaneously calculate five petrophysical parameters, i.e., the water salinity, rock cementation exponent, clay content, clay moisture content, and water saturation. The results indicate that the newly developed dielectric dispersion model can characterize the effects of clay content and clay moisture content. The correlation coefficients of the five parameters can all exceed 99% for each sub-sample database and reach an average of 95.06% in an application case, and the calculation efficiency is also very satisfactory, which significantly outperforms the traditional optimization algorithms. The proposed method provides a practical alternative to traditional inversion approaches for shale evaluation. Full article
Show Figures

Figure 1

22 pages, 10283 KB  
Article
Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry
by Zhengwen Xu, Shouxian Zhu, Wenjing Zhang, Yanyan Kang and Xiangbai Wu
Remote Sens. 2025, 17(19), 3284; https://doi.org/10.3390/rs17193284 - 24 Sep 2025
Viewed by 50
Abstract
The extraction of ocean wave wavelengths from optical imagery via Fast Fourier Transform (FFT) exhibits significant potential for Wave-Derived Bathymetry (WDB). However, in practical applications, this method frequently produces anomalously large wavelength estimates. To date, there has been insufficient exploration into the mechanisms [...] Read more.
The extraction of ocean wave wavelengths from optical imagery via Fast Fourier Transform (FFT) exhibits significant potential for Wave-Derived Bathymetry (WDB). However, in practical applications, this method frequently produces anomalously large wavelength estimates. To date, there has been insufficient exploration into the mechanisms underlying image spectral leakage to low wavenumbers and its suppression strategies. This study investigates three plausible mechanisms contributing to spectral leakage in optical images and proposes a subimage-based preprocessing framework: prior to executing two-dimensional FFT, the remote sensing subimages employed for wavelength inversion undergo three sequential steps: (1) truncation of distorted pixel values using a Gaussian mixture model; (2) application of a polynomial detrending surface; (3) incorporation of a two-dimensional Hann window. Subsequently, the dominant wavenumber peak is localized in the power spectrum and converted to wavelength values. Water depth is then inverted using the linear dispersion equation, combined with wave periods derived from ERA5. Taking 2 m-resolution WorldView-2 imagery of Sanya Bay, China as a case study, 1024 m subimages are utilized, with validation conducted against chart-sounding data. Results demonstrate that the proportion of subimages with anomalous wavelengths is reduced from 18.9% to 3.3% (in contrast to 14.0%, 7.8%, and 16.6% when the three preprocessing steps are applied individually). Within the 0–20 m depth range, the water depth retrieval accuracy achieves a Mean Absolute Error (MAE) of 1.79 m; for the 20–40 m range, the MAE is 6.38 m. A sensitivity analysis of subimage sizes (512/1024/2048 m) reveals that the 1024 m subimage offers an optimal balance between accuracy and coverage. However, residual anomalous wavelengths persist in near-shore subimages, and errors still increase with increasing water depth. This method is both concise and effective, rendering it suitable for application in shallow-water WDB scenarios. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

19 pages, 5279 KB  
Article
Research on Carbon Dioxide Pipeline Leakage Localization Based on Gaussian Plume Model
by Xinze Li, Fengming Li, Jiajia Chen, Zixu Wang, Dezhong Wang and Yanqi Ran
Processes 2025, 13(9), 2994; https://doi.org/10.3390/pr13092994 - 19 Sep 2025
Viewed by 269
Abstract
Carbon dioxide (CO2) is a non-toxic asphyxiant gas that, once released, can pose severe risks, including suffocation, poisoning, frostbite, and even death. As a critical component of carbon capture, utilization, and storage (CCUS) technology, CO2 pipeline transportation requires reliable leakage [...] Read more.
Carbon dioxide (CO2) is a non-toxic asphyxiant gas that, once released, can pose severe risks, including suffocation, poisoning, frostbite, and even death. As a critical component of carbon capture, utilization, and storage (CCUS) technology, CO2 pipeline transportation requires reliable leakage detection and precise localization to safeguard the environment, ensure pipeline operational safety, and support emergency response strategies. This study proposes an inversion model that integrates wireless sensor networks (WSNs) with the Gaussian plume model for CO2 pipeline leakage monitoring. The WSN is employed to collect real-time CO2 concentration data and environmental parameters around the pipeline, while the Gaussian plume model is used to simulate and invert the dispersion process, enabling both leak source localization and emission rate estimation. Simulation results demonstrate that the proposed model achieves a source localization error of 12.5% and an emission rate error of 3.5%. Field experiments further confirm the model’s applicability, with predicted concentrations closely matching the measurements, yielding an error range of 3.5–14.7%. These findings indicate that the model satisfies engineering accuracy requirements and provides a technical foundation for emergency response following CO2 pipeline leakage. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

