Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,117)

Search Parameters:
Keywords = landscape changed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2037 KB  
Article
An Evolutionary Game Approach to Enhancing Semiconductor Supply Chain Security in China: Collaborative Governance and Policy Optimization
by Ye Yuan, Jingtao Zhao, Jiacheng Liu and Jiang Yu
Mathematics 2025, 13(19), 3224; https://doi.org/10.3390/math13193224 - 8 Oct 2025
Abstract
In response to the changing international landscape and the risks associated with China’s supply chain security, conducting policy simulations on semiconductor supply chain security helps clarify the industry’s policies and governance strategies for semiconductor supply chain security in China. It also enables a [...] Read more.
In response to the changing international landscape and the risks associated with China’s supply chain security, conducting policy simulations on semiconductor supply chain security helps clarify the industry’s policies and governance strategies for semiconductor supply chain security in China. It also enables a better understanding of the current state and focus areas of China’s semiconductor supply chain security, which is of great significance for improving the security levels of semiconductor supply chains across provinces and cities and for constructing a secure, efficient, and autonomous semiconductor supply chain system. Firstly, this paper reviews the current research on semiconductor supply chains, supply chain security, and industrial policies. Secondly, based on the industrial policies for semiconductor supply chain security, an evolutionary game model is constructed, involving government departments, chain owner enterprises, and upstream and downstream small and medium-sized enterprises (SMEs) within the supply chain. Finally, the MATLAB R2016b system simulation method is employed to conduct a policy simulation analysis of China’s semiconductor supply chain security and further analyze the industrial policies related to semiconductor supply chain security. The results show that: (1) Supply chain security depends on multi-agent collaborative governance, with government leadership, and chain owner enterprises driving innovation in SMEs, improving digitalization levels, and ensuring supply chain autonomy and control. (2) Increasing government management revenue, raising the responsibility costs for chain owner enterprises, and reducing the innovation costs for SMEs can accelerate the achievement of the ideal governance state. Lastly, policy recommendations are proposed to build an autonomous and controllable supply chain system. Full article
(This article belongs to the Section D: Statistics and Operational Research)
Show Figures

Figure 1

25 pages, 5825 KB  
Article
Multi-Centennial Disturbance History and Terrestrial Carbon Transfers in a Coastal Forest Watershed Before and During Reservoir Development
by John A. Trofymow, Kendrick J. Brown, Byron Smiley, Nicholas Hebda, Rebecca Dixon and David Dunn
Forests 2025, 16(10), 1549; https://doi.org/10.3390/f16101549 - 8 Oct 2025
Abstract
Multi-centennial C budgets in forested watersheds require information on forest growth, detritus turnover, and disturbances, as well as the transfer to and fate of terrestrial C in aquatics systems. Here, a sediment gravity core was collected from a drinking water reservoir in Canada, [...] Read more.
Multi-centennial C budgets in forested watersheds require information on forest growth, detritus turnover, and disturbances, as well as the transfer to and fate of terrestrial C in aquatics systems. Here, a sediment gravity core was collected from a drinking water reservoir in Canada, and analyzed for temporal changes in charcoal, magnetic susceptibility, carbon, and nitrogen. These indicators were used to assess disturbance history and terrestrial C sequestration in sediments. During the reservoir development period from 1910 to 2012, charcoal flux and magnetic susceptibility increased ca. 10 years after nearby fire and forest-clearing events associated with reservoir expansion. Total C and δ13C gradually declined during the development period, likely due to increased inputs of mineral soil from human activity. Concurrently, total terrestrial C sequestered in sediments, estimated using three or eight marker compounds, ranged between 3557 and 5145 Mg C/100 yrs, accounting for 11%–17% of DOC exports to the reservoir (30,640 Mg C/100 yrs), as estimated from a previously developed terrestrial carbon budget model. In comparison, mixed-severity fires burned around the reservoir during the pre-development period (pre-1910), as evidenced by stand ages and/or increases in charcoal flux. In general, decreased terrestrial C flux was associated with higher-severity fires that burned between 1870 and 1890 and perhaps around 1790. Further, comparisons show that soil erosion was up to 3× greater in the development versus the pre-development period. Overall, this investigation revealed the impact of land use change and fire on watershed carbon budgets and advanced a previously developed pyGC-MS methodology that demonstrated the amount of terrestrial and aquatic C being buried in sediment. It also identified the fraction of terrestrial C that was exported from the forest to the reservoir and sequestered in the sediment, uncommon data that could inform current and future landscape C budget modelling studies in this region. Full article
(This article belongs to the Special Issue Erosion and Forests: Drivers, Impacts, and Management)
Show Figures

Figure 1

19 pages, 2389 KB  
Article
Distribution Changes in Lichen: A Staple Fallback Food for Yunnan Snub-Nosed Monkey and Their Implications for the Species
by Yuan Zhang, Hanyu Zhu, Lianghua Huang, Xinming He, Sang Ge, Jiandong Lai, Duji Zhaba, Dayong Li and Wancai Xia
Biology 2025, 14(10), 1369; https://doi.org/10.3390/biology14101369 - 7 Oct 2025
Abstract
Under the background of global climate change, lichens as a staple fallback food source for the endangered Yunnan snub-nosed monkey (Rhinopithecus bieti) exert a critical influence on the survival of Yunnan snub-nosed monkey populations through their distribution dynamics. This study focused [...] Read more.
Under the background of global climate change, lichens as a staple fallback food source for the endangered Yunnan snub-nosed monkey (Rhinopithecus bieti) exert a critical influence on the survival of Yunnan snub-nosed monkey populations through their distribution dynamics. This study focused on the contiguous habitats of the Yunnan snub-nosed monkey in the southern Hengduan Mountains. By species distribution models (SDMs) and landscape pattern analysis, we investigated the changes in suitable habitats of lichens under four Representative Concentration Pathway (RCP) scenarios and their implications for the habitat utilization of the Yunnan snub-nosed monkey until 2050. The results indicate that the current suitable habitat for lichen spans approximately 16,821.96 km2, with highly suitable habitats predominantly located in Deqin County and Weixi County. Altitude and vegetation type emerged as primary factors influencing lichen distribution. The overlap rate of suitable habitats between lichens and the Yunnan snub-nosed monkey is 72.24%. Furthermore, the Yunnan snub-nosed monkey exhibits a preference for selecting habitats characterized by the largest patch index (LPI) of lichen distribution. By 2050, the suitable habitat for lichen is projected to marginally increase in the southern Hengduan Mountains, particularly under the RCP 6.0 scenario, by 22.20% compared to the current expansion. However, both the suitable habitat and the LPI of lichen face potential decline within the habitat of the Yunnan snub-nosed monkey. Therefore, we recommend conducting a quantitative investigation into the correlation between the actual productivity of lichen radiata and the population dynamics of Yunnan snub-nosed monkey as a priority. This research will offer a more precise scientific foundation for conservation decision-making for Yunnan snub-nosed monkey. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

17 pages, 6085 KB  
Article
Sustainable Management of UNESCO Landscapes to Foster Natural and Cultural Capital
by Irene Petrosillo, Erica Maria Lovello, Luisa Ria, Patrizia Tartara and Donatella Valente
Sustainability 2025, 17(19), 8895; https://doi.org/10.3390/su17198895 - 7 Oct 2025
Abstract
UNESCO landscapes, as socio-ecological systems of high natural and cultural value, must be well managed and protected for future generations. The study area of the present research includes the UNESCO site of the Etruscan necropolis of Cerveteri (Central Italy). The main aims of [...] Read more.
UNESCO landscapes, as socio-ecological systems of high natural and cultural value, must be well managed and protected for future generations. The study area of the present research includes the UNESCO site of the Etruscan necropolis of Cerveteri (Central Italy). The main aims of the study are as follows: (1) to compare landscape dynamics of the study area from 1954 to 2023; (2) to assess the potential positive effects of the recognition of the area as a UNESCO site in terms of mitigating landscape change and fragmentation; (3) to identify potential sustainable conservation actions aimed at promoting the connectivity between the site and its landscape context. There was a change in the land cover in the entire study area from 1954 to 2023, which was 23%, with different dynamics at different times, while fragmentation was evident in the UNESCO buffer. This is particularly a concern because it includes the ancient Etruscan city, and it is not subject to adequate protection measures. Finally, this research identified crucial management strategies, including the expansion of the core area to include the ancient city; the restoration of naturalistic connections (e.g., the ancient path) between the city, necropolis, and natural context; and the reforestation of sensitive archaeological areas to mitigate landscape fragmentation. Full article
Show Figures

Figure 1

23 pages, 11972 KB  
Article
The Variability in the Thermophysical Properties of Soils for Sustainability of the Industrial-Affected Zone of the Siberian Arctic
by Tatiana V. Ponomareva, Kirill Yu. Litvintsev, Konstantin A. Finnikov, Nikita D. Yakimov, Georgii E. Ponomarev and Evgenii I. Ponomarev
Sustainability 2025, 17(19), 8892; https://doi.org/10.3390/su17198892 - 6 Oct 2025
Viewed by 24
Abstract
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the [...] Read more.
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the seasonally thawed soil layer. The study concentrated on the variability in the soil’s thermophysical properties in Central Siberia’s permafrost zone (the northern part of Krasnoyarsk Region, Taimyr, Russia). In the industrially affected area of interest, we evaluated and contrasted the differences in the thermophysical properties of soils between two opposing types of landscapes. On the one hand, these are soils that are characteristic of the natural landscape of flat shrub tundra, with a well-developed moss–lichen cover. An alternative is the soils in the landscape, which have exhibited significant degradation in the vegetation cover due to both natural and human-induced factors. The heat-insulating properties of background areas are controlled by the layer of moss and shrubs, while its disturbance determines the excessive heating of the soil at depth. In comparison to the background soil characteristics, degradation of on-ground vegetation causes the active layer depth of the soils to double and the temperature gradient to decrease. With respect to depth, we examine the changes in soil temperature and heat flow dynamics (q, W/m2). The ranges of thermal conductivity (λ, W/(m∙K)) were assessed using field-measured temperature profiles and heat flux values in the soil layers. The background soil was discovered to have lower thermal conductivity values, which are typical of organic matter, in comparison to the soil of the transformed landscape. Thermal diffusivity coefficients for soil layers were calculated using long-term temperature monitoring data. It is shown that it is possible to use an adjusted model of the thermal conductivity coefficient to reconstruct the dynamics of moisture content from temperature dynamics data. A satisfactory agreement is shown when the estimated (Wcalc, %) and observed (Wexp, %) moisture content values in the soil layer are compared. The findings will be employed to regulate the effects on landscapes in order to implement sustainable nature management in the region, thereby preventing the significant degradation of ecosystems and the concomitant risks to human well-being. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

29 pages, 62517 KB  
Article
Coastal Vulnerability Index Assessment Along the Coastline of Casablanca Using Remote Sensing and GIS Techniques
by Anselme Muzirafuti and Christos Theocharidis
Remote Sens. 2025, 17(19), 3370; https://doi.org/10.3390/rs17193370 - 6 Oct 2025
Viewed by 155
Abstract
This study explores the potential of Digital Earth Africa (DE Africa) coastlines products for assessing the Coastal Vulnerability Index (CVI) along the Casablanca coastline, Morocco. The analysis integrates remotely sensed shoreline data with elevation, slope, and geomorphological information from ASTER GDEM and geological [...] Read more.
This study explores the potential of Digital Earth Africa (DE Africa) coastlines products for assessing the Coastal Vulnerability Index (CVI) along the Casablanca coastline, Morocco. The analysis integrates remotely sensed shoreline data with elevation, slope, and geomorphological information from ASTER GDEM and geological maps within a GIS environment. Shoreline change metrics, including Shoreline Change Envelope (SCE), Net Shoreline Movement (NSM), Linear Regression Rate (LRR), and End Point Rate (EPR), were used to evaluate erosion trends from 2000 to 2023. Results show that sandy beach areas, particularly those below 12 m elevation, are highly exposed to erosion (up to 1.5 m/yr) and vulnerable to coastal hazards. Approximately 44% and 23% of the study area were classified as having very high and high vulnerability, respectively. The results indicate that remotely sensed data and GIS techniques are valuable and cost-effective tools for multi-scale geo-hazard coastal assessment studies. The study demonstrates that DE Africa products, combined with local landscape data, provide a valuable tool for coastal vulnerability assessment and monitoring in Africa. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Coastline Monitoring)
Show Figures

Figure 1

30 pages, 88126 KB  
Article
Landscape Dynamics of Cat Tien National Park and the Ma Da Forest Within the Dong Nai Biosphere Reserve, Socialist Republic of Vietnam
by Nastasia Lineva, Roman Gorbunov, Ekaterina Kashirina, Tatiana Gorbunova, Polina Drygval, Cam Nhung Pham, Andrey Kuznetsov, Svetlana Kuznetsova, Dang Hoi Nguyen, Vu Anh Tu Dinh, Trung Dung Ngo, Thanh Dat Ngo and Ekaterina Chuprina
Land 2025, 14(10), 2003; https://doi.org/10.3390/land14102003 - 6 Oct 2025
Viewed by 46
Abstract
The study of tropical landscape dynamics is of critical importance, particularly within protected areas, for evaluating ecosystem functioning and the effectiveness of natural conservation efforts. This study aims to identify landscape dynamics within the Dong Nai Biosphere Reserve (including Cat Tien National Park [...] Read more.
The study of tropical landscape dynamics is of critical importance, particularly within protected areas, for evaluating ecosystem functioning and the effectiveness of natural conservation efforts. This study aims to identify landscape dynamics within the Dong Nai Biosphere Reserve (including Cat Tien National Park and the Ma Da Forest) using remote sensing (Landsat and others) and geographic information system methods. The analysis is based on changes in the Enhanced Vegetation Index (EVI), land cover transformations, landscape metrics (Class area, Percentage of Landscape and others), and natural landscape fragmentation, as well as a spatio-temporal assessment of anthropogenic impacts on the area. The results revealed structural changes in the landscapes of the Dong Nai Biosphere Reserve between 2000 and 2024. According to Sen’s slope estimates, a generally EVI growth was observed in both the core and buffer zones of the reserve. This trend was evident in forested areas as well as in regions of the buffer zone that were previously occupied by highly productive agricultural land. An analysis of Environmental Systems Research Institute (ESRI) Land Cover and Land Cover Climate Change Initiative (CCI) data confirms the relative stability of land cover in the core zone, while anthropogenic pressure has increased due to the expansion of agricultural lands, mosaic landscapes, and urban development. The calculation of landscape metrics revealed the growing isolation of natural forests and the dominance of artificial plantations, forming transitional zones between natural and anthropogenically modified landscapes. The human disturbance index, calculated for the years 2000 and 2024, shows only a slight change in the average value across the territory. However, the coefficient of variation increased significantly by 2024, indicating a localized rise in anthropogenic pressure within the buffer zone, while a reduction was observed in the core zone. The practical significance of the results obtained lies in the possibility of their use for the management of the Dongnai biosphere Reserve based on a differentiated approach: for the core and the buffer zone. There should be a ban on agriculture and development in the core zone, and restrictions on urbanized areas in the buffer zone. Full article
Show Figures

Figure 1

23 pages, 9983 KB  
Article
Study on the Spatiotemporal Patterns and Influencing Factors of Maize Planting in Hunan Province
by Qinhao Xiao, Xigui Li, Jingyi Ma, Liangwei Zhu, Kequan Gong and Siting Zhan
Agronomy 2025, 15(10), 2339; https://doi.org/10.3390/agronomy15102339 - 5 Oct 2025
Viewed by 112
Abstract
Maize, one of the world’s three major food crops, plays a vital role in global food security. Analyzing the spatiotemporal patterns of maize cultivation in Hunan Province and their influencing factors contributes to enhancing planting quality and efficiency, optimizing production patterns, and supporting [...] Read more.
Maize, one of the world’s three major food crops, plays a vital role in global food security. Analyzing the spatiotemporal patterns of maize cultivation in Hunan Province and their influencing factors contributes to enhancing planting quality and efficiency, optimizing production patterns, and supporting provincial food security initiatives. Utilizing maize cultivation data from Hunan Province (2001–2023), this study employed the standard deviation ellipse, center of gravity shift model, and principal component analysis to examine production patterns and their drivers. Key findings include the following: (1) The maize planting area exhibited an overall increasing trend from 2001 to 2023, with a spatial convergence from the northwest towards the east. Cultivation hot spots were identified in Shaoyang, Loudi, and Changde. Maize cultivation was predominantly concentrated in areas with gentle slopes (0–3°) and gradually shifted eastward towards similar terrain. (2) The provincial maize production center of gravity followed a “Z”-shaped trajectory, moving eastward and southward with Loudi City as its core. While the spatial distribution pattern shifted from “northwest–southeast” to “west–east”, the core concentration area maintained its “northwest–southeast” orientation. Concurrently, the fragmentation of cultivated land within the maize planting landscape increased. (3) Maize planting hot spots expanded from the northwest towards the central and eastern regions, extending southward. Cold spot areas shifted from the central region towards the northeast. By the study’s end, the central region had emerged as the core maize planting area. (4) Agricultural production conditions and policy factors were identified as the main drivers of spatiotemporal changes in maize acreage within Hunan Province. Full article
24 pages, 17580 KB  
Article
Integrating Cloud Computing and Landscape Metrics to Enhance Land Use/Land Cover Mapping and Dynamic Analysis in the Shandong Peninsula Urban Agglomeration
by Jue Xiao, Longqian Chen, Ting Zhang, Gan Teng and Linyu Ma
Land 2025, 14(10), 1997; https://doi.org/10.3390/land14101997 - 4 Oct 2025
Viewed by 173
Abstract
Accurate land use/land cover (LULC) maps generated through cloud computing can support large-scale land management. Leveraging the rich resources of Google Earth Engine (GEE) is essential for developing historical maps that facilitate the analysis of regional LULC dynamics. We implemented the best-performing scheme [...] Read more.
Accurate land use/land cover (LULC) maps generated through cloud computing can support large-scale land management. Leveraging the rich resources of Google Earth Engine (GEE) is essential for developing historical maps that facilitate the analysis of regional LULC dynamics. We implemented the best-performing scheme on GEE to produce 30 m LULC maps for the Shandong Peninsula urban agglomeration (SPUA) and to detect LULC changes, while closely observing the spatio-temporal trends of landscape patterns during 2004–2024 using the Shannon Diversity Index, Patch Density, and other metrics. The results indicate that (a) Gradient Tree Boost (GTB) marginally outperformed Random Forest (RF) under identical feature combinations, with overall accuracies consistently exceeding 90.30%; (b) integrating topographic features, remote sensing indices, spectral bands, land surface temperature, and nighttime light data into the GTB classifier yielded the highest accuracy (OA = 93.68%, Kappa = 0.92); (c) over the 20-year period, cultivated land experienced the most substantial reduction (11,128.09 km2), accompanied by impressive growth in built-up land (9677.21 km2); and (d) landscape patterns in central and eastern SPUA changed most noticeably, with diversity, fragmentation, and complexity increasing, and connectivity decreasing. These results underscore the strong potential of GEE for LULC mapping at the urban agglomeration scale, providing a robust basis for long-term dynamic process analysis. Full article
(This article belongs to the Special Issue Large-Scale LULC Mapping on Google Earth Engine (GEE))
27 pages, 10093 KB  
Article
Estimating Gully Erosion Induced by Heavy Rainfall Events Using Stereoscopic Imagery and UAV LiDAR
by Lu Wang, Yuan Qi, Wenwei Xie, Rui Yang, Xijun Wang, Shengming Zhou, Yanqing Dong and Xihong Lian
Remote Sens. 2025, 17(19), 3363; https://doi.org/10.3390/rs17193363 - 4 Oct 2025
Viewed by 234
Abstract
Gully erosion, driven by the interplay of natural processes and human activities, results in severe soil degradation and landscape alteration, yet approaches for accurately quantifying erosion triggered by extreme precipitation using multi-source high-resolution remote sensing remain limited. This study first extracted digital surface [...] Read more.
Gully erosion, driven by the interplay of natural processes and human activities, results in severe soil degradation and landscape alteration, yet approaches for accurately quantifying erosion triggered by extreme precipitation using multi-source high-resolution remote sensing remain limited. This study first extracted digital surface models (DSM) for the years 2014 and 2024 using Ziyuan-3 and GaoFen-7 satellite stereo imagery, respectively. Subsequently, the DSM was calibrated using high-resolution unmanned aerial vehicle photogrammetry data to enhance elevation accuracy. Based on the corrected DSMs, gully erosion depths from 2014 to 2024 were quantified. Erosion patches were identified through a deep learning framework applied to GaoFen-1 and GaoFen-2 imagery. The analysis further explored the influences of natural processes and anthropogenic activities on elevation changes within the gully erosion watershed. Topographic monitoring in the Sandu River watershed revealed a net elevation loss of 2.6 m over 2014–2024, with erosion depths up to 8 m in some sub-watersheds. Elevation changes are primarily driven by extreme precipitation-induced erosion alongside human activities, resulting in substantial spatial variability in surface lowering across the watershed. This approach provides a refined assessment of the spatial and temporal evolution of gully erosion, offering valuable insights for soil conservation and sustainable land management strategies in the Loess Plateau region. Full article
Show Figures

Figure 1

26 pages, 20743 KB  
Article
Assessing Rural Landscape Change Within the Planning and Management Framework: The Case of Topaktaş Village (Van, Turkiye)
by Feran Aşur, Kübra Karaman, Okan Yeler and Simay Kaskan
Land 2025, 14(10), 1991; https://doi.org/10.3390/land14101991 - 3 Oct 2025
Viewed by 223
Abstract
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. [...] Read more.
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. Using ArcGIS 10.8 and the Analytic Hierarchy Process (AHP), we integrate DEM, slope, aspect, CORINE land cover Plus, surface-water presence/seasonality, and proximity to hazards (active and surface-rupture faults) and infrastructure (Karasu Stream, highways, village roads). A risk overlay is treated as a hard constraint. We produce suitability maps for settlement, agriculture, recreation, and industry; derive a composite optimum land-use surface; and translate outputs into decision rules (e.g., a 0–100 m fault no-build setback, riparian buffers, and slope thresholds) with an outline for implementation and monitoring. Key findings show legacy footprints at lower elevations, while new footprints cluster near the upper elevation band (DEM range 1642–1735 m). Most of the area exhibits 0–3% slopes, supporting low-impact access where hazards are manageable; however, several newly designated settlement tracts conflict with risk and water-service conditions. Although limited to a single case and available data resolutions, the workflow is transferable: it moves beyond mapping to actionable planning instruments—zoning overlays, buffers, thresholds, and phased management—supporting sustainable, culturally informed post-earthquake reconstruction. Full article
Show Figures

Figure 1

19 pages, 515 KB  
Review
The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review
by Luca Pecoraro, Anna Gloria Lanzilotti, Marta De Musso, Elisabetta Di Muri, Fernanda Tramacere, Emiliano Altavilla and Flavia Indrio
Children 2025, 12(10), 1327; https://doi.org/10.3390/children12101327 - 2 Oct 2025
Viewed by 315
Abstract
Over several decades, childhood asthma has emerged as a significant global public health concern, with the highest prevalence reported in industrialized countries. The rapid rise in asthma incidence and loss of control when the diagnosis is established can be related to environmental and [...] Read more.
Over several decades, childhood asthma has emerged as a significant global public health concern, with the highest prevalence reported in industrialized countries. The rapid rise in asthma incidence and loss of control when the diagnosis is established can be related to environmental and lifestyle changes, especially during early infancy. Current evidence indicates a potential link to an imbalance in immune system responses, influenced by tobacco smoke, traffic-related air pollution, outdoor and indoor allergens, gut microbiome, viral infection, obesity, sedentary lifestyle and dietary patterns. This narrative review aims to explore the landscape of contemporary environmental risk factors for childhood asthma, with a focus on their interplay and the relative importance. Full article
(This article belongs to the Special Issue Pulmonary Function in Children with Respiratory Symptoms)
Show Figures

Figure 1

30 pages, 13414 KB  
Article
An Integrated Framework for Assessing Dynamics of Ecological Spatial Network Resilience Under Climate Change Scenarios: A Case Study of the Yunnan Central Urban Agglomeration
by Bingui Qin, Junsan Zhao, Guoping Chen, Rongyao Wang and Yilin Lin
Land 2025, 14(10), 1988; https://doi.org/10.3390/land14101988 - 2 Oct 2025
Viewed by 301
Abstract
Rapid climate change has exacerbated global ecosystem degradation, leading to habitat fragmentation and landscape connectivity loss. Constructing ecological networks (EN) with resilient conduction functions and conservation priorities is crucial for maintaining regional ecological security and promoting sustainable development. However, the spatiotemporal modeling and [...] Read more.
Rapid climate change has exacerbated global ecosystem degradation, leading to habitat fragmentation and landscape connectivity loss. Constructing ecological networks (EN) with resilient conduction functions and conservation priorities is crucial for maintaining regional ecological security and promoting sustainable development. However, the spatiotemporal modeling and dynamic resilience assessment of EN under the combined impacts of future climate and land use/land cover (LULC) changes remain underexplored. This study focuses on the Central Yunnan Urban Agglomeration (CYUA), China, and integrates landscape ecology with complex network theory to develop a dynamic resilience assessment framework that incorporates multi-scenario LULC projections, multi-temporal EN construction, and node-link disturbance simulations. Under the Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP-RCP) scenarios, we quantified spatiotemporal variations in EN resilience and identified resilience-based conservation priority areas. The results show that: (1) Future EN patterns exhibit a westward clustering trend, with expanding habitat areas and enhanced connectivity. (2) From 2000 to 2040, EN resilience remains generally stable, but diverges significantly across scenarios—showing steady increases under SSP1-2.6 and SSP5-8.5, while slightly declining under SSP2-4.5. (3) Approximately 20% of nodes and 40% of links are identified as critical components for maintaining structural-functional resilience, and are projected to form conservation priority patterns characterized by larger habitat areas and more compact connectivity under future scenarios. The multi-scenario analysis provides differentiated strategies for EN planning and ecological conservation. This framework offers adaptive and resilient solutions for regional ecosystem management under climate change. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

21 pages, 2229 KB  
Article
Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model
by Daniel Mawuko Ocloo and Takeshi Mizunoya
Land 2025, 14(10), 1987; https://doi.org/10.3390/land14101987 - 2 Oct 2025
Viewed by 280
Abstract
University campuses in rapidly urbanizing regions face increasing pressure to balance infrastructure development with environmental sustainability, yet their carbon storage potential remains largely unexplored in sub-Saharan Africa. This study assessed land use changes, carbon storage dynamics, and economic valuation across three Ghanaian universities, [...] Read more.
University campuses in rapidly urbanizing regions face increasing pressure to balance infrastructure development with environmental sustainability, yet their carbon storage potential remains largely unexplored in sub-Saharan Africa. This study assessed land use changes, carbon storage dynamics, and economic valuation across three Ghanaian universities, University of Ghana (UG), Kwame Nkrumah University of Science and Technology (KNUST), and University of Cape Coast (UCC), from 2017 to 2023, and evaluated five future scenarios using the InVEST carbon model. Land use analysis employed ESRI 10 m annual land cover data, while carbon storage was estimated using regionally appropriate carbon pool values, and economic valuation applied Ghana’s social cost of carbon ($0.970/tCO2). Historical analysis revealed substantial carbon losses: UG declined by 17.1% (19,695 Mg C), KNUST by 29.5% (20,063 Mg C), and UCC by 7.9% (3292 Mg C), due to tree cover conversion to built areas. Scenario modeling demonstrated that infrastructure-focused development would cause additional losses of 4211–6891 Mg C, while extensive tree expansion could increase storage by 1686–5227 Mg C. Economic analysis showed tree expansion generating positive net present values ($1612–$5070), while infrastructure development imposed costs (−$4028 to −$6684). These findings provide quantitative evidence for sustainable campus planning prioritizing carbon conservation in tropical institutional landscapes. Full article
Show Figures

Figure 1

25 pages, 4589 KB  
Review
Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems
by Pasquale Napoletano, Noureddine Guezgouz, Lorenza Parato, Rosa Maisto, Imen Benradia, Sarra Benredjem, Teresa Rosaria Verde and Anna De Marco
Sustainability 2025, 17(19), 8843; https://doi.org/10.3390/su17198843 - 2 Oct 2025
Viewed by 208
Abstract
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At [...] Read more.
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At the core of these functions lie the unique characteristics of riparian soils, which result from complex interactions between water dynamics, sedimentation, vegetation, and microbial activity. This paper provides a comprehensive overview of the origin, structure, and functioning of riparian soils, with particular attention being paid to their physical, chemical, and biological properties and how these properties are shaped by periodic flooding and vegetation patterns. Special emphasis is placed on Mediterranean riparian environments, where marked seasonality, alternating wet–dry cycles, and increasing climate variability enhance both the importance and fragility of riparian systems. A bibliographic study, covering 25 years (2000–2025), was carried out through Scopus and Web of Science. The results highlight that riparian areas are key for carbon sequestration, nutrient retention, and ecosystem connectivity in water-limited regions, yet they are increasingly threatened by land use change, water abstraction, pollution, and biological invasions. Climate change exacerbates these pressures, altering hydrological regimes and reducing soil resilience. Conservation requires integrated strategies that maintain hydrological connectivity, promote native vegetation, and limit anthropogenic impacts. Preserving riparian soils is therefore fundamental to sustain ecosystem services, improve water quality, and enhance landscape resilience in vulnerable Mediterranean contexts. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Back to TopTop