Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,243)

Search Parameters:
Keywords = joint distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2255 KB  
Article
Enhancing Operational Efficiency in Active Distribution Networks: A Two-Stage Stochastic Coordination Strategy with Joint Dispatch of Soft Open Points and Electric Springs
by Lidan Chen, Jianhua Gong, Li Liu, Keng-Weng Lao and Lei Wang
Processes 2025, 13(9), 2825; https://doi.org/10.3390/pr13092825 - 3 Sep 2025
Abstract
Emerging power electronic devices like soft open points (SOPs) and electric springs (ESs) play a vital role in enhancing active distribution network (ADN) efficiency. SOPs enable flexible active/reactive power control, while ESs improve demand-side management and voltage regulation. This paper proposes a two-stage [...] Read more.
Emerging power electronic devices like soft open points (SOPs) and electric springs (ESs) play a vital role in enhancing active distribution network (ADN) efficiency. SOPs enable flexible active/reactive power control, while ESs improve demand-side management and voltage regulation. This paper proposes a two-stage stochastic programming model to optimize ADN’s operation by coordinating these fast-response devices with legacy mechanical equipment. The first stage determines hourly setpoints for conventional devices, while the second stage adjusts SOPs and ESs for intra-hour control. To handle ES nonlinearities, a hybrid data–knowledge approach combines knowledge-based linear constraints with a data-driven multi-layer perceptron, later linearized for computational efficiency. The resulting mixed-integer second-order cone program is solved using commercial solvers. Simulation results show the proposed strategy effectively reduces power loss by 42.5%, avoids voltage unsafety with 22 time slots, and enhances 4.3% PV harvesting. The coordinated use of SOP and ESs significantly improves system efficiency, while the proposed solution methodology ensures both accuracy and over 60% computation time reduction. Full article
21 pages, 1829 KB  
Article
Construction of Climate Suitability Evaluation Model for Winter Wheat and Analysis of Its Spatiotemporal Characteristics in Beijing-Tianjin-Hebei Region, China
by Chang Liu, Lei Hong, Mingqing Liu, Yanyan Ni, Jie Hu, Ming Li, Yining Zhu, Lianxi Wang, Jing Hua and Lei Wang
Sustainability 2025, 17(17), 7929; https://doi.org/10.3390/su17177929 - 3 Sep 2025
Abstract
Climate change alters climatic factors, which in turn affect the suitability of crops to grow. Winter wheat is a major crop in the Beijing-Tianjin-Heibei region of China. To assess the climate factors on winter wheat production, the meteorological data (temperature, precipitation, sunshine, etc.) [...] Read more.
Climate change alters climatic factors, which in turn affect the suitability of crops to grow. Winter wheat is a major crop in the Beijing-Tianjin-Heibei region of China. To assess the climate factors on winter wheat production, the meteorological data (temperature, precipitation, sunshine, etc.) from 25 stations in the target region the Beijing-Tianjin-Hebei region of China from 1961 to 2010, the winter wheat yield data from 1978 to 2010, and the growth stages were used. A model of the suitability of light, temperature, and water was subsequently developed to quantitatively analyze the spatial and temporal variability of the suitability of the winter wheat to the climate of the region. Temperature suitability was high during the sowing and grouting periods (temperature suitability peaks at 0.941 during grouting) and lowest in the rejuvenation period. In terms of spatial distribution, it is strong in the south and low in the north, and it exhibits a gradual increase in interannual variation. Precipitation suitability fluctuates steadily, with a peak in the tillering stage and a trough in the jointing stage. In terms of spatial distribution, it is highest in the northeast and decreases in the west; in inter-annual changes, it fluctuates strongly with weak overall growth. Sunshine suitability is stable at 0.9 or above. In spatial distribution, it is high in the northwest and low in the southeast, and it decreases slowly in the interannual variations. The trend of climatic suitability is consistent with temperature and precipitation, showing a pattern of falling first and then rising. In terms of spatial distribution, the overall climate suitability is high in the south and low in the north. In inter-annual changes, climate suitability generally increases slowly. Temperature and precipitation are key factors. Moisture stress became the most important factor for winter wheat cultivation in the region. Sunshine conditions are typically sufficient. This study provides a theoretical basis for a rational layout of winter wheat growing areas in the Beijing-Tianjin-Hebei region and the full utilization of climatic resources. Full article
Show Figures

