Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (225)

Search Parameters:
Keywords = keratinocyte secretion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1848 KB  
Review
Pseudomonas aeruginosa Pathogenicity and Its Interaction with Other Microorganisms During the Skin Wound Healing Process
by Inti Yamberla, Carla Pupiales, Andrea Jazmín Chiliquinga, Tania Sulca-Villamarín, Alejandra Plasencia, Francisco Cabrera Aulestia, Ramiro F. Díaz, Andrés Caicedo and Pedro Miguel Barba
Int. J. Mol. Sci. 2025, 26(19), 9677; https://doi.org/10.3390/ijms26199677 - 4 Oct 2025
Viewed by 240
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen frequently associated with delayed wound healing, particularly in chronic skin injuries. Its capability to form biofilms, secrete virulence factors, and the faculty to compete with other microorganisms makes it a major challenge in clinical wound management. [...] Read more.
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen frequently associated with delayed wound healing, particularly in chronic skin injuries. Its capability to form biofilms, secrete virulence factors, and the faculty to compete with other microorganisms makes it a major challenge in clinical wound management. Recent literature reveals different molecular and cellular mechanisms through which P. aeruginosa disrupts the wound healing process. Findings highlight that it interferes with key phases of healing by modulating host immune responses, degrading extracellular matrix components, and inhibiting keratinocyte migration. Its quorum-sensing systems regulate the expression of critical virulence factors such as exotoxin A, elastases, pyocyanin, and rhamnolipids. Additionally, the production of the biofilm matrix components alginate, and polysaccharides provide protection against host defenses and antibiotics. Interactions with other microorganisms, including antagonistic effects on Staphylococcus epidermidis and synergistic relationships with Staphylococcus aureus, modify the wound microbiota. Promising therapeutic alternatives have shown efficacy in disrupting biofilms and reducing virulence. These insights remark the importance of targeting both P. aeruginosa and its ecological interactions to enhance wound healing outcomes and develop more effective treatments. This review aimed to highlight the pathogenic role of P. aeruginosa and its interactions with other microbial species in the context of skin wound healing. Full article
(This article belongs to the Special Issue Skin Microbiome and Skin Health: Molecular Interactions)
Show Figures

Figure 1

20 pages, 994 KB  
Perspective
Endocrinology and the Lung: Exploring the Bidirectional Axis and Future Directions
by Pedro Iglesias
J. Clin. Med. 2025, 14(19), 6985; https://doi.org/10.3390/jcm14196985 - 2 Oct 2025
Viewed by 334
Abstract
The lung is increasingly recognized as an organ with dual endocrine and respiratory roles, participating in a complex bidirectional crosstalk with systemic hormones and local/paracrine activity. Endocrine and paracrine pathways regulate lung development, ventilation, immunity, and repair, while pulmonary cells express hormone receptors [...] Read more.
The lung is increasingly recognized as an organ with dual endocrine and respiratory roles, participating in a complex bidirectional crosstalk with systemic hormones and local/paracrine activity. Endocrine and paracrine pathways regulate lung development, ventilation, immunity, and repair, while pulmonary cells express hormone receptors and secrete mediators with both local and systemic effects, defining the concept of the “endocrine lung”. This narrative review summarizes current evidence on the endocrine–pulmonary axis. Thyroid hormones, glucocorticoids, sex steroids, and metabolic hormones (e.g., insulin, leptin, adiponectin) critically influence alveologenesis, surfactant production, ventilatory drive, airway mechanics, and immune responses. Conversely, the lung produces mediators such as serotonin, calcitonin gene-related peptide, endothelin-1, leptin, and keratinocyte growth factor, which regulate vascular tone, alveolar homeostasis, and immune modulation. We also describe the respiratory manifestations of major endocrine diseases, including obstructive sleep apnea and lung volume alterations in acromegaly, immunosuppression and myopathy in Cushing’s syndrome, hypoventilation in hypothyroidism, restrictive “diabetic lung”, and obesity-related phenotypes. In parallel, chronic pulmonary diseases such as chronic obstructive pulmonary disease, interstitial lung disease, and sleep apnea profoundly affect endocrine axes, promoting insulin resistance, hypogonadism, GH/IGF-1 suppression, and bone metabolism alterations. Pulmonary neuroendocrine tumors further highlight the interface, frequently presenting with paraneoplastic endocrine syndromes. Finally, therapeutic interactions are discussed, including the risks of hypothalamic–pituitary–adrenal axis suppression with inhaled corticosteroids, immunotherapy-induced endocrinopathies, and inhaled insulin. Future perspectives emphasize mapping pulmonary hormone networks, endocrine phenotyping of chronic respiratory diseases, and developing hormone-based interventions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

22 pages, 5519 KB  
Article
Saponin from Tea (Camellia sinensis) Seed Meal Attenuates Cortisol-Induced Lipogenesis and Inflammation in Human Cells
by Jian Li, Lu-Yao Zhang, Yuan-Cheng Huang, Jian-Ming Deng, Min Yu, Christos C Zouboulis, Jin-Hua Li, Guang-Li Wang and Jing Wang
Molecules 2025, 30(19), 3844; https://doi.org/10.3390/molecules30193844 - 23 Sep 2025
Viewed by 341
Abstract
A fast-paced lifestyle contributes to heightened emotional stress, driving the demand for milder and safer cosmetic ingredients that can counteract stress-induced skin damage—a focus of cutting-edge research in the field. Aim: The aim was to elucidate the role and mechanistic basis of tea [...] Read more.
A fast-paced lifestyle contributes to heightened emotional stress, driving the demand for milder and safer cosmetic ingredients that can counteract stress-induced skin damage—a focus of cutting-edge research in the field. Aim: The aim was to elucidate the role and mechanistic basis of tea (Camellia sinensis) seed meal saponin (Sap) in regulating stress-induced sebum overproduction and inflammatory responses. Methods: The composition and chemical structure of Sap were analyzed using UV-vis absorption spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). In vitro models of cortisone-induced excessive lipid accumulation and the tumor necrosis factor-alpha (TNF-α)-stimulated inflammatory models were established on sebaceous gland cells (SZ95) and normal human epidermal keratinocytes (NHEKs), respectively. Cortisol and inflammatory cytokine secretion levels in cells were detected using ELISA. Additionally, the signaling pathways were revealed by Western blot (WB) and real-time quantitative polymerase chain reaction (RT-PCR). Results: Five saponins were identified in the Sap extract, all belonging to the oleanolic-acid-type pentacyclic triterpenes. Sap treatment significantly attenuated cortisone-induced cortisol secretion and lipid accumulation in SZ95 sebocytes. Mechanistically, Sap inhibited the 11β-HSD1/SREBP-1 pathway, which mediates its sebosuppressive effects, while concurrently down-regulating the mRNA expression of key downstream transcription factors and enzymes, including SREBP-1, FAS, and ACC. Additionally, Sap treatment significantly attenuated TNF-α-stimulated cortisol secretion and inflammatory cytokine (IL-1β, IL-6, and IL-8) production in NHEK cells through the inhibition of the 11β-HSD1/TLR2/NF-κB signaling pathway. Conclusion: Sap demonstrated dual inhibitory effects, suppressing both emotional-stress-induced sebum overproduction and inflammatory cytokines secretion. Full article
(This article belongs to the Special Issue Functional Molecules as Novel Cosmetic Ingredients)
Show Figures

Figure 1

28 pages, 1414 KB  
Review
The Role of Skin Microbiota in Facial Dermatoses and Related Factors: A Narrative Review
by Iva Ferček, Petar Ozretić, Lucija Zanze, Zoran Zoričić, Lorena Dolački, Rok Čivljak and Liborija Lugović-Mihić
Int. J. Mol. Sci. 2025, 26(18), 8857; https://doi.org/10.3390/ijms26188857 - 11 Sep 2025
Viewed by 1037
Abstract
Inflammatory facial dermatoses (atopic dermatitis [AD], acne vulgaris, contact dermatitis, seborrheic dermatitis, rosacea, perioral dermatitis, and demodicosis, etc.) often profoundly impact patients’ appearance and psychological well-being. In this narrative review, we wanted to present the current knowledge on the role of skin microbiota [...] Read more.
Inflammatory facial dermatoses (atopic dermatitis [AD], acne vulgaris, contact dermatitis, seborrheic dermatitis, rosacea, perioral dermatitis, and demodicosis, etc.) often profoundly impact patients’ appearance and psychological well-being. In this narrative review, we wanted to present the current knowledge on the role of skin microbiota in common facial dermatoses. Skin keratinocytes are the primary producers of antimicrobial peptides (AMPs) and express Toll-like receptors (TLRs), which stimulate the T helper (Th1) immune response, with the production of interferon (IFN). They can also produce certain pro-inflammatory cytokines, namely IL-1β, IL-18, IL-6, IL-10, and the tumor necrosis factor (TNF). In healthy infants, the bacterial skin microbiota is predominantly composed of Firmicutes (genera Staphylococcus and Streptococcus), as well as Actinobacteria, Proteobactera, and Bacteroidota. The genera Cutibacterium and Staphylococcus, which have antimicrobial effects and compete with pathogens for nutrients/ecological niches, coexist symbiotically on the skin and can reduce the expression of TLR2 and TLR4. In patients with AD, lesional/non-lesional skin was found to have increased colonization by Staphylococcus aureus which reduces effector T lymphocytes’ ability to produce cytokines, such as IL-17A and IFN-γ, leading to decreased AMP production and impaired skin microbiota immune functionality. In patients with rosacea, the overexpression of TLR2 may stimulate elevated pro-inflammatory cytokine production (IL-8, IL-1β, and TNF-α, etc.), exacerbating the inflammatory response. Also, increased colonization by Malassezia yeasts triggers a Th2 immune response and cytokine secretion (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, beta-defensin, IFN-γ, nitric oxide, and histamine), and participates in signaling pathways. Insight into these factors may further improve clinical approaches to patients with facial dermatoses. Full article
Show Figures

Figure 1

21 pages, 2694 KB  
Article
Nature’s Synergy: Cellular and Molecular Evaluation of Snail Slime and Its Principal Component, Glycolic Acid, on Keratinocytes, with Preliminary Evidence from Endothelial Cells
by Muhammad Rashad, Alessia Ricci, Serena Pilato, Amelia Cataldi, Marwa Balaha and Susi Zara
Biomolecules 2025, 15(9), 1302; https://doi.org/10.3390/biom15091302 - 10 Sep 2025
Viewed by 534
Abstract
Snail slime (SS) is a natural secretion rich in bioactive components such as glycoproteins, hyaluronic acid, glycolic acid (GA), and antimicrobial peptides. GA, a key component of SS, is known for its exfoliative properties. This study investigates SS’s effects on keratinocytes (HaCaT) and [...] Read more.
Snail slime (SS) is a natural secretion rich in bioactive components such as glycoproteins, hyaluronic acid, glycolic acid (GA), and antimicrobial peptides. GA, a key component of SS, is known for its exfoliative properties. This study investigates SS’s effects on keratinocytes (HaCaT) and endothelial cells (ECs), comparing its properties to those of GA. HaCaT cell viability and cytotoxicity, ROS release, and inflammation-related signaling (PI3K/Akt/NF-κB and COX-2 gene expression) were assessed. Extracellular matrix (ECM) remodeling was evaluated by gene expression of MMPs. In ECs, a preliminary evaluation of SS’s effect was conducted in terms of cell viability and migration. Results demonstrated that SS is well tolerated by keratinocytes whereas GA exhibits cytotoxicity, suggesting that SS’s natural composition mitigates GA’s adverse effects. SS induced a controlled, brief inflammatory response, via the PI3K/Akt/NF-κB pathway, unlike GA, responsible for stronger and sustained pro-inflammatory events. Additionally, SS, through the upregulation of MMPs, contributes to ECM remodeling. In ECs, SS preserves viability and also enhances migration, thus supporting wound healing. These findings highlight SS’s ability to balance pro-inflammatory events, making it a promising candidate for advanced dermatological applications, underscoring SS’s potential in modulating key cellular signaling pathways, and supporting its future therapeutic prospects in wound healing. Full article
Show Figures

Graphical abstract

15 pages, 1248 KB  
Article
In Vitro Silencing of MHC-I in Keratinocytes by Herpesvirus US11 Protein to Model Alloreactive Suppression
by Frederik Schlottmann, Sarah Strauß, Peter Maria Vogt and Vesna Bucan
Eur. Burn J. 2025, 6(3), 47; https://doi.org/10.3390/ebj6030047 - 21 Aug 2025
Viewed by 620
Abstract
Background: Secondary rejection remains a major obstacle in skin allografting. Some viruses, such as human herpesvirus and cytomegalovirus, evade immune detection through proteins like the unique short glycoprotein 11 (US11), which down-regulates major histocompatibility complex (MHC) class I expression. This study explores the [...] Read more.
Background: Secondary rejection remains a major obstacle in skin allografting. Some viruses, such as human herpesvirus and cytomegalovirus, evade immune detection through proteins like the unique short glycoprotein 11 (US11), which down-regulates major histocompatibility complex (MHC) class I expression. This study explores the use of recombinant US11 protein as a biopharmaceutical approach to reduce MHC-I expression and thus decrease alloreactivity in human primary keratinocytes. Methods: Human keratinocytes were treated with recombinant US11 protein, and MHC-I expression was assessed via Western blot and flow cytometry. To evaluate immunomodulatory effects, US11-stimulated keratinocytes were co-cultured with peripheral blood mononuclear cells (PBMCs), and interferon-gamma (IFN-γ) levels were measured by ELISA. Additionally, ex vivo human skin tissue was stimulated with US11 to assess long-term MHC-I modulation. Results: US11 treatment significantly reduced MHC-I surface expression in keratinocytes. Co-cultures showed decreased IFN-γ secretion, indicating lower T cell activation. Human skin tissue stimulated with US11 exhibited reduced MHC-I expression after 7 days. Conclusions: This proof-of-concept study suggests that recombinant US11 protein may serve as an effective biopharmaceutical to reduce keratinocyte immunogenicity. Further in vitro and in vivo studies are warranted to validate its potential for clinical application in skin transplantation. Full article
Show Figures

Figure 1

15 pages, 1580 KB  
Article
Syringin (Sinapyl Alcohol 4-O-Glucoside) Improves the Wound Healing Capacity of Fibroblasts and Keratinocytes In Vitro
by Andrzej Parzonko, Agnieszka Filipek, Marcin Równicki and Anna K. Kiss
Int. J. Mol. Sci. 2025, 26(16), 7827; https://doi.org/10.3390/ijms26167827 - 13 Aug 2025
Viewed by 631
Abstract
Wound healing is a complex process in which TGFβ plays a key role. Previous studies have shown that syringin, a phenylpropanoid glycoside present in lilac bark (Syringa vulgaris L.), stimulates TGFβ expression in human monocyte-derived macrophages in addition to inhibiting the secretion [...] Read more.
Wound healing is a complex process in which TGFβ plays a key role. Previous studies have shown that syringin, a phenylpropanoid glycoside present in lilac bark (Syringa vulgaris L.), stimulates TGFβ expression in human monocyte-derived macrophages in addition to inhibiting the secretion of pro-inflammatory cytokines. Here, we investigated the effect of syringin on migration, invasion, and TGFβ production, as well as the effect on the release of pro-inflammatory cytokines in human dermal fibroblasts (NHDF) and keratinocytes (HaCaT) and its mechanism of action. NHDF and HaCaT cells were treated with the tested compound (12.5–100 µM), and a scratch assay was performed. The effect of migration using modified Boyden chambers was analyzed. TGFβ and IL-6 release were also assessed using ELISA kits. Cell proliferation was assessed using MTT and BrdU incorporation tests, while cytotoxicity was assessed using a neutral red uptake test. Smad2 and Smad3 phosphorylation were assessed using Western Blotting. ACTA2, COL1A1, and TIMP3 expression was analyzed using qPCR. Cells treated with syringin showed an increase in invasion potential in the scratch assay. A significant increase in skin fibroblast migration through the porous membrane was also observed. Syringin increased TGFβ release and inhibited IL-6 release by NHDF and HaCaT cells. No effect of syringin on cell proliferation or cytotoxic effects was observed. Western blot analysis showed significant activation of Smad2 and Smad3 in the presence of syringin in NHDF cells, but not in HaCaT. Quantitative PCR analysis revealed a strong increase in ACTA2 and COL1A1 gene expression in fibroblast cells treated with syringin. The present study demonstrated that syringin present in S. vulgaris stem bark increased dermal fibroblasts and keratinocytes’ wound healing function through activation of cell migration. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

17 pages, 4852 KB  
Article
Anti-Inflammatory Activity of Compounds Isolated from Digitalis purpurea L. in TNF-α/IFN-γ-Induced HaCaT Keratinocytes and a Three-Dimensionally Reconstructed Human Skin Model
by Linsha Dong, Hwan Lee, Zhiming Liu, Eun-Rhan Woo and Dong-Sung Lee
Int. J. Mol. Sci. 2025, 26(16), 7747; https://doi.org/10.3390/ijms26167747 - 11 Aug 2025
Viewed by 816
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder affecting 10–20% of the population. In this study, we investigate the anti-inflammatory effect on the skin of eight compounds isolated from Digitalis purpurea L., using tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-stimulated human keratinocytes (HaCaT [...] Read more.
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder affecting 10–20% of the population. In this study, we investigate the anti-inflammatory effect on the skin of eight compounds isolated from Digitalis purpurea L., using tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-stimulated human keratinocytes (HaCaT cells) and a three-dimensional (3D) reconstructed human skin model. Among the tested compounds, desrhamnosyl acteoside exhibited the most potent activity, significantly reducing the secretion of pro-inflammatory cytokines (IL-6, IL-8) and chemokines (CCL17, CCL22), suppressing the expression of inflammatory proteins, and modulating key signaling pathways, including NF-κB, JAK2/STAT1, and MAPK. Notably, this is the first report demonstrating that desrhamnosyl acteoside simultaneously targets all three pathways, indicating a multi-modal mechanism distinct from conventional single-target approaches. In the 3D skin model, desrhamnosyl acteoside further exhibited barrier-protective effects by downregulating inflammatory mediators and upregulating epidermal differentiation markers such as involucrin and loricrin. These findings reveal a previously uncharacterized phytochemical with dual anti-inflammatory and barrier-restorative activities, supporting its potential as a novel therapeutic candidate for AD and other inflammatory skin diseases. Full article
Show Figures

Figure 1

18 pages, 4624 KB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 1258
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

16 pages, 2201 KB  
Article
Oral Squamous Cell Carcinoma Exosomes Upregulate PIK3/AKT, PTEN, and NOTCH Signaling Pathways in Normal Fibroblasts
by Dijana Mitic, Milica Jaksic Karisik, Milos Lazarevic, Jelena Carkic, Emilia Zivkovic, Olivera Mitrovic Ajtic and Jelena Milasin
Curr. Issues Mol. Biol. 2025, 47(7), 568; https://doi.org/10.3390/cimb47070568 - 19 Jul 2025
Viewed by 763
Abstract
Exosomes, small extracellular vesicles secreted by various cell types, have gained significant attention in cancer investigations. Isolation and characterization of exosomes derived from DOK (dysplastic oral keratinocyte), SCC (squamous cell carcinoma) and HaCaT (normal skin keratinocyte) cell lines and microRNA profiling were conducted. [...] Read more.
Exosomes, small extracellular vesicles secreted by various cell types, have gained significant attention in cancer investigations. Isolation and characterization of exosomes derived from DOK (dysplastic oral keratinocyte), SCC (squamous cell carcinoma) and HaCaT (normal skin keratinocyte) cell lines and microRNA profiling were conducted. Magnetic sorting was applied to obtain pure exosomes. Morphology and size were characterized by transmission electron microscopy and nanoparticle tracking analysis. Validation of membrane exosomal markers (CD9, CD63) was performed via Western blotting. MiR-21, miR-31, and miR-133 levels were analyzed in exosomes and parent cells by qPCR. Biological effects of the exosomes were tested by adding them to fibroblast cultures and determining the expression of relevant carcinogenesis markers by qPCR. Exosomes appeared as cup-shaped nano-sized particles, and there was no difference regarding particle diameter and concentration between the three types of exosomes. The oncogenic miR-21 was significantly upregulated both in SCC and SCC-derived exosomes compared to DOK and HaCaT cells and their respective exosomes. However, miR-31 unexpectedly showed the highest expression in normal cells and the lowest in HaCaT exosomes. MiR-133, the tumor suppressor miRNA, was downregulated in both SCC and DOK cells compared to normal (HaCaT) cells, while the opposite situation was observed in exosomes, with HaCaT cells showing the lowest levels of miR-133. The differences in exosome content were reflected in signaling pathway activation in exosome-treated fibroblasts, with SCC exosomes exerting the most potent effect on several cancer-related pathways, notably PIK3/AKT, PTEN, and NOTCH signaling cascades. Full article
Show Figures

Figure 1

14 pages, 2479 KB  
Article
Bauhinia forficata Link Protects HaCaT Keratinocytes from H2O2-Induced Oxidative Stress and Inflammation via Nrf2/PINK1 and NF-κB Signaling Pathways
by Qiwen Zheng, Xiangji Jin, Trang Thi Minh Nguyen, Jae-Woo Kim, Yong-Min Kim and Tae-Hoo Yi
Plants 2025, 14(12), 1751; https://doi.org/10.3390/plants14121751 - 7 Jun 2025
Viewed by 1486
Abstract
Oxidative stress has been directly implicated in the pathogenesis of various skin disorders, making it a promising target for therapeutic intervention. Bauhinia forficata Link (BFL), commonly referred to as “plant insulin,” is well known for its antioxidant and antihyperglycemic properties; however, its potential [...] Read more.
Oxidative stress has been directly implicated in the pathogenesis of various skin disorders, making it a promising target for therapeutic intervention. Bauhinia forficata Link (BFL), commonly referred to as “plant insulin,” is well known for its antioxidant and antihyperglycemic properties; however, its potential role in skin protection remains unexplored. In this study, we investigated the protective effects of BFL against H2O2-induced oxidative stress and inflammation in HaCaT keratinocytes. The major phytochemical constituents of BFL were identified by high-performance liquid chromatography (HPLC). Its antioxidant capacity was evaluated using 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and superoxide dismutase (SOD). In an H2O2-induced oxidative stress model, we assessed intracellular reactive oxygen species (ROS) levels and apoptosis using flow cytometry. Cellular respiration was analyzed using a Seahorse XFp analyzer, while molecular mechanisms were examined by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. Our results demonstrated that BFL significantly reduced intracellular ROS levels and apoptosis, primarily by activating the nuclear factor erythroid 2–related factor 2 (Nrf2)/PINK1 pathway, which promoted mitochondrial quality control and redox homeostasis. Additionally, BFL suppressed inflammatory responses by downregulating the nuclear factor-κB (NF-κB) signaling pathway and reducing the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α). These findings suggest that BFL is a potent antioxidant and anti-inflammatory agent, with potential as an adjunctive therapy for oxidative stress-related skin conditions. Full article
Show Figures

Graphical abstract

16 pages, 7796 KB  
Article
Glycine soja Leaf and Stem Extract Ameliorates Atopic Dermatitis-like Skin Inflammation by Inhibiting JAK/STAT Signaling
by Yoon-Young Sung, Misun Kim, Dong-Seon Kim and Eunjung Son
Int. J. Mol. Sci. 2025, 26(10), 4560; https://doi.org/10.3390/ijms26104560 - 9 May 2025
Viewed by 1302
Abstract
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration [...] Read more.
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration of the GS extract reduced scratching, dermatitis score, transepidermal water loss, thickness of epidermis, inflammatory cell accumulation, and serum concentrations of thymic stromal lymphopoietin and immunoglobulin E. GS downregulated the expression of inflammatory gene markers of atopic dermatitis (AD), including interleukin (IL)-6; regulated on activation, normal T cell expressed and secreted (RANTES); thymus- and activation-regulated chemokine (TARC); and macrophage-derived chemokine (MDC) and upregulated the expression of filaggrin, a keratinocyte differentiation marker, in skin tissue. GS downregulated Janus kinase 1, signal transducer and activation of transcription (STAT) 1, and STAT3 pathways. Using ultra-performance liquid chromatography, we identified seven flavonoids in GS extract, including apigenin, epicatechin, genistein, genistin, daidzin, daidzein, and soyasaponin Bb. GS, apigenin, and genistein reduced the expression of IL-6, MDC, TARC, and RANTES and increased filaggrin via the downregulation of STAT3 phosphorylation in interferon-γ/tumor necrosis factor-α-stimulated keratinocytes. Our results suggest that GS leaf and stem extract ameliorates AD-like skin inflammation by regulating the immune response and restoring skin barrier function. Full article
(This article belongs to the Special Issue Anti-Inflammatory and Anti-Oxidant Effects of Extracts from Plants)
Show Figures

Figure 1

20 pages, 5238 KB  
Article
Low-Temperature Electrospinning-Fabricated Three-Dimensional Nanofiber Scaffolds for Skin Substitutes
by Qiqi Dai, Huazhen Liu, Wenbin Sun, Yi Zhang, Weihuang Cai, Chunxiang Lu, Kaidi Luo, Yuanyuan Liu and Yeping Wang
Micromachines 2025, 16(5), 552; https://doi.org/10.3390/mi16050552 - 30 Apr 2025
Viewed by 724
Abstract
Severe skin damage poses a significant clinical challenge, as limited availability of skin donors, postoperative skin defects, and scarring often impair skin function. Traditional two-dimensional (2D) nanofibers exhibit small pore sizes that hinder cellular infiltration, unable to simulate the three-dimensional (3D) structure of [...] Read more.
Severe skin damage poses a significant clinical challenge, as limited availability of skin donors, postoperative skin defects, and scarring often impair skin function. Traditional two-dimensional (2D) nanofibers exhibit small pore sizes that hinder cellular infiltration, unable to simulate the three-dimensional (3D) structure of the skin. To address these issues, we developed 3D porous nanofiber scaffolds composed of polycaprolactone–polylactic acid–mussel adhesive protein (PLGA-PCL-MAP) using low-temperature electrospinning combined with nano-spray technology. Meanwhile, this 3D scaffold features high porosity, enhanced water absorption, and improved air permeability. The incorporation of mussel adhesive protein (MAP) further increased the scaffold’s adhesive properties and biocompatibility. In vitro experiments demonstrated that the 3D nanofiber scaffolds significantly promoted the adhesion, proliferation, and migration of epidermal keratinocytes (HaCaTs) and human fibroblasts (HFBs), while providing ample space for inward cellular growth. Successful co-culture of HaCaT and HFBs within the scaffold revealed key functional outcomes: HaCaTs expressed keratinocyte differentiation markers CK10 and CK14, while HFBs actively secreted extracellular matrix components critical for wound healing, including collagen I, collagen III, and fibronectin. This skin substitute with a composite structure of epidermis and dermis based on three-dimensional nanofiber scaffolds can be used as an ideal skin replacement and is expected to be applied in wound repair in the future. Full article
(This article belongs to the Section B2: Biofabrication and Tissue Engineering)
Show Figures

Figure 1

13 pages, 1731 KB  
Article
Beyond Cannabidiol: The Contribution of Cannabis sativa Phytocomplex to Skin Anti-Inflammatory Activity in Human Skin Keratinocytes
by Marco Fumagalli, Giulia Martinelli, Giuseppe Paladino, Nora Rossini, Umberto Ciriello, Vincenzo Nicolaci, Nicole Maranta, Carola Pozzoli, Safwa Moheb El Haddad, Elisa Sonzogni, Mario Dell’Agli, Stefano Piazza and Enrico Sangiovanni
Pharmaceuticals 2025, 18(5), 647; https://doi.org/10.3390/ph18050647 - 28 Apr 2025
Cited by 1 | Viewed by 2273
Abstract
Background: Cannabis sativa L. (C. sativa) has a long history of medicinal use. Its inflorescences contain bioactive compounds like non-psychotropic cannabidiol (CBD), which is well known for its anti-inflammatory potential in skin conditions such as psoriasis, and psychotropic Δ-9-tetrahydrocannabinol (THC). [...] Read more.
Background: Cannabis sativa L. (C. sativa) has a long history of medicinal use. Its inflorescences contain bioactive compounds like non-psychotropic cannabidiol (CBD), which is well known for its anti-inflammatory potential in skin conditions such as psoriasis, and psychotropic Δ-9-tetrahydrocannabinol (THC). Keratinocytes, the main cells in the epidermis, are crucial for regulating skin inflammation by producing mediators like IL-8 when stimulated by agents like TNFα. Methods: This study explores the anti-inflammatory effects of a standardized C. sativa extract (CSE) with 5% CBD and less than 0.2% THC in human keratinocytes challenged by TNFα. The aim of this study is to analyze the specific contributions of the main constituents of CSE to inflammatory responses in human keratinocytes by fractionating the extract and examining the effects of its individual components. Results: MTT assays showed that CSE was non-toxic to HaCaT cells up to 50 μg/mL. CSE inhibited NF-κB activity and reduced IL-8 secretion in a concentration-dependent manner, with mean IC50 values of 28.94 ± 10.40 μg/mL and 20.06 ± 2.78 μg/mL (mean ± SEM), respectively. Fractionation of CSE into four subfractions revealed that the more lipophilic fractions (A and B) were the most effective in inhibiting NF-κB, indicating that cannabinoids and cannflavins are key contributors. Pure CBD is one of the most active cannabinoids in reducing NF-κB-driven transcription (together with THC and cannabigerol), and due to its abundance in CSE, it is primarily responsible for the anti-inflammatory activity. Conclusions: This study highlights CBD’s significant role in reducing inflammation in human keratinocytes and underscores the need to consider the synergistic interactions of several molecules within C. sativa extracts for maximum efficacy. Standardized extracts are essential for reproducible results due to the variability in responses. Full article
Show Figures

Figure 1

17 pages, 5837 KB  
Article
Therapeutic Effects of Sigesbeckia pubescens Makino Against Atopic Dermatitis-Like Skin Inflammation Through the JAK2/STAT Signaling Pathway
by Hyun-Kyung Song, Hye Jin Kim, Seong Cheol Kim and Taesoo Kim
Int. J. Mol. Sci. 2025, 26(9), 4191; https://doi.org/10.3390/ijms26094191 - 28 Apr 2025
Cited by 2 | Viewed by 738
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin condition, is a common allergic disorder. The human skin, the largest organ, serves as the first barrier in protecting the body against various external threats. Human epidermal keratinocytes (HEKs) in the epidermal layer and human dermal [...] Read more.
Atopic dermatitis (AD), a chronic inflammatory skin condition, is a common allergic disorder. The human skin, the largest organ, serves as the first barrier in protecting the body against various external threats. Human epidermal keratinocytes (HEKs) in the epidermal layer and human dermal fibroblasts (HDFs) in the dermis of the skin are implicated in AD-associated skin inflammation through the secretion of diverse inflammatory mediators, including chemokines. Sigesbeckia pubescens Makino (SP), a traditional Korean and Chinese herbal remedy, is used for treating inflammatory conditions. While several pharmacological effects of SP extract (SPE) have been documented, its specific inhibitory effect on AD-related skin inflammation remains unexplored. Hence, oral administration of SPE to NC/Nga mice reduced the severity of house dust mite extract-induced dermatitis, accompanied by lowered levels of serum inflammatory mediators, decreased epidermal thickness, reduced mast cell infiltration, and restoration of skin barrier function within skin lesions. In conclusion, SPE has demonstrated the ability to alleviate skin inflammation and protect the skin barrier and shows potential as a therapeutic option for AD. SPE inhibited proinflammatory chemokine production by modulating the Janus kinase (JAK) 2/signal transducer and activator of transcription proteins (STAT) 1/STAT3 signaling pathway in IFN-γ- and TNF-α-stimulated skin cells. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Targets in Skin Diseases)
Show Figures

Figure 1

Back to TopTop