23 pages, 2018 KB  
Article
Wave Propagation Analysis in the Homogenized Second-Gradient Medium: A Direct and Inverse Approach
by Fadheelah Al Fayadh, Hassan Lakiss and Hilal Reda
Materials 2025, 18(18), 4248; https://doi.org/10.3390/ma18184248 - 10 Sep 2025
Viewed by 259
Abstract
In this work, we develop a method for homogenizing effective second-order gradient continuum models for 2D periodic composite materials. A constitutive law is formulated using a variational approach combined with the Hill macro-homogeneity condition for strain energy. Incorporating strain gradient effects enhances the [...] Read more.
In this work, we develop a method for homogenizing effective second-order gradient continuum models for 2D periodic composite materials. A constitutive law is formulated using a variational approach combined with the Hill macro-homogeneity condition for strain energy. Incorporating strain gradient effects enhances the constitutive law by linking the hyperstress tensor to the second-order gradient of displacement, capturing elastic size and microstructure effects beyond classical Cauchy elasticity. The effective strain gradient moduli are calculated for composites exhibiting strong internal length effects, validating the proposed approach by computing the strain energy at different scales. Additionally, we develop an inverse homogenization method to compute local mechanical properties (properties of the constituents) given known global properties (effective properties), showing good agreement with the literature data. This framework is extended to study wave propagation by analyzing longitudinal and shear waves in 2D composite materials. The effects of inclusion shape and volume percentage on wave propagation are examined, revealing that elliptic inclusions lead to a slight increase in both modes of propagation. Finally, we investigate the impact of property contrast between the inclusion and matrix, demonstrating its influence on wave dispersion. Full article
Show Figures

Figure 1

26 pages, 3350 KB  
Article
Nonlocal Modeling and Inverse Parameter Estimation of Time-Varying Vehicular Emissions in Urban Pollution Dynamics
by Muratkan Madiyarov, Nurlana Alimbekova, Aibek Bakishev, Gabit Mukhamediyev and Yerlan Yergaliyev
Mathematics 2025, 13(17), 2772; https://doi.org/10.3390/math13172772 - 28 Aug 2025
Viewed by 339
Abstract
This paper investigates the dispersion of atmospheric pollutants in urban environments using a fractional-order convection–diffusion-reaction model with dynamic line sources associated with vehicle traffic. The model includes Caputo fractional time derivatives and Riesz fractional space derivatives to account for memory effects and non-local [...] Read more.
This paper investigates the dispersion of atmospheric pollutants in urban environments using a fractional-order convection–diffusion-reaction model with dynamic line sources associated with vehicle traffic. The model includes Caputo fractional time derivatives and Riesz fractional space derivatives to account for memory effects and non-local transport phenomena characteristic of complex urban air flows. Vehicle trajectories are generated stochastically on the road network graph using Dijkstra’s algorithm, and each moving vehicle acts as a mobile line source of pollutant emissions. To reflect the daily variability of emissions, a time-dependent modulation function determined by unknown parameters is included in the source composition. These parameters are inferred by solving an inverse problem using synthetic concentration measurements from several fixed observation points throughout the area. The study presents two main contributions. Firstly, a detailed numerical analysis of how fractional derivatives affect pollutant dispersion under realistic time-varying mobile source conditions, and secondly, an evaluation of the performance of the proposed parameter estimation method for reconstructing time-varying emission rates. The results show that fractional-order models provide increased flexibility for representing anomalous transport and retention effects, and the proposed method allows for reliable recovery of emission dynamics from sparse measurements. Full article
Show Figures