Figure 1

21 pages, 3077 KB  
Article
A Spatial Approach to Balancing Demand and Supply in Combined Public Transit and Bike-Sharing Networks: A Case Application in Tehran
by Fereshteh Faghihinejad and Randy Machemehl
Future Transp. 2025, 5(3), 117; https://doi.org/10.3390/futuretransp5030117 - 3 Sep 2025
Abstract
Combining public transportation (PT) with Bike-Sharing Systems (BSSs) offers a pathway toward the sustainable development of urban mobility. These systems can reduce fuel consumption, air pollution, and street congestion, especially during peak hours. Moreover, PT and BSS are frequently used by individuals without [...] Read more.
Combining public transportation (PT) with Bike-Sharing Systems (BSSs) offers a pathway toward the sustainable development of urban mobility. These systems can reduce fuel consumption, air pollution, and street congestion, especially during peak hours. Moreover, PT and BSS are frequently used by individuals without access to private vehicles, including low-income groups and students. Whereas increasing PT network infrastructure is constrained by issues such as high capital costs and limited street space (which inhibits mass transit options like BRT or trams), BSS can be used as an adaptable and affordable solution to fill these gaps. In particular, BSS can facilitate the “first-mile–last-mile” legs of PT journeys. However, many transit agencies still rely on traditional joint service planning and overlook BSS as a critical mode in integrated travel chains. This paper proposes that PT and BSS be considered as a unified network and introduces a framework to assess whether access to this integrated system is equitably distributed across urban areas. The framework estimates demand for travel using public mobility options and supply at the level of Traffic Analysis Zones (TAZs), treating PT and BSS as complementary modes. Spatial accessibility analysis is employed to examine connectivity using factors that affect access to both PT and BSS. The proposed approach is tested by taking Tehran as the focus of the case analysis. The results identify the most accessible areas and highlight those that require improved PT-BSS integration. These findings provide policy-relevant suggestions to promote equity and efficiency in urban transport planning. The outcomes reveal that central TAZs in Tehran receive the highest level of PT-BSS integration, while the western and southern TAZs are in urgent need of adjustment to ensure better distribution of integrated public transportation and bike-sharing services. Full article
Show Figures

Figure 1

13 pages, 610 KB  
Article
Clinical and Imaging Features of Chronic Occult Infectious Arthritis and Undifferentiated Oligoarthritis: A Comparative Analysis
by Lingge Wu, Tao Chen, Yan Wang, Zhe Guo, Wangna Tang, Hong Zhao, Xueya Lv and Xiaoli Deng
J. Clin. Med. 2025, 14(17), 6213; https://doi.org/10.3390/jcm14176213 - 3 Sep 2025
Abstract
Background: Undifferentiated arthritis is characterized by synovitis that does not meet the criteria for any specific rheumatic disease. However, a subset of chronic occult infectious arthritis, owing to atypical or overlapping clinical features, is often misclassified as undifferentiated oligoarthritis, potentially leading to [...] Read more.
Background: Undifferentiated arthritis is characterized by synovitis that does not meet the criteria for any specific rheumatic disease. However, a subset of chronic occult infectious arthritis, owing to atypical or overlapping clinical features, is often misclassified as undifferentiated oligoarthritis, potentially leading to diagnostic delays and suboptimal management. This study aimed to compare the clinical, laboratory, and imaging characteristics of these two types of oligoarthritis and to evaluate potential discriminatory markers. Methods: Patients older than 16 years with synovitis involving ≤2 joints at Beijing Jishuitan Hospital from September 2023 to December 2024 were included. Ultrasound-guided joint aspiration or synovial biopsy samples were analyzed by culture and next-generation sequencing, classifying patients as pathogen-positive or -negative. Clinical, laboratory, and imaging data (ultrasound, MRI, CT, X-ray) were compared, and multivariable logistic regression and ROC analyses were performed to identify predictors of infectious arthritis. Results: A total of 57 patients were included, with 20 (35.1%) categorized as pathogen-positive and 37 (64.9%) as pathogen-negative. The mean age was 41.7 ± 14.3 years, and 61.4% of the patients were female, with no significant demographic differences between groups. Monoarthritis was more common in pathogen-positive patients, accounting for 95% of cases (p = 0.02). Although the distribution of affected joints was similar between groups, ultrasound revealed a significantly higher bone erosion grade in pathogen-positive patients (p = 0.02), and CT/X-ray demonstrated articular surface destruction in 58.8% of infectious cases compared to 6.2% in pathogen-negative cases (p < 0.001). Serum albumin levels were significantly lower in the pathogen-negative group (20.7 ± 8.5 g/L vs. 41.1 ± 3.9 g/L, p < 0.001). ROC analysis determined that an albumin threshold >35.4 g/L predicted microbiological positivity with 100% sensitivity and 69.7% specificity. Multivariable logistic regression identified normal serum albumin levels, severe ultrasound-detected bone erosion, and imaging evidence of joint surface destruction as significant predictors of chronic occult infectious arthritis. Conclusions: Our findings suggest that, despite overlapping clinical and laboratory features, serum albumin levels, severe bone erosion on ultrasound and articular surface destruction on CT/X-ray may help differentiate chronic occult infectious arthritis from undifferentiated oligoarthritis. Further studies with larger cohorts are needed to confirm these preliminary results. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

24 pages, 7877 KB  
Article
Comparative Study of Force and Deformation Characteristics of Closed Cavity Thin-Walled Components in Prefabricated Metro Station
by Dechun Cao and Desen Kong
Appl. Sci. 2025, 15(17), 9674; https://doi.org/10.3390/app15179674 - 2 Sep 2025
Abstract
The increased use of prefabricated assembly technology promotes the transformation of urban subway construction in the lightweight direction, in which the closed cavity thin-walled component is increasingly widely used in underground structures due to its excellent material efficiency benefits. In order to investigate [...] Read more.
The increased use of prefabricated assembly technology promotes the transformation of urban subway construction in the lightweight direction, in which the closed cavity thin-walled component is increasingly widely used in underground structures due to its excellent material efficiency benefits. In order to investigate the effect of closed cavity thin-walled components, numerical models of a seven-ring solid structure and cavity structure were constructed based on the four-block prefabricated metro station of Qingdao Metro Line 9, Chengzi Station. This study considers the longitudinal effect between rings and compares the nonlinear force and deformation characteristics of both structures under the load of self-weight and use stage. The study indicates that incorporating closed cavities within structures reduces internal forces in most sections while increasing principal strain, displacement, and stress. As the applied load increases, the rate of internal force reduction diminishes, and the increment of displacement deformation also decreases. Shear lag effects occur in closed cavity sections, leading to a non-uniform normal stress distribution, with maximum shear stress appearing at rib intersections. The cavity location, mortise–tenon joints, and columns represent critical locations for deformation and force transmission within cavity structures. Optimization design must prioritize ensuring their deformation resistance and load-bearing capacity to enhance the overall structural integrity, safety, and reliability. Full article
Show Figures

Figure 1

28 pages, 5449 KB  
Article
A Nash Equilibrium-Based Strategy for Optimal DG and EVCS Placement and Sizing in Radial Distribution Networks
by Degu Bibiso Biramo, Ashenafi Tesfaye Tantu, Kuo Lung Lian and Cheng-Chien Kuo
Appl. Sci. 2025, 15(17), 9668; https://doi.org/10.3390/app15179668 - 2 Sep 2025
Abstract
Distribution System Operators (DSOs) increasingly need planning tools that coordinate utility-influenced assets—such as electric-vehicle charging stations (EVCS) and voltage-support resources—with customer-sited distributed generation (DG). We present a Nash-equilibrium-based Iterative Best Response Algorithm (IBRA-NE) for joint planning of DG and EVCS in radial distribution [...] Read more.
Distribution System Operators (DSOs) increasingly need planning tools that coordinate utility-influenced assets—such as electric-vehicle charging stations (EVCS) and voltage-support resources—with customer-sited distributed generation (DG). We present a Nash-equilibrium-based Iterative Best Response Algorithm (IBRA-NE) for joint planning of DG and EVCS in radial distribution networks. The framework supports two applicability modes: (i) a DSO-plannable mode that co-optimizes EVCS siting/sizing and utility-controlled reactive support (DG operated as VAR resources or functionally equivalent devices), and (ii) a customer-sited mode that treats DG locations as fixed while optimizing DG reactive set-points/sizes and EVCS siting. The objective minimizes network losses and voltage deviation while incorporating deployment costs and EV charging service penalties, subject to standard operating limits. A backward/forward sweep (BFS) load flow with Monte Carlo simulation (MCS) captures load and generation uncertainty; a Bus Voltage Deviation Index (BVDI) helps identify weak buses. On the EEU 114-bus system, the method reduces base-case losses by up to 57.9% and improves minimum bus voltage from 0.757 p.u. to 0.931 p.u.; performance remains robust under a 20% load increase. The framework explicitly accommodates regulatory contexts where DG siting is customer-driven by treating DG locations as fixed in such cases while optimizing EVCS siting and sizing under DSO planning authority. A mixed scenario with 5 DGs and 3 EVCS demonstrates coordinated benefits and convergence properties relative to PSO, GWO, RFO, and ARFO. Additionally, the proposed algorithm is also tested on the IEEE 69-bus system and results in acceptable performance. The results indicate that game-theoretic coordination, applied in a manner consistent with regulatory roles, provides a practical pathway for DSOs to plan EV infrastructure and reactive support in networks with uncertain DER behavior. Full article
Show Figures

Figure 1

18 pages, 4451 KB  
Article
Radar Target Detection Based on Linear Fusion of Two Features
by Yong Huang, Yunhao Luan, Yunlong Dong and Hao Ding
Sensors 2025, 25(17), 5436; https://doi.org/10.3390/s25175436 - 2 Sep 2025
Abstract
The joint detection of multiple features significantly enhances radar’s ability to detect weak targets on the sea surface. However, issues such as large data requirements and the lack of robustness in high-dimensional decision spaces severely constrain the detection performance and applicability of such [...] Read more.
The joint detection of multiple features significantly enhances radar’s ability to detect weak targets on the sea surface. However, issues such as large data requirements and the lack of robustness in high-dimensional decision spaces severely constrain the detection performance and applicability of such methods. In response to this, this paper proposes a radar target detection method based on linear fusion of two features from the perspective of feature dimension reduction. Firstly, a two-feature linear dimensionality reduction method based on distribution compactness is designed to form a fused feature. Then, the generalized extreme value (GEV) distribution is used to model the tail of the probability density function (PDF) of the fused feature, thereby designing an asymptotic constant false alarm rate (CFAR) detector. Finally, the detection performance of this detector is comparatively analyzed using measured data. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 6770 KB  
Article
Research on Impact Resistance of Steel Frame Beam-Column Structure Under Fire
by Zhi Li, Yu-Tong Feng and Tian-Qi Xue
Buildings 2025, 15(17), 3144; https://doi.org/10.3390/buildings15173144 - 2 Sep 2025
Abstract
In this study, the impact resistance of WUF-B steel frame beam–column joints under fire was investigated using ABAQUS finite element software through a sequential thermal–mechanical coupling approach. By integrating a room-temperature impact model with a single-sided fire field applied to the lower flange [...] Read more.
In this study, the impact resistance of WUF-B steel frame beam–column joints under fire was investigated using ABAQUS finite element software through a sequential thermal–mechanical coupling approach. By integrating a room-temperature impact model with a single-sided fire field applied to the lower flange of the steel beam, the multi-parameter influence mechanisms—including temperature (150–750 °C), fire area distribution, and impact momentum—were systematically analyzed. Results indicate that elevated temperatures significantly degrade structural impact resistance. At 750 °C, the peak impact force decreases by 73.3% compared to room temperature, while the mid-span bending moment increases by 63.3%. When the fire zone is near the impact point, localized thermal softening further reduces the peak impact force. Under constant impact energy, lower momentum (i.e., higher velocity) accelerates the rebound of the falling mass, revealing the role of momentum transfer efficiency in governing the transient response of high-temperature structures. Additionally, an analytical prediction model based on Timoshenko beam theory and thermo-mechanical stiffness degradation is developed. By introducing a segmented temperature reduction function, the model significantly enhances the accuracy of mid-span displacement predictions for steel structures under fire. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 15884 KB  
Article
Controlling Residual Stress and Microstructure Distribution in an Invar Alloy Joint Fabricated by Oscillating Laser Welding
by Yi Jiang, Xing Liu, Suming Chen, Kun Zhou, Yanqiu Zhao and Xiaohong Zhan
Materials 2025, 18(17), 4099; https://doi.org/10.3390/ma18174099 - 1 Sep 2025
Abstract
The efficient and high-quality welding for joining Invar alloy parts is imperative for the fabrication of composite material forming molds. The residual stress distributions and microstructural evolution during oscillating welding of Invar alloy remain inadequately characterized in the current literature, necessitating further comprehensive [...] Read more.
The efficient and high-quality welding for joining Invar alloy parts is imperative for the fabrication of composite material forming molds. The residual stress distributions and microstructural evolution during oscillating welding of Invar alloy remain inadequately characterized in the current literature, necessitating further comprehensive investigation. In this paper, laser oscillating welding with circle mode is carried out for 5 mm thick plates of Invar alloy. A finite element model for the laser oscillation welding process of Invar alloy has been established. The numerical simulations and experimental methodologies are synthetically carried out to investigate the influence of oscillating parameters on temperature field, residual stress field, and microstructure characteristics. Furthermore, the microstructural evolution of laser oscillating-welded Invar alloy is elucidated by correlating it with the characteristic distribution of the temperature field. Simulation results showed that the residual stress significantly decreases under the action of the oscillating laser. The increasing of the oscillation frequency and amplitude results in a more uniform distribution of the residual stress, and the stress peak shows a downward trend. It is indicated that the oscillation of the beam resulted in the formation of numerous fragmented fine crystals within the weld seam. Consequently, the tensile strength and elongation of the oscillating welded joint exhibit respective enhancements of 15.0% and 36.6% compared to the non-oscillating condition. Full article
(This article belongs to the Special Issue Advanced Laser Welding Technology of Metallic Materials)
Show Figures

Figure 1

18 pages, 5515 KB  
Article
Experimental and Simulation Study on Residual Stress of Pure Copper Welded Joint by Laser Shock Peening
by Yandong Ma, Siwei Li, Yang Tang and Yongkang Zhang
Materials 2025, 18(17), 4088; https://doi.org/10.3390/ma18174088 - 1 Sep 2025
Viewed by 93
Abstract
To accurately assess the residual stress distribution on the superficial layer of the weld for a pure copper butt-welded joint after laser shock peening (LSP), a coupled model was established by integrating experimental measurements with numerical simulations. This model simulates both the tungsten [...] Read more.
To accurately assess the residual stress distribution on the superficial layer of the weld for a pure copper butt-welded joint after laser shock peening (LSP), a coupled model was established by integrating experimental measurements with numerical simulations. This model simulates both the tungsten inert gas (TIG) welding process of pure copper and the subsequent LSP treatment applied to the weld. On this basis, the effects of the spot overlapping rate, number of impact layers, and pulse width on the weld residual stress profile were evaluated via multi-point LSP simulations. The findings imply that LSP converts the weld’s superficial residual stress from tensile to compressive, which verifies the accuracy of the simulations through the experimental data. Multi-point LSP numerical simulations demonstrate that elevating the spot overlapping rate and number of impact layers enhances the amplitude and affected depth of the surface compressive residual stress (CRS). A slight decrease in the CRS on the superficial layer of the weld was observed with an increase in pulse width. Compared with increasing the overlapping rate and pulse width, increasing the number of impact layers has a more significant strengthening effect. When the impact layer reached 3 times, the surface CRS reached −219.4 MPa, and the influence depth was 1.3 mm. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 11498 KB  
Article
HyperVTCN: A Deep Learning Method with Temporal and Feature Modeling Capabilities for Crop Classification with Multisource Satellite Imagery
by Xiaoqi Huang, Minzi Fang, Weilang Kong, Jialin Liu, Yuxin Wu, Zhenjie Liu, Zhi Qiao and Luo Liu
Remote Sens. 2025, 17(17), 3022; https://doi.org/10.3390/rs17173022 - 31 Aug 2025
Viewed by 134
Abstract
Crop distribution represents crucial information in agriculture, playing a key role in ensuring food security and promoting sustainable agricultural development. However, existing methods for crop distribution primarily focus on modeling temporal dependencies while overlooking the interactions and dependencies among different remote sensing features, [...] Read more.
Crop distribution represents crucial information in agriculture, playing a key role in ensuring food security and promoting sustainable agricultural development. However, existing methods for crop distribution primarily focus on modeling temporal dependencies while overlooking the interactions and dependencies among different remote sensing features, thus failing to fully exploit the rich information contained in multisource satellite imagery. To address this issue, we propose a deep learning-based method named HyperVTCN, which comprises two key components: the ModernTCN block and the TiVDA attention mechanism. HyperVTCN effectively captures temporal dependencies and uncovers intrinsic correlations among features, thereby enabling more comprehensive data utilization. Compared to other state-of-the-art models, it shows improved performance, with overall accuracy (OA) improving by approximately 2–3%, Kappa improving by 3–4.5%, and Macro-F1 improving by about 2–3%. Additionally, ablation experiments suggest that both the attention mechanism(Time-Feature Dual Attention, TiVDA) and the targeted loss optimization strategy contribute to performance improvements. Finally, experiments were conducted to investigate HyperVTCN’s cross-feature and cross-temporal modeling. The results indicate that this joint modeling strategy is effective. This approach has shown potential in enhancing model performance and offers a viable solution for crop classification tasks. Full article
Show Figures

Figure 1

24 pages, 5245 KB  
Article
Analysis of Mechanical Properties and Energy Evolution of Through-Double-Joint Sandy Slate Under Three-Axis Loading and Unloading Conditions
by Yang Wang, Chuanxin Rong, Hao Shi, Zhensen Wang, Yanzhe Li and Runze Zhang
Appl. Sci. 2025, 15(17), 9570; https://doi.org/10.3390/app15179570 - 30 Aug 2025
Viewed by 130
Abstract
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing [...] Read more.
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing research has insufficiently explored the joint inclination angle effect, damage evolution mechanism, and energy distribution characteristics of this type of rock mass under the path of increasing axial pressure and removing confining pressure. Based on this, in this study, uniaxial compression, conventional triaxial compression and increasing axial pressure, and removing confining pressure tests were conducted on four types of rock-like materials with prefabricated 0°, 30°, 60°, and 90° through-double-joint inclinations under different confining pressures. The axial stress/strain curve, failure characteristics, and energy evolution law were comprehensively analyzed, and damage variables based on dissipated energy were proposed. The test results show that the joint inclination angle significantly affects the bearing capacity of the specimen, and the peak strength shows a trend of first increasing and then decreasing with the increase in the inclination angle. In terms of failure modes, the specimens under conventional triaxial compression exhibit progressive compression/shear failure (accompanied by rock bridge fracture zones), while under increased axial compression and relief of confining pressure, a combined tensioning and shear failure is induced. Moreover, brittleness is more pronounced under high confining pressure, and the joint inclination angle also has a significant control effect on the failure path. In terms of energy, under the same confining pressure, as the joint inclination angle increases, the dissipated energy and total energy of the cemented filling body at the end of triaxial compression first decrease and then increase. The triaxial compression damage constitutive model of jointed rock mass established based on dissipated energy can divide the damage evolution into three stages: initial damage, damage development, and accelerated damage growth. Verified by experimental data, this model can well describe the damage evolution characteristics of rock masses with different joint inclination angles. Moreover, an increase in the joint inclination angle will lead to varying degrees of damage during the loading process of the rock mass. The research results can provide key theoretical support and design basis for the stability assessment of surrounding rock in deep and high-stress plateau tunnels, the optimization of support parameters for jointed rock masses, and early warning of rockburst disasters. Full article
Show Figures

Figure 1

20 pages, 4557 KB  
Article
Experimental and Numerical Bearing Capacity Analysis of Locally Corroded K-Shaped Circular Joints
by Ying-Qiang Su, Shu-Jing Tong, Hai-Lou Jiang, Xiao-Dong Feng, Jian-Hua Li and Jian-Kun Xu
Buildings 2025, 15(17), 3111; https://doi.org/10.3390/buildings15173111 - 29 Aug 2025
Viewed by 122
Abstract
This study systematically investigates the influence of varying corrosion severity on the bearing capacity of K-shaped circular-section joints, with explicit consideration of weld line positioning. Four full-scale circular-section joint specimens with clearance gaps were designed to simulate localized corrosion through artificially introduced perforations, [...] Read more.
This study systematically investigates the influence of varying corrosion severity on the bearing capacity of K-shaped circular-section joints, with explicit consideration of weld line positioning. Four full-scale circular-section joint specimens with clearance gaps were designed to simulate localized corrosion through artificially introduced perforations, and axial static loading tests were performed to assess the degradation of structural performance. Experimental results indicate that the predominant failure mode of corroded K-joints manifests as brittle fracture in the weld-affected zone, attributable to the combined effects of material weakening and stress concentration. The enlargement of corrosion pit dimensions induces progressive deterioration in joint stiffness and ultimate bearing capacity, accompanied by increased displacement at failure. A refined finite element model was established using ABAQUS. The obtained load–displacement curve from the simulation was compared with the experimental data to verify the validity of the model. Subsequently, a parametric analysis was conducted to investigate the influence of multiple variables on the residual bearing capacity of the nodes. Numerical investigations indicate that the severity of corrosion exhibits a positive correlation with the reduction in bearing capacity, whereas web-chord members with smaller inclination angles demonstrate enhanced corrosion resistance, when θ is equal to 30 degrees, Ks decreases from approximately 0.983 to around 0.894. Thin-walled joints exhibit accelerated performance deterioration compared to thick-walled configurations under equivalent corrosion conditions. Furthermore, increased pipe diameter ratios exacerbate corrosion-induced reductions in structural efficiency, when the corrosion rate is 0.10, β = 0.4 corresponds to Ks = 0.98, and when β = 0.7, it is approximately 0.965. and distributed micro-pitting results in less severe capacity degradation than concentrated macro-pitting over the same corrosion areas. Full article
Show Figures

