Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = landing port

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 10459 KB  
Article
Ship Air Emission and Their Air Quality Impacts in the Panama Canal Area: An Integrated AIS-Based Estimation During Hotelling Mode in Anchorage Zone
by Yongchan Lee, Youngil Park, Gaeul Kim, Jiye Yoo, Cesar Pinzon-Acosta, Franchesca Gonzalez-Olivardia, Edmanuel Cruz and Heekwan Lee
J. Mar. Sci. Eng. 2025, 13(10), 1888; https://doi.org/10.3390/jmse13101888 - 2 Oct 2025
Abstract
This study presents an integrated assessment of anchorage-related emissions and air quality impacts in the Panama Canal region through Automatic Identification System (AIS) data, bottom-up emission estimation, and atmospheric dispersion modeling. One year of terrestrial AIS observations (July 2024–June 2025) captured 4641 vessels [...] Read more.
This study presents an integrated assessment of anchorage-related emissions and air quality impacts in the Panama Canal region through Automatic Identification System (AIS) data, bottom-up emission estimation, and atmospheric dispersion modeling. One year of terrestrial AIS observations (July 2024–June 2025) captured 4641 vessels with highly variable waiting times: mean 15.0 h, median 4.9 h, with maximum episodes exceeding 1000 h. Annual emissions totaled 1,390,000 tons of CO2, 20,500 tons of NOx, 4250 tons of SO2, 656 tons of PM10, and 603 tons of PM2.5, with anchorage activities contributing 497,000 tons of CO2, 7010 tons of NOx, 1520 tons of SO2, 232 tons of PM10, and 214 tons of PM2.5. Despite the main engines being shut down during anchorage, these activities consistently accounted for 34–36% of the total emissions across all pollutants. High-resolution emission mapping revealed hotspots concentrated in anchorage zones, port berths, and canal approaches. Dispersion simulations revealed strong meteorological control: northwesterly flows transported emissions offshore, sea–land breezes produced afternoon fumigation peaks affecting Panama City, and southerly winds generated widespread onshore impacts. These findings demonstrate that anchorage operations constitute a major source of shipping-related pollution, highlighting the need for operational efficiency improvements and meteorologically informed mitigation strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 7584 KB  
Article
Coupling Coordination of Built-Up Land Intensity and Green Land-Use Efficiency in Hainan Island Based on Multi-Source Heterogeneous Data Fusion
by Man Jiao and Boqun Li
Land 2025, 14(9), 1913; https://doi.org/10.3390/land14091913 - 19 Sep 2025
Viewed by 265
Abstract
Aligning urban land development intensity with green land-use efficiency (GLUE) is crucial for fostering high-quality regional growth. This study aims to examine the coupling and coordination between built-up land intensity (BUI) and GLUE by utilizing multi-source heterogeneous data for Hainan Island (2017, 2020). [...] Read more.
Aligning urban land development intensity with green land-use efficiency (GLUE) is crucial for fostering high-quality regional growth. This study aims to examine the coupling and coordination between built-up land intensity (BUI) and GLUE by utilizing multi-source heterogeneous data for Hainan Island (2017, 2020). A coupling coordination degree model and Geographical Detector are applied to quantify BUI, GLUE, and their coupling coordination, while also identifying the underlying driving factors. The results reveal the following: (i) Following the Free Trade Port initiative, BUI increased by 15.8%, while GLUE grew by 4.9%; (ii) The BUI–GLUE system is still in an adjustment phase, with 94% of jurisdictions showing low coordination; (iii) The primary drivers of coupling have shifted from economic fundamentals to policy and institutional guidance, with their interactions demonstrating significant synergies. These findings suggest that policy-induced land expansion may outpace improvements in GLUE, potentially leading to an imbalance in the land system. This paper introduces an innovative Driver–Response–Feedback and Production–Living–Ecological (DRF–PLE) framework and develops a transferable diagnostic tool for evaluating land-use system sustainability in rapidly urbanizing regions. Full article
Show Figures

Figure 1

53 pages, 5334 KB  
Article
CITI4SEA: A Typological Indicator-Based Assessment for Coastal Public Spaces in Large Euro-Mediterranean Cities
by Ivan Pistone and Antonio Acierno
Sustainability 2025, 17(18), 8239; https://doi.org/10.3390/su17188239 - 13 Sep 2025
Viewed by 313
Abstract
Coastal public spaces in large Euro-Mediterranean cities represent critical zones of negotiation between land and sea, where ecological fragilities, infrastructural pressures and social demands intersect. Grounded in the concept of the urban amphibious, this study explores the spatial-functional complexity of city-sea interfaces through [...] Read more.
Coastal public spaces in large Euro-Mediterranean cities represent critical zones of negotiation between land and sea, where ecological fragilities, infrastructural pressures and social demands intersect. Grounded in the concept of the urban amphibious, this study explores the spatial-functional complexity of city-sea interfaces through the development of CITI4SEA (City-Sea Interface Typological Indicators for Spatial-Ecological Assessment), an original multidimensional framework for the evaluation of coastal public spaces. The methodology builds on a geo-database of 149 coastal municipalities in eight EU Member States and applies a set of indicators to seven major cities (with populations over 500,000 and comprehensive port infrastructure). Through a structured evaluation grid applied to 23 coastal public spaces, the framework enables a cross-comparative analysis of spatial configurations, ecological qualities, and patterns of public use. Results reveal the emergence of transnational clusters based on shared planning logics and degrees of socio-environmental integration, rather than geographic proximity. The study also identifies asymmetries in accessibility, environmental performance and equipment provision. Beyond mapping spatial disparities, the contribution offers a replicable tool for assessing littoral transformations within the broader framework of Integrated Coastal Zone Management (ICZM) and Maritime Spatial Planning (MSP), supporting context-specific strategies for resilient and inclusive coastal governance. Full article
(This article belongs to the Topic Contemporary Waterfronts, What, Why and How?)
Show Figures

Figure 1

25 pages, 1640 KB  
Article
Port Investment Optimization and Its Application Under Differentiated Port and Industrial Risks Along the Maritime Silk Road
by Dongxu Chen, Feng Liu, Tong Wu, Xin Xu, Jingyi Wei, Fuyu Lai and Yu Lin
Systems 2025, 13(9), 794; https://doi.org/10.3390/systems13090794 - 9 Sep 2025
Viewed by 412
Abstract
Since the implementation of the Belt and Road Initiative (BRI) in 2013, Chinese enterprises have expanded port and industrial investments along the Maritime Silk Road (MSR), forming a mutually reinforcing coupled system. Port investments reduce transportation costs and promote the relocation of industries [...] Read more.
Since the implementation of the Belt and Road Initiative (BRI) in 2013, Chinese enterprises have expanded port and industrial investments along the Maritime Silk Road (MSR), forming a mutually reinforcing coupled system. Port investments reduce transportation costs and promote the relocation of industries to host countries. In turn, industrial agglomeration further promotes port investment. However, risks arising from political and economic uncertainties in host countries, as well as fluctuations in international relations, have become increasingly prominent. Due to the differences in the types and levels of risks faced by port and industrial investments, port investment decisions have become more complex and uncertain. To address this issue, this study constructs a bi-level optimization model. The upper model (UM) aims to maximize the total investment profit by optimizing the scale of multiple port investments. The lower model (LM) employs a User Equilibrium (UE) framework to determine the spatial distribution of industries under equilibrium conditions. Using 14 countries along the MSR as a case study, this paper estimates the number of newly constructed berths in each country and the corresponding investment returns. It also finds that local wages and land prices tend to rise after investment. The findings provide valuable references for Chinese enterprises in making overseas investment decisions. Full article
Show Figures

Figure 1

19 pages, 7824 KB  
Article
Modeling Multi-Objective Synergistic Development Scenarios for Wetlands in the International Wetland City: A Case Study of Haikou, China
by Ye Cao, Rongli Ye, Shengtian Chen, Guang Fu and Hui Fu
Water 2025, 17(17), 2565; https://doi.org/10.3390/w17172565 - 30 Aug 2025
Viewed by 839
Abstract
Wetland ecosystems are critical for biodiversity conservation and carbon sequestration, underpinning climate regulation and sustainable development. Accurate prediction of wetland evolution is therefore essential for informed regional planning, particularly in International Wetland Cities. As one of the first designated International Wetland Cities, Haikou [...] Read more.
Wetland ecosystems are critical for biodiversity conservation and carbon sequestration, underpinning climate regulation and sustainable development. Accurate prediction of wetland evolution is therefore essential for informed regional planning, particularly in International Wetland Cities. As one of the first designated International Wetland Cities, Haikou exemplifies the intensifying pressures faced by coastal wetlands in rapidly urbanizing regions, balancing economic development imperatives with ecological conservation. This study addresses this challenge by employing the PLUS model to simulate the spatiotemporal dynamics of wetland evolution in Haikou from 2010 to 2030 under four distinct scenarios: Business-as-Usual (BAU), Ecological Conservation (EC), Economic Development (ED), and Multi-Objective Development (MOD). The integrated approach combines landscape pattern dynamics analysis, land-use transition matrices, and quantitative assessment of driving factor contributions. Key findings reveal significant historical wetland loss between 2010 and 2020 (21.01 km2), characterized by substantial declines in artificial wetlands (paddy fields: −14.43 km2; agricultural ponds: −8.99 km2) alongside resilient growth in natural wetlands (rivers: +2.70 km2; mangroves: +1.25 km2), highlighting fundamental trade-offs between economic and ecological priorities. Scenario projections indicate that unregulated development (ED) would exacerbate wetland loss (−26.33 km2; dynamic change rate: −0.61%), including unprecedented river fragmentation (−16.0%). Conversely, strict conservation (EC) achieves near net-zero wetland loss (−0.05%) but constrains economic development capacity by 24%. Critically, the MOD scenario demonstrates an effective balance, maintaining 86% of EC’s wetland preservation efficacy while satisfying 73% of ED’s development demand. This is achieved through strategic interventions including establishing wetland protection constraints and optimizing bidirectional land conversion rules, yielding synergistic benefits. Spatial analysis identifies key conflict hotspots such as Nandu River shoreline, Dongzhai Port mangroves, necessitating targeted management strategies aligned with the heterogeneity of driving factors. This study advances the framework for sustainable wetland governance by demonstrating how multi-objective spatial planning can transform ecological-economic trade-offs into synergistic co-benefits. It provides a transferable methodological approach for coastal cities in the Global South and other International Wetland City. Full article
(This article belongs to the Special Issue Impacts of Climate Change & Human Activities on Wetland Ecosystems)
Show Figures

Figure 1

28 pages, 19126 KB  
Article
Digital Geospatial Twinning for Revaluation of a Waterfront Urban Park Design (Case Study: Burgas City, Bulgaria)
by Stelian Dimitrov, Bilyana Borisova, Antoaneta Ivanova, Martin Iliev, Lidiya Semerdzhieva, Maya Ruseva and Zoya Stoyanova
Land 2025, 14(8), 1642; https://doi.org/10.3390/land14081642 - 14 Aug 2025
Viewed by 1417
Abstract
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin [...] Read more.
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin for a residential district in Burgas, the largest port city on Bulgaria’s southern Black Sea coast. The aim is to provide up-to-date geospatial data quickly and efficiently, and to merge available data into a single, accurate model. This model is used to test three scenarios for revitalizing coastal functions and improving a waterfront urban park in collaboration with stakeholders. The methodology combines aerial photogrammetry, ground-based mobile laser scanning (MLS), and airborne laser scanning (ALS), allowing for robust 3D modeling and terrain reconstruction across different land cover conditions. The current topography, areas at risk from geological hazards, and the vegetation structure with detailed attribute data for each tree are analyzed. These data are used to evaluate the strengths and limitations of the site concerning the desired functionality of the waterfront, considering urban priorities, community needs, and the necessity of addressing contemporary climate challenges. The carbon storage potential under various development scenarios is assessed. Through effective visualization and communication with residents and professional stakeholders, collaborative development processes have been facilitated through a series of workshops focused on coastal transformation. The results aim to support the design of climate-neutral urban solutions that mitigate natural risks without compromising the area’s essential functions, such as residential living and recreation. Full article
Show Figures

Figure 1

18 pages, 6716 KB  
Article
Decadal and Heterogeneous Deformation of Breakwater Dams and Reclaimed Lands in Xuwei Port Revealed by Radar Interferometry Measurements
by Lei Xie, Jinheng Liu, Xiang Wang, Songbo Wu, Eslam Ali and Wenbin Xu
Remote Sens. 2025, 17(16), 2778; https://doi.org/10.3390/rs17162778 - 11 Aug 2025
Viewed by 423
Abstract
Breakwater dams are critical infrastructures that protect the safety of ports. However, these coastal structures are facing the compounding threats of sea level rise, storm surge, and dam subsidence. Heterogeneous deformations in these infrastructures arise from differential construction sequencing, sediment consolidation, and filling [...] Read more.
Breakwater dams are critical infrastructures that protect the safety of ports. However, these coastal structures are facing the compounding threats of sea level rise, storm surge, and dam subsidence. Heterogeneous deformations in these infrastructures arise from differential construction sequencing, sediment consolidation, and filling materials, yet traditional in situ monitoring remains spatially limited or even unavailable to trace back and continuously monitor deformation evolutions. In contrast, Interferometric Synthetic Aperture Radar (InSAR) offers valuable insights in providing the spatially and temporally covered dam deformation. In this study, we used two Sentinel-1 tracks from 2016 to 2025, and the persistent and distributed scatterers InSAR methods to map the long-term deformation of Xuwei Port, Lianyungang, China. We utilized six sites of leveling measurements to validate the InSAR-derived vertical deformation and indicate Root Mean Square Errors (RMSEs) ranging from −0.9–1.2 cm. We find, for the rock-sand filled section, the deformations show consolidating subsidence ranging from −63.8 cm to −40.6 cm. In contrast, the concrete tubular structure remains stable, with cumulative deformation ranging from −10.6 cm to −5.2 cm. The enclosing reclaimed land undergoes a period of accelerated settlement with subsidence rates of −64.9–−39.3 cm/yr, which are higher than original subsidence rates of −10.1–−9.7 cm/yr. Additionally, we integrated the consolidation model and tide gauge to quantify that the freeboard will decrease to 0.08–0.31 m in the following 100 years with the continuous sea level rise and dam subsidence. This study benefits our understandings of coastal dam and reclaimed land. It highlights InSAR as a valuable tool to evaluate the critical risk between sea level rise and coastal infrastructure subsidence. Full article
(This article belongs to the Special Issue Advances in Surface Deformation Monitoring Using SAR Interferometry)
Show Figures

Figure 1

20 pages, 3293 KB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Viewed by 930
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

1 pages, 198 KB  
Correction
Correction: Wu et al. Research on Unmanned Aerial Vehicle Path Planning for Carbon Emission Monitoring of Land-Side Heavy Vehicles in Ports. Appl. Sci. 2025, 15, 3616
by Xincong Wu, Zhanzhu Li and Xiaohua Cao
Appl. Sci. 2025, 15(15), 8491; https://doi.org/10.3390/app15158491 - 31 Jul 2025
Viewed by 168
Abstract
In the original publication [...] Full article
Show Figures

Figure 2

26 pages, 6390 KB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 638
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

16 pages, 1506 KB  
Article
Theoretical Framework (Module) for Short-Sea Shipping System Evaluation
by Vytautas Paulauskas, Birutė Plačienė, Donatas Paulauskas, Rafał Koba, Patryk Lipka, Krzysztof Czaplewski, Adam Weintrit and Andrzej Chybicki
Appl. Sci. 2025, 15(14), 8058; https://doi.org/10.3390/app15148058 - 20 Jul 2025
Viewed by 447
Abstract
Short-sea shipping, abbreviated SSS, is the transportation of goods by sea over relatively short distances, in contrast to intercontinental ocean and deep-sea shipping. Short-sea shipping (SSS) is important for cargo transportation in some regions of the world with many ports and well-developed liner [...] Read more.
Short-sea shipping, abbreviated SSS, is the transportation of goods by sea over relatively short distances, in contrast to intercontinental ocean and deep-sea shipping. Short-sea shipping (SSS) is important for cargo transportation in some regions of the world with many ports and well-developed liner shipping. The development and improvement of SSS systems is an important scientific and practical task. This article presents theoretical and experimental results of the development and optimization of SSS. A methodology for connecting and evaluating SSS and other transport chains was developed and tested by experimental studies, with the help of which it is possible to assess the efficiency of SSS and other transport chains, e.g., in terms of economy, freight transportation time, and environmental impact. The developed SSS methodology includes sea and land transport corridors, their assessment, and possible ways of optimizing transport chains using a comparative method and can be applied to various transport and logistics chains. The basis for the development and verification of the SSS methodology was the theoretical and experimental results of real short-sea shipping operations. The use of a comparative method based on which transport and logistics chains are assessed allows one to search for the most optimal SSS routes and possible factors that allow optimizing transportation costs and reducing transportation time and environmental impact. Full article
(This article belongs to the Special Issue Advances in Land, Rail and Maritime Transport and in City Logistics)
Show Figures

Figure 1

7 pages, 4461 KB  
Data Descriptor
Dataset on Environmental Parameters and Greenhouse Gases in Port and Harbor Seawaters of Jeju Island, Korea
by Jae-Hyun Lim, Ju-Hyoung Kim, Hyo-Ryeon Kim, Seo-Young Kim and Il-Nam Kim
Data 2025, 10(7), 118; https://doi.org/10.3390/data10070118 - 19 Jul 2025
Viewed by 616
Abstract
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, [...] Read more.
This dataset presents environmental observations collected in August 2021 from 18 port and harbor sites located around Jeju Island, Korea. It includes physical, biogeochemical, and greenhouse gas (GHG) variables measured in surface seawater, such as temperature, salinity, dissolved oxygen, nutrients, chlorophyll-a, pH, total alkalinity, and dissolved inorganic carbon. Concentrations and air–sea fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) were also quantified. All measurements were conducted following standardized analytical protocols, and certified reference materials and duplicate analyses were used to ensure data accuracy. Consequently, the dataset revealed that elevated nutrient accumulation in port and harbor waters and GHG concentrations tended to be higher at sites with stronger land-based influence. During August 2021, most sites functioned as sources of N2O, CH4, and CO2 to the atmosphere. This integrated dataset offers valuable insights into the influence of anthropogenic and hydrological factors on coastal GHG dynamics and provides a foundation for future studies across diverse semi-enclosed marine systems. Full article
Show Figures

Figure 1

29 pages, 3782 KB  
Article
Land Use Evolution and Multi-Scenario Simulation of Shrinking Border Counties Based on the PLUS Model: A Case Study of Changbai County
by Bingxin Li, Chennan He, Xue Jiang, Qiang Zheng and Jiashuang Li
Sustainability 2025, 17(14), 6441; https://doi.org/10.3390/su17146441 - 14 Jul 2025
Viewed by 574
Abstract
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is [...] Read more.
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is crucial for the high-quality development of border areas. Taking Changbai County on the northeastern border as an example, based on multi-source data such as land use, the natural environment, climate conditions, transportation location, and social economy from 2000 to 2020, the land use transfer matrix, spatial kernel density, and PLUS model were used to analyze the spatio-temporal evolution characteristics of land use and explore simulation scenarios and optimization strategies under different planning concepts. This study reveals the following: (1) During the study period, the construction land continued to increase, but the growth rate slowed down, mainly transferred from cultivated land and forest land, and the spatial structure evolved from a single center to a double center, with the core always concentrated along the border. (2) The distance to the port (transportation location), night light (social economy), slope (natural environment), and average annual temperature (climate conditions) are the main driving factors for the change in construction land, and the PLUS model can effectively simulate the land use trend under population contraction. (3) In the reduction scenario, the construction land decreased by 1.67 km2, the scale of Changbai Town slightly reduced, and the contraction around Malugou Town and Badagou Town was more significant. The study shows that the reduction scenario is more conducive to the population aggregation and industrial carrying capacity improvement of shrinking county towns, which is in line with the high-quality development needs of border areas in our country. Full article
Show Figures

Figure 1

27 pages, 21816 KB  
Article
Spatiotemporal Dynamics and Mechanisms of Coastal Rural Settlements Under Diverse Geomorphic Conditions: A Multi-Bay Analysis in Guangdong, China
by Ying Pan, Siyi Feng and Ying Shi
Land 2025, 14(7), 1390; https://doi.org/10.3390/land14071390 - 2 Jul 2025
Viewed by 581
Abstract
The spatiotemporal evolution of coastal rural settlements varies significantly across different geomorphic environments, yet this variation is underexplored in current research. Guided by Coupled Human and Natural Systems, this study examines the adaptation mechanisms between coastal rural settlements and landforms using an integrated [...] Read more.
The spatiotemporal evolution of coastal rural settlements varies significantly across different geomorphic environments, yet this variation is underexplored in current research. Guided by Coupled Human and Natural Systems, this study examines the adaptation mechanisms between coastal rural settlements and landforms using an integrated framework that combines various bay types, spatiotemporal characteristics, and dynamic drivers. Four representative bay types along Guangdong’s coast were analyzed: Hilly Ria Coast, Platform Ria Coast, Barrier-Lagoon Coast, and Estuarine Delta Coast. Using multi-source remote sensing data and optimized Geodetector modeling (1972 vs. 2022), we identified the patterns of spatiotemporal evolution and their driving forces. The results reveal distinct adaptation pathways: Hilly Ria Coast settlements expanded in a constrained manner, supported by tunnel–bridge infrastructure; Platform Ria Coasts developed multi-nucleated, port-oriented clusters through harbor-linked road networks; Barrier-Lagoon Coasts achieved balanced growth through integrated land–river–sea governance; and Estuarine Delta Coasts experienced urban–rural restructuring accompanied by water network degradation. This study proposes governance strategies tailored to specific landforms to support sustainable coastal planning. Full article
(This article belongs to the Topic Contemporary Waterfronts, What, Why and How?)
Show Figures

Figure 1

21 pages, 1044 KB  
Article
Container Traffic in the Colombian Caribbean: A Competitiveness Analysis of the Port of Santa Marta Through a Technical–Economic Combination Framework
by Adriana del Socorro Pabón Noguera, María del Mar Cerbán Jiménez and Juan Jesús Ruiz Aguilar
Logistics 2025, 9(3), 84; https://doi.org/10.3390/logistics9030084 - 27 Jun 2025
Viewed by 1529
Abstract
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to [...] Read more.
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to national and regional ports, and what strategic factors shape its performance within the Colombia and Latin American maritime logistics system? Methods: This study evaluates the port’s competitiveness by applying Porter’s Extended Diamond Model. A mixed-methods ap-proach was employed, combining structured surveys and interviews with port stakeholders and operational data analysis. A competitiveness matrix was developed and examined using standardized residuals and L1 regression to identify critical performance gaps and strengths. Results: The analysis reveals several competitive advantages, including the port’s strategic location, natural deep-water access, and advanced infrastructure for refrigerated cargo. It also benefits from skilled labour and proximity to global shipping routes, such as the Panama Canal. Nonetheless, challenges remain in storage capacity, limited road connectivity, and insufficient public investment in hinterland infrastructure. Conclusions: While the Port of Santa Marta shows strong maritime capabilities and spe-cialized services, addressing its land-side and institutional constraints is essential for positioning it as a resilient, competitive logistics hub in the Latin American and Caribbean region. Full article
Show Figures

Figure 1

Back to TopTop