Figure 1

14 pages, 4996 KB  
Article
Fractional Wave Structures in a Higher-Order Nonlinear Schrödinger Equation with Cubic–Quintic Nonlinearity and β-Fractional Dispersion
by Mahmoud Soliman, Hamdy M. Ahmed, Niveen M. Badra, Islam Samir, Taha Radwan and Karim K. Ahmed
Fractal Fract. 2025, 9(8), 522; https://doi.org/10.3390/fractalfract9080522 - 11 Aug 2025
Viewed by 522
Abstract
This study employs the improved modified extended tanh method (IMETM) to derive exact analytical solutions of a higher-order nonlinear Schrödinger (HNLS) model, incorporating β-fractional derivatives in both time and space. Unlike classical methods such as the inverse scattering transform or Hirota’s bilinear [...] Read more.
This study employs the improved modified extended tanh method (IMETM) to derive exact analytical solutions of a higher-order nonlinear Schrödinger (HNLS) model, incorporating β-fractional derivatives in both time and space. Unlike classical methods such as the inverse scattering transform or Hirota’s bilinear technique, which are typically limited to integrable systems and integer-order operators, the IMETM offers enhanced flexibility for handling fractional models and higher-order nonlinearities. It enables the systematic construction of diverse solution types—including Weierstrass elliptic, exponential, Jacobi elliptic, and bright solitons—within a unified algebraic framework. The inclusion of fractional derivatives introduces richer dynamical behavior, capturing nonlocal dispersion and temporal memory effects. Visual simulations illustrate how fractional parameters α (space) and β (time) affect wave structures, revealing their impact on solution shape and stability. The proposed framework provides new insights into fractional NLS dynamics with potential applications in optical fiber communications, nonlinear optics, and related physical systems. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

18 pages, 2835 KB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 - 2 Aug 2025
Viewed by 1799
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
Show Figures

Figure 1

25 pages, 17212 KB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 699
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

20 pages, 6694 KB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 - 31 Jul 2025
Viewed by 625
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

18 pages, 11346 KB  
Article
Comparative CFD Analysis Using RANS and LES Models for NOx Dispersion in Urban Streets with Active Public Interventions in Medellín, Colombia
by Juan Felipe Rodríguez Berrio, Fabian Andres Castaño Usuga, Mauricio Andres Correa, Francisco Rodríguez Cortes and Julio Cesar Saldarriaga
Sustainability 2025, 17(15), 6872; https://doi.org/10.3390/su17156872 - 29 Jul 2025
Viewed by 522
Abstract
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of [...] Read more.
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of which exacerbate the accumulation of pollutants. In Medellín, NO2 concentrations have remained nearly unchanged over the past eight years, consistently approaching critical thresholds, despite the implementation of air quality control strategies. These persistent high concentrations are closely linked to the variability of the atmospheric boundary layer (ABL) and are often intensified by prolonged dry periods. This study focuses on a representative street canyon in Medellín that has undergone recent urban interventions, including the construction of new public spaces and pedestrian areas, without explicitly considering their impact on NOx dispersion. Using Computational Fluid Dynamics (CFD) simulations, this work evaluates the influence of urban morphology on NOx accumulation. The results reveal that areas with high Aspect Ratios (AR > 0.65) and dense vegetation exhibit reduced wind speeds at the pedestrian level—up to 40% lower compared to open zones—and higher NO2 concentrations, with maximum simulated values exceeding 50 μg/m3. This study demonstrates that the design of pedestrian corridors in complex urban environments like Medellín can unintentionally create pollutant accumulation zones, underscoring the importance of integrating air quality considerations into urban planning. The findings provide actionable insights for policymakers, emphasizing the need for comprehensive modeling and field validation to ensure healthier urban spaces in cities affected by persistent air quality issues. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

22 pages, 2003 KB  
Article
Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization
by Hannah Götze, Julian Brokötter, Jonas Frößl, Alexander Kelsch, Sina Kukowski and Andreas Siegfried Pacholski
Environments 2025, 12(8), 255; https://doi.org/10.3390/environments12080255 - 28 Jul 2025
Viewed by 735
Abstract
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific [...] Read more.
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific application limitations of NH3 emission measurement techniques and a high variability in method performance between studies, in particular from small plots. Therefore, the aim of this study was the assessment of measurement methods for ammonia emissions from replicated small plots. Methods were evaluated in 18 trials on six sites in Germany (2021–2022). Urea was applied to winter wheat as an emission source. Two small-plot methods were employed: inverse dispersion modelling (IDM) with atmospheric concentrations obtained from Alpha samplers and the dynamic chamber Dräger tube method (DTM). Cumulative NH3 losses assessed by each method were compared to the results of the integrated horizontal flux (IHF) method using Alpha samplers (Alpha IHF) as a micrometeorological reference method applied in parallel large-plot trials. For validation, Alpha IHF was also compared to IHF/ZINST with Leuning passive samplers. Cumulative NH3 emissions assessed using Alpha IHF and DTM showed good agreement, with a relative root mean square error (rRMSE) of 11%. Cumulative emissions assessed by Leuning IHF/ZINST deviated from Alpha IHF, with an rRMSE of 21%. For low-wind-speed and high-temperature conditions, NH3 losses detected with Alpha IDM had to be corrected to give acceptable agreement (rRMSE 20%, MBE +2 kg N ha−1). The study shows that quantification of NH3 emissions from small plots is feasible. Since DTM is constrained to specific conditions, we recommend Alpha IDM, but the approach needs further development. Full article
Show Figures

Figure 1

17 pages, 5746 KB  
Article
Gas Prediction in Tight Sandstone Reservoirs Based on a Seismic Dispersion Attribute Derived from Frequency-Dependent AVO Inversion
by Laidong Hu, Mingchun Chen and Han Jin
Processes 2025, 13(7), 2210; https://doi.org/10.3390/pr13072210 - 10 Jul 2025
Viewed by 360
Abstract
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion [...] Read more.
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion attribute derived from frequency-dependent inversion based on an AVO equation parameterized by a gas indicator and related properties. Rock physics modeling, based on multi-scale fracture theory, reveals the frequency-dependent gas indicator is highly responsive to variations in porosity and gas saturation. Seismic AVO simulations exhibit distinguishable signatures corresponding to these variations, supporting the potential to estimate reservoir properties from pre-stack seismic data. Synthetic data tests confirm that the values of the proposed dispersion attribute increase with increasing porosity and gas saturation. Additionally, the calculated dispersion attribute exhibits a strong positive correlation with gas content, validating its effectiveness for gas evaluation. Field application results further demonstrate that the proposed dispersion attribute shows prominent anomalies in sandstone reservoirs with high gas content. Compared to the conventional P-wave dispersion attribute, the proposed dispersion attribute exhibits superior reliability in detecting gas-rich zones. These results demonstrate the utility of the method in predicting gas-bearing regions in tight sandstone reservoirs. Full article
Show Figures

Figure 1

16 pages, 11521 KB  
Article
Itinerant and Correlated Nature of Altermagnetic MnTe Single Crystal Studied by Photoemission and Inverse-Photoemission Spectroscopies
by Kazi Golam Martuza, Yogendra Kumar, Hiroshi Yamaguchi, Shiv Kumar, Masashi Arita, Hitoshi Sato, Shin-ichiro Ideta and Kenya Shimada
Materials 2025, 18(13), 3103; https://doi.org/10.3390/ma18133103 - 1 Jul 2025
Viewed by 692
Abstract
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the [...] Read more.
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the Γ¯ point, which was consistent with the reported ARPES results and our density functional theory (DFT) calculations with the on-site Coulomb interaction U. The observed Mn 3d↑-derived peak at −3.5 eV, however, significantly deviated from the DFT + U calculations. Meanwhile, the Mn 3d↓-derived peak at +3.0 eV observed by inverse-photoemission spectroscopy agreed well with the DFT + U results. Based on simulations of the spectral function employing an w-dependent model self-energy, we found significant relaxation effects in the electron-removal process, while such effects were negligible in the electron-addition process. Our study provides a comprehensive picture of electronic states, forming a solid foundation for understanding the magnetic and transport properties of MnTe. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

Back to TopTop