Figure 1

23 pages, 9065 KB  
Article
Multi-Scale Guided Context-Aware Transformer for Remote Sensing Building Extraction
by Mengxuan Yu, Jiepan Li and Wei He
Sensors 2025, 25(17), 5356; https://doi.org/10.3390/s25175356 - 29 Aug 2025
Viewed by 249
Abstract
Building extraction from high-resolution remote sensing imagery is critical for urban planning and disaster management, yet remains challenging due to significant intra-class variability in architectural styles and multi-scale distribution patterns of buildings. To address these limitations, we propose the Multi-Scale Guided Context-Aware Network [...] Read more.
Building extraction from high-resolution remote sensing imagery is critical for urban planning and disaster management, yet remains challenging due to significant intra-class variability in architectural styles and multi-scale distribution patterns of buildings. To address these limitations, we propose the Multi-Scale Guided Context-Aware Network (MSGCANet), a Transformer-based multi-scale guided context-aware network. Our framework integrates a Contextual Exploration Module (CEM) that synergizes asymmetric and progressive dilated convolutions to hierarchically expand receptive fields, enhancing discriminability for dense building features. We further design a Window-Guided Multi-Scale Attention Mechanism (WGMSAM) to dynamically establish cross-scale spatial dependencies through adaptive window partitioning, enabling precise fusion of local geometric details and global contextual semantics. Additionally, a cross-level Transformer decoder leverages deformable convolutions for spatially adaptive feature alignment and joint channel-spatial modeling. Experimental results show that MSGCANet achieves IoU values of 75.47%, 91.53%, and 83.10%, and F1-scores of 86.03%, 95.59%, and 90.78% on the Massachusetts, WHU, and Inria datasets, respectively, demonstrating robust performance across these datasets. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 5715 KB  
Article
Distribution of Residual Stresses in Dissimilar Ferritic Steel Weld Joints and Their Modification via Mechanical Hammer Peening
by Zhiyong Hu, Enyu Shi, Yanan Cui, Jiexin Hu and Liangyun Lan
Metals 2025, 15(9), 961; https://doi.org/10.3390/met15090961 - 29 Aug 2025
Viewed by 186
Abstract
Dissimilar steel welding is a necessary means for engineering structures to meet complex service conditions. However, residual stress becomes a challenge for the service properties of dissimilar welded joints (DWJs), as it can reduce fatigue strength and trigger cracking in welded components. Therefore, [...] Read more.
Dissimilar steel welding is a necessary means for engineering structures to meet complex service conditions. However, residual stress becomes a challenge for the service properties of dissimilar welded joints (DWJs), as it can reduce fatigue strength and trigger cracking in welded components. Therefore, accurately estimating the distribution of residual stress and efficiently eliminating it is of great importance. This study investigated the evolution of residual stress during the welding process of two commonly used ferritic steels through experimental and numerical analyses. The results show that different thermal cycle behaviors between DWJs have a significant impact on the formation of residual stress. Longitudinal tensile residual stress is predominant in the weld and heat-affected zone (HAZ), with higher longitudinal tensile and compressive stresses in the Q390 side than in the Q690 side, while the maximum transverse tensile stress occurs in the HAZ of the Q690 side. Hammer peening shows excellent ability to eliminate residual stress after welding, with a maximum elimination rate of approximately 62%, and converts the stress state from tensile to compressive at a certain welding depth. The analysis of process parameters reveals that peening velocity is the most influential factor. Under the present experimental configuration, the peening velocity should be set between 4.5 m/s and 5.5 m/s. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop