Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,154)

Search Parameters:
Keywords = isothermality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4400 KB  
Article
Assessment of Hydrochar and Porous Carbon from Tectona Grandis Seeds for Removal of Acridine Dyes
by Shubham Chaudhary, Monika Chaudhary, Sarita Kushwaha, Vaishali Tyagi, Shivangi Chaubey, Isabel Pestana da Paixão Cansado, Evgeny Galunin and Suhas
Molecules 2025, 30(19), 3989; https://doi.org/10.3390/molecules30193989 (registering DOI) - 4 Oct 2025
Abstract
This study explores the use of lignocellulosic Tectona grandis seeds (TGs), hydrochar (HC-230-4), and activated carbon (AC-850-5) produced via hydrothermal carbonization and followed by CO2 activation for removing acridine yellow G (AYG) and acridine orange 14 (ABO) from water. HC-230-4 showed a [...] Read more.
This study explores the use of lignocellulosic Tectona grandis seeds (TGs), hydrochar (HC-230-4), and activated carbon (AC-850-5) produced via hydrothermal carbonization and followed by CO2 activation for removing acridine yellow G (AYG) and acridine orange 14 (ABO) from water. HC-230-4 showed a rich presence of surface functional groups and irregular morphology with some sphere-like structures. In contrast, AC-850-5 exhibited a much higher surface area (729.7 m2/g), though with fewer surface functional groups than HC-230-4. The batch method was used to study the effects of contact time, pH, dye concentration, and temperature. Among the materials, AC-850-5 showed the highest adsorption capacity of 198 mg/g for AYG and 171 mg/g for ABO at 25 °C, around 12% higher than commercial activated carbon. The adsorption process was spontaneous and endothermic, fitting well to the Langmuir isotherm model, suggesting monolayer coverage. The adsorption kinetics followed the pseudo-second-order model, indicating that the rate depends on the surface site availability. Intraparticle diffusion analysis further confirmed a multi-step adsorption process. These findings show the strong potential of TG-derived activated carbon as an effective and sustainable material for removing acridine dyes from polluted water. Full article
(This article belongs to the Special Issue Natural-Based Sorbents for Water Remediation)
Show Figures

Figure 1

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 (registering DOI) - 4 Oct 2025
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

14 pages, 5038 KB  
Article
The Diversity Pattern of Two Endangered Dung Beetles in China Under the Influence of Climate Change
by Nina Zhang, Yijie Tong, Lulu Li, Ming Lai, Xinpu Wang and Ming Bai
Diversity 2025, 17(10), 696; https://doi.org/10.3390/d17100696 (registering DOI) - 4 Oct 2025
Abstract
Comprehending the effects of climate change on the range of endangered species is essential for formulating successful conservation strategies. This research examines two nationally protected dung beetle species (Heliocopris dominus and Heliocopris bucephalus) in China to forecast their probable habitat range [...] Read more.
Comprehending the effects of climate change on the range of endangered species is essential for formulating successful conservation strategies. This research examines two nationally protected dung beetle species (Heliocopris dominus and Heliocopris bucephalus) in China to forecast their probable habitat range under present and future climate scenarios. Employing MaxEnt modeling with validated occurrence records and environmental variables, we discerned critical factors affecting their distribution and anticipated changes in habitat suitability. Results reveal that isothermality, temperature seasonality, maximum temperature of the warmest month, and annual precipitation are the principal environmental drivers. Presently, appropriate habitats are primarily located in southern Yunnan and Hainan, with future forecasts indicating a northward extension into additional areas. These findings offer critical insights for choosing conservation zones for these vulnerable species amid shifting climate conditions. Full article
(This article belongs to the Special Issue Diversity and Taxonomy of Scarabaeoidea)
Show Figures

Figure 1

16 pages, 6983 KB  
Article
Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
by Ruimin Zhang, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan and Ke Wu
Agronomy 2025, 15(10), 2334; https://doi.org/10.3390/agronomy15102334 (registering DOI) - 4 Oct 2025
Abstract
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently [...] Read more.
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently reported MOF-based CRFs suffer from low nutrient content, which limits their further application. To address this issue, this study synthesized a series of hierarchically porous MOFs, denoted as MIL-156(X), using sodium acetate as a modulator under hydrothermal conditions. These materials were subsequently loaded with urea and phosphate from aqueous solution to form MOFs-based CRFs (N-P-MIL-156(X)). Results indicate that MIL-156(X) retain microporous integrity while incorporating abundant mesopores. Increasing modulator content reduced particle size and average pore diameter but increased specific surface area and adsorption capacity for urea and phosphate. MIL-156-H (with a high modulator content addition) exhibited the highest adsorption capacity, conforming to Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanisms of urea and phosphate involved hydrogen bonding and the formation of Ca intra-spherical complexes, respectively. N-P-MIL-156-H contained 10.8% N and 16.3% P2O5, with sustained release durations exceeding 42 days (N) and 56 days (P2O5) in an aqueous solution. Pot trials demonstrated significantly higher nutrient use efficiency (N-44.8%, P2O5-16.56%) and a 12.22% yield increase compared to conventional fertilization (N-35.6%, P2O5-13.32%). Thus, N-P-MIL-156-H-based fertilization significantly promotes rice growth and N/P utilization efficiency, offering a promising strategy for developing controlled-release fertilizers and improving nutrient management. Full article
Show Figures

Figure 1

23 pages, 3697 KB  
Article
From Waste to Resource: Phosphorus Adsorption on Posidonia oceanica Ash and Its Application as a Soil Fertilizer
by Juan A. González, Jesús Mengual and Antonio Eduardo Palomares
AgriEngineering 2025, 7(10), 333; https://doi.org/10.3390/agriengineering7100333 - 3 Oct 2025
Abstract
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along [...] Read more.
Phosphorus-based compounds play a crucial role in agricultural productivity. However, excessive phosphorus discharge into water bodies contributes to eutrophication. This study proposes a circular approach for phosphorus recovery and reuse through the thermal valorization of Posidonia oceanica residues, an abundant marine biomass along Mediterranean coasts. After energy recovery from this waste (12.3 MJ kg−1), the resulting ash was assessed as an effective adsorbent for aqueous phosphorus removal. Batch experiments were conducted to evaluate adsorption kinetics and equilibrium, considering the influence of key operational variables, such as temperature, pH, and adsorbent dosage. Under optimal conditions, the material achieved a maximum retention of approximately 55–60 mgP g−1. The Freundlich model successfully describes the equilibrium isotherm data, indicating a heterogeneous adsorbent and an overall endothermic process. Phosphorus removal was favored at basic pH values (9.5–10.5), where the monohydrogen phosphate predominates. Leaching tests further revealed that saturated material releases phosphorus and other minerals in a manner clearly dependent on the final pH, with higher phosphorus release under more acidic conditions. These results suggest that Posidonia ash could serve as a low-cost adsorbent while also acting as a potential phosphorus source in soils. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

15 pages, 3041 KB  
Article
Adsorption Characteristics of Praseodymium and Neodymium with Clay Minerals
by Zhuo Chen, Han Wang, Ruan Chi and Zhenyue Zhang
Minerals 2025, 15(10), 1051; https://doi.org/10.3390/min15101051 - 3 Oct 2025
Abstract
As the production of electric vehicles grows, the rare earth elements Pr and Nd become increasingly significant, as they are key in magnetic materials production. In order to achieve the green and efficient recovery of Pr and Nd from the rare earth leachate, [...] Read more.
As the production of electric vehicles grows, the rare earth elements Pr and Nd become increasingly significant, as they are key in magnetic materials production. In order to achieve the green and efficient recovery of Pr and Nd from the rare earth leachate, this paper selected kaolinite and halloysite as adsorbents to conduct rare earth solution adsorption experiments for exploring the effects of the initial leachate concentration, the solution pH, and the adsorption temperature on the adsorption process. The adsorption characteristics of Pr and Nd by clay minerals were analyzed by quantum chemical calculation. The results showed that the adsorption effects of clay minerals on Pr and Nd decreased with the rise of leachate concentration. When leachate pH increased, the adsorption efficiency of kaolinite and halloysite for Pr firstly increased and then decreased, and the optimal adsorption efficiency was 13.33% and 24.778% at pH 6, respectively. The adsorption effects of kaolinite and halloysite on Nd enhanced gradually with the increase in pH, which increased to 15.925% and 30.482% at pH 7, respectively. With temperature increased, the adsorption of Pr and Nd by kaolinite and halloysite was positively correlated. The isothermal adsorption model was fitted to the experimental data, and it was found that the adsorption of Pr and Nd by kaolinite and halloysite was consistent with the Langmuir model, with R2 above 0.96, indicating that the adsorption process was a single molecular layer adsorption. The results provide theoretical support for the effective recycling of Pr and Nd, which is of great significance for the utilization of rare earth resources in permanent magnets. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

28 pages, 4420 KB  
Article
Experimental Study of Aqueous Foam Use for Heat Transfer Enhancement in Liquid Piston Gas Compression at Various Initial Pressure Levels
by Barah Ahn, Macey Schmetzer and Paul I. Ro
Thermo 2025, 5(4), 39; https://doi.org/10.3390/thermo5040039 - 3 Oct 2025
Abstract
The acceleration of climate change and increasing weather-related disasters require more active utilization of renewable energy. To maximize the use of renewable energy, energy storage is an essential part. Liquid piston gas compressors have recently drawn attention because of their applicability to compressed [...] Read more.
The acceleration of climate change and increasing weather-related disasters require more active utilization of renewable energy. To maximize the use of renewable energy, energy storage is an essential part. Liquid piston gas compressors have recently drawn attention because of their applicability to compressed air-based energy storage. Aqueous foam can be used to enhance the efficiency of liquid piston gas compression by boosting heat transfer. To validate the effectiveness of the combination of liquid piston and aqueous foam in a multi-stage compression system, which can contribute to higher efficiency, the present work performed experimental study at various pressure levels. Compressions were performed with and without aqueous foam at three different initial pressure levels of 1, 2, and 3 bars. For each cycle of compression, a pressure ratio of 2 was used, and the impact of pressure levels on compression efficiency was measured. With the use of foam, isothermal efficiencies of 91.4, 88.2, and 86.6% were observed at 1, 2, and 3 bar(s), which improved by 2.2, 2.1, and 1.3% compared to the baseline compressions. To identify the cause of the effectiveness variations, the volume changes in the foam at the different pressure levels were visually compared. In higher-pressure tests, a significant reduction in the foam amount was observed, and this change may contribute to the decreased effectiveness of the technique. Full article
Show Figures

Figure 1

24 pages, 4210 KB  
Article
Influence of Mineral Fillers on the Curing Process and Thermal Degradation of Polyethylene Glycol Maleate–Acrylic Acid-Based Systems
by Gulsym Burkeyeva, Anna Kovaleva, Danagul Muslimova, David Havlicek, Abylaikhan Bolatbay, Yelena Minayeva, Aiman Omasheva, Elmira Zhakupbekova and Margarita Nurmaganbetova
Polymers 2025, 17(19), 2675; https://doi.org/10.3390/polym17192675 - 3 Oct 2025
Abstract
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)–based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at [...] Read more.
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)–based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at 20 °C can be described by the modified Kamal autocatalytic model; the critical degree of conversion (αc) decreases with increasing content of the unsaturated polyester pEGM and in the presence of fillers. In particular, for unfilled systems, αc was 0.77 for pEGM45 and 0.60 for pEGM60. TGA results demonstrated that higher pEGM content and the incorporation of fillers lead to increased thermal stability and residual mass, along with a reduction in the maximum decomposition rate (dTGₘₐₓ). Calculations using the Kissinger–Akahira–Sunose and Friedman methods also confirmed an increase in the activation energy of thermal degradation (Ea): EKAS was 419 kJ/mol for pEGM45 and 470 kJ/mol for pEGM60, with the highest values observed for pEGM60 systems with fillers (496 kJ/mol for SiO2 and 514 kJ/mol for CaCO3). Rheological studies employing three-interval thixotropy tests revealed the onset of thixotropic behavior upon filler addition and an increase in structure recovery after deformation of up to 56%. These findings underscore the potential of pEGM-based systems for low-temperature curing and for the design of composite materials with improved thermal resistance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 10430 KB  
Article
Modeling of Roughness Effects on Generic Gas Turbine Swirler via a Detached Eddy Simulation Low-y+ Approach
by Robin Vivoli, Daniel Pugh, Burak Goktepe and Philip J. Bowen
Energies 2025, 18(19), 5240; https://doi.org/10.3390/en18195240 - 2 Oct 2025
Abstract
The use of additive manufacturing (AM) has seen increased utilization over the last decade, thanks to well-documented advantages such as lower startup costs, reduced wastage, and the ability to rapidly prototype. The poor surface finish of unprocessed AM components is one of the [...] Read more.
The use of additive manufacturing (AM) has seen increased utilization over the last decade, thanks to well-documented advantages such as lower startup costs, reduced wastage, and the ability to rapidly prototype. The poor surface finish of unprocessed AM components is one of the major drawbacks of this technology, with the research literature suggesting a measurable impact on flow characteristics and burner operability. For instance, surface roughness has been shown to potentially increase resistance to boundary layer flashback—an area of high concern, particularly when utilizing fuels with high hydrogen content. A more detailed understanding of the underlying thermophysical mechanisms is, therefore, required. Computational fluid dynamics can help elucidate the impact of these roughness effects by enabling detailed data interrogation in locations not easily accessible experimentally. In this study, roughness effects on a generic gas turbine swirler were numerically modeled using a low-y+ detached eddy simulation (DES) approach. Three DES models were investigated utilizing a smooth reference case and two rough cases, the latter employing a literature-based and novel equivalent sand-grain roughness (ks) correlation developed for this work. Existing experimental isothermal and CH4 data were used to validate the numerical simulations. Detailed investigations into the effects of roughness on flow characteristics, such as swirl number and recirculation zone position, were subsequently performed. The results show that literature-based ks correlations are unsuitable for the current application. The novel correlation yields more promising outcomes, though its effectiveness depends on the chosen turbulence model. Moreover, it was demonstrated that, for identical ks values, while trends remained consistent, the extent to which they manifested differed under reacting and isothermal conditions. Full article
(This article belongs to the Special Issue Science and Technology of Combustion for Clean Energy)
Show Figures

Figure 1

11 pages, 3467 KB  
Article
High-Temperature Effects on TGO Growth and Al Depletion in TBCs of Ni-Based Superalloy GTD111
by Nomin-Erdene Battulga, Yinsheng He, Youngdae Kim, Yeonkwan Kang, Jinesung Jung, Keesam Shin and Je-Hyun Lee
Coatings 2025, 15(10), 1145; https://doi.org/10.3390/coatings15101145 - 2 Oct 2025
Abstract
Thermal barrier coatings (TBCs) extend gas-turbine blade lifetime by improving high-temperature oxidation resistance and mechanical performance. We investigated the microstructural evolution, TGO growth, and Al depletion in air-plasma-sprayed (APS) single-layer YSZ top coat over a NiCrCoAlY bond coat on Ni-based superalloy circular plates, [...] Read more.
Thermal barrier coatings (TBCs) extend gas-turbine blade lifetime by improving high-temperature oxidation resistance and mechanical performance. We investigated the microstructural evolution, TGO growth, and Al depletion in air-plasma-sprayed (APS) single-layer YSZ top coat over a NiCrCoAlY bond coat on Ni-based superalloy circular plates, heat treated isothermally at 850 °C and 1000 °C for 50–5000 h. Cross-sectional SEM/EDS analysis showed TGO quadratic thickening kinetics at both temperatures, reaching ~10 µm at 1000 °C/5000 h, the growth rate of which was ~5.8 times higher than at 850 °C. On top of the single-layer TGO of Al2O3 observed from the onset, a NiCrCo oxide layer appeared and grew from ≥500 h at 850 °C, with increasing growth rate and cracking. The layer configuration of the YSZ top coat, the TGO of Al2O3, and the bond coat (comprising β-NiAl and γ-NiCr) on top of GTD111, showed an Al concentration gradient in the bond coat starting at 850 °C for 250 h, which intensified with increased duration and temperature. The decrease in Al concentration in the bond coat and the growth of TGO are due to the dissolution of β-NiAl and subsequent Al diffusion to the Al2O3 TGO. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

23 pages, 5324 KB  
Article
Vincristine Beyond Mitosis: Uncovering a First Link to G-Quadruplex DNA in Cancer Cells
by Anna Di Porzio, Carolina Persico, Francesca Romano, Alessandra Barra, Immacolata Aiello, Ludovica D’Auria, Sara Abate, Federica D’Aria, Concetta Giancola, Elpidio Cinquegrana, Francesco Saverio Di Leva, Jussara Amato, Simona Marzano, Nunzia Iaccarino and Antonio Randazzo
Int. J. Mol. Sci. 2025, 26(19), 9606; https://doi.org/10.3390/ijms26199606 - 1 Oct 2025
Abstract
Vincristine is a classical chemotherapeutic agent widely used for its ability to disrupt microtubule polymerization, yet additional molecular effects may contribute to its anticancer activity. G-quadruplexes (G4s), non-canonical nucleic acid structures enriched in regulatory regions of the genome and in mitochondrial DNA, have [...] Read more.
Vincristine is a classical chemotherapeutic agent widely used for its ability to disrupt microtubule polymerization, yet additional molecular effects may contribute to its anticancer activity. G-quadruplexes (G4s), non-canonical nucleic acid structures enriched in regulatory regions of the genome and in mitochondrial DNA, have emerged as relevant modulators of cellular homeostasis. In this study, we investigated whether vincristine can influence G4 biology. Cancer cells treated with vincristine were analyzed by immunofluorescence, revealing a consistent increase in nuclear and mitochondrial G4 foci. In particular, mitochondrial G4s were significantly elevated by approximately 1.5–2.5 fold compared to untreated cells, an effect accompanied by a detectable reduction in membrane potential, indicative of impaired organelle function. In addition, biophysical analyses on representative G4-forming sequences were carried out. Proton nuclear magnetic resonance titrations showed localized chemical shift perturbations upon vincristine addition, circular dichroism confirmed preservation of G4 topology, and isothermal titration calorimetry indicated weak but enthalpically favorable interactions. Taken together, these results suggest that vincristine perturbs both the cellular G4 landscape and mitochondrial homeostasis, while also engaging G4 DNA in vitro. Although additional studies are required to establish the mechanistic details, this work provides proof-of-concept for a previously unrecognized dimension of vincristine’s anticancer action. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 5074 KB  
Article
Dynamic Recrystallization and Microstructural Evolution During Hot Deformation of Al-Cu-Mg Alloy
by Fangyan He, Xiaolan Wu, Zhizheng Rong, Xueqin Zhang, Xiangyuan Xiong, Shengping Wen, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Metals 2025, 15(10), 1100; https://doi.org/10.3390/met15101100 - 1 Oct 2025
Abstract
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing [...] Read more.
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing maps were established to predict the flow behavior of the alloy. The hot deformation mechanisms were investigated through microstructural characterization using inverse pole figure (IPF), grain boundary (GB), and grain orientation spread (GOS) analysis. The results demonstrate that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur during hot deformation. At high lnZ values (high strain rates and low deformation temperatures), discontinuous dynamic recrystallization (DDRX) dominates. Under middle lnZ conditions (low strain rate or high deformation temperature), both continuous dynamic recrystallization (CDRX) and DDRX are the primary mechanisms. Conversely, at low lnZ values (low strain rates and high temperatures), CDRX and geometric dynamic recrystallization (GDRX) become predominant. The DRX process in the Al-Cu-Mg alloy is controlled by the deformation temperature and strain rate. Full article
Show Figures

Figure 1

28 pages, 2183 KB  
Review
CRISPR-Powered Liquid Biopsies in Cancer Diagnostics
by Joshua R. Slattery, Noel Ye Naung, Bernd H. Kalinna and Martin Pal
Cells 2025, 14(19), 1539; https://doi.org/10.3390/cells14191539 - 1 Oct 2025
Abstract
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most [...] Read more.
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most biomarkers, particularly circulating tumour nucleic acids, are vanishingly small—beyond the sensitivity and specificity of most assays. Clustered Regularly Interspaced Short Palindromic Repeats diagnostics (herein labelled ‘CRISPR-Dx’) use gene editing tools to detect, rather than modify, nucleic acids with extremely high specificity. These tools are commonly combined with isothermal nucleic acid amplification to also achieve sensitivities comparable to high-performance laboratory-based techniques, such as digital PCR. CRISPR assays, however, are inherently well suited to adaptation for point-of-care (POC) use, and unlike antigen-based POC assays, are significantly easier and faster to develop. In this review, we summarise current CRISPR-Dx platforms and their analytical potential for cancer biomarker discovery, with an emphasis on enhancing early diagnosis, disease monitoring, point-of-care testing, and supporting cancer therapy. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

13 pages, 1362 KB  
Article
Effect of Metal Modification of Activated Carbon on the Hydrogen Adsorption Capacity
by Nurlan Idrissov, Nursultan Aidarbekov, Zhengisbek Kuspanov, Kydyr Askaruly, Olga Tsurtsumia, Kairat Kuterbekov, Zhassulan Zeinulla, Kenzhebatyr Bekmyrza, Asset Kabyshev, Marzhan Kubenova and Aigerim Serik
Nanomaterials 2025, 15(19), 1503; https://doi.org/10.3390/nano15191503 - 1 Oct 2025
Abstract
This study investigates the hydrogen adsorption performance of activated carbon (AC) derived from rice husks and modified with magnesium and nickel salts. Adsorption isotherms were recorded at 25 °C and 50 °C up to 80 bar, simulating practical storage conditions. The unmodified AC [...] Read more.
This study investigates the hydrogen adsorption performance of activated carbon (AC) derived from rice husks and modified with magnesium and nickel salts. Adsorption isotherms were recorded at 25 °C and 50 °C up to 80 bar, simulating practical storage conditions. The unmodified AC exhibited the highest hydrogen uptake (0.62 wt% at 25 °C), attributed to its high surface area and dominant ultramicroporosity (<0.9 nm). Modifications with Mg and Ni reduced adsorption capacity, likely due to partial pore blockage and decreased surface functionality, as confirmed by FTIR, Raman, and XRD analyses. Despite this, all samples demonstrated stable cyclic adsorption–desorption behavior and consistent isotherm profiles. Hysteresis observed in the modified samples suggests capillary condensation within mesopores. Thermodynamic analysis confirmed the exothermic nature of hydrogen adsorption. Among the modified materials, ACM10 (Mg-modified) exhibited the best performance (0.54 wt%), highlighting the importance of optimizing the metal content. The obtained results indicate that the micropore size distribution and accessible surface functionality critically govern the hydrogen storage capacity, suggesting that unmodified AC is a promising candidate for low-temperature hydrogen storage systems. Full article
Show Figures

Figure 1

16 pages, 5242 KB  
Article
Temperature Field Construction in Qinghai-Gonghe Basin Based on Integrated Geophysical Inversion Results
by Yuanyuan Ming, Zhaofa Zeng, Puyuan Tian, Zhengpu Cheng, Fang Lu, Linyou Zhang, Qiuchen Li, Xue Niu and Shujun Guo
Appl. Sci. 2025, 15(19), 10630; https://doi.org/10.3390/app151910630 - 1 Oct 2025
Abstract
As a clean and renewable energy source with huge reserves, hot dry rock geothermal resources have received wide attention. The geothermal field plays a crucial role in studying the heat source mechanism of hot dry rock, defining target areas, and evaluating resources. In [...] Read more.
As a clean and renewable energy source with huge reserves, hot dry rock geothermal resources have received wide attention. The geothermal field plays a crucial role in studying the heat source mechanism of hot dry rock, defining target areas, and evaluating resources. In this study, the three-dimensional structural inversion of the Gonghe Basin is carried out using magnetotelluric sounding, and the Curie isothermal surface is obtained by analyzing regional aeromagnetic data. By coupling low-resistance and high-conductivity zones with temperature distribution and integrating the Curie isothermal surface with high-temperature anomalies of some melts, we constructed an initial temperature field model based on comprehensive geophysical data. The temperature field model of the Gonghe Basin is established by using the adaptive finite-element temperature conduction control equation and the constraints of the temperature data from geothermal wells. The temperature field model provides a basis for the future exploration of hot dry rock resources in the Gonghe area. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop