Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (470)

Search Parameters:
Keywords = large shear deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 7071 KB  
Article
Interpretable AI-Driven Modelling of Soil–Structure Interface Shear Strength Using Genetic Programming with SHAP and Fourier Feature Augmentation
by Rayed Almasoudi, Abolfazl Baghbani and Hossam Abuel-Naga
Geotechnics 2025, 5(4), 69; https://doi.org/10.3390/geotechnics5040069 - 1 Oct 2025
Abstract
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed [...] Read more.
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed on five sands and three interface materials (steel, PVC, and stone) under normal stresses of 25–100 kPa. The results showed that particle morphology, quantified by the regularity index (RI), and surface roughness (Rt) are dominant factors. Irregular grains and rougher interfaces mobilised higher τmax through enhanced interlocking, while smoother particles reduced this benefit. Harder surfaces resisted asperity crushing and maintained higher shear strength, whereas softer materials such as PVC showed localised deformation and lower resistance. These experimental findings formed the basis for a hybrid symbolic regression framework integrating Genetic Programming (GP) with Shapley Additive Explanations (SHAP), Fourier feature augmentation, and physics-informed constraints. Compared with multiple linear regression and other hybrid GP variants, the Physics-Informed Neural Fourier GP (PIN-FGP) model achieved the best performance (R2 = 0.9866, RMSE = 2.0 kPa). The outcome is a set of five interpretable and physics-consistent formulas linking measurable soil and interface properties to τmax. The study provides both new experimental insights and transparent predictive tools, supporting safer and more defensible geotechnical design and analysis. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
32 pages, 7351 KB  
Article
Function of Bolts in Arching Process of Surrounding Rocks of Roadways and Its Application in Support Design for Large Section Gateways
by Tuanjie Guo, Peiju Yang, Jitao Zhao and Zhenglong Cheng
Appl. Sci. 2025, 15(19), 10327; https://doi.org/10.3390/app151910327 - 23 Sep 2025
Viewed by 81
Abstract
In order to determine appropriate anchoring parameters after enlarging the cross-section of the mining roadway, a comprehensive study was conducted to investigate the development of deformation and failure characteristics in the surrounding rock. The mechanical behavior of rock failure under high-stress conditions and [...] Read more.
In order to determine appropriate anchoring parameters after enlarging the cross-section of the mining roadway, a comprehensive study was conducted to investigate the development of deformation and failure characteristics in the surrounding rock. The mechanical behavior of rock failure under high-stress conditions and the progressive evolution of deformation and failure from shallow to deep zones were thoroughly analyzed. It was proposed that the primary function of bolt support in mining roadways is to guide the surrounding rock to form a stable compressive arch or ring structure. The mechanical mechanism underlying the formation of such an arch under bolt guidance, along with the stability characteristics during this process, was investigated. The principles for determining bolt support parameters were established as follows: (a) ensuring the formation of a closed compressive ring within the anchorage zone around the roadway; (b) preventing shear failure at the roadway corners; and (c) controlling the extent of roof subsidence under gravitational loading. Design methodologies for determining rock bolt and anchor cable length and spacing were formulated and implemented in the support design of large-section mining roadways within million-ton fully mechanized mining faces. The cross-sectional dimensions of the supported roadway are 5.8 × 4.0 m. Field monitoring results indicate that, after stabilization of the surrounding rock deformation, the maximum convergence between both sides does not exceed 140 mm, the maximum roof subsidence remains below 40 mm, and the maximum roof separation is limited to within 4 mm. These findings provide strong evidence that the selected design parameters fully meet the engineering requirements for roadway support. Full article
Show Figures

Figure 1

24 pages, 6413 KB  
Article
Development and Verification of a FEM Model of Wheel–Rail Contact, Suitable for Large Parametric Analysis of Independent Guided Wheels
by Manuel García-Troya, Miguel Sánchez-Lozano and David Abellán-López
Vehicles 2025, 7(3), 104; https://doi.org/10.3390/vehicles7030104 - 19 Sep 2025
Viewed by 251
Abstract
A quasi-static FEM framework for wheel–rail contact is presented, aimed at large parametric analyses including independently rotating wheel (IRW) configurations. Unlike half-space formulations such as CONTACT, the FEM approach resolves global deformations and strongly non-Hertzian geometries while remaining computationally tractable through three key [...] Read more.
A quasi-static FEM framework for wheel–rail contact is presented, aimed at large parametric analyses including independently rotating wheel (IRW) configurations. Unlike half-space formulations such as CONTACT, the FEM approach resolves global deformations and strongly non-Hertzian geometries while remaining computationally tractable through three key features: (i) a tailored mesh transition around the contact patch, (ii) solver settings optimized for frictional contact convergence, and (iii) an integrated post-processing pipeline for creep forces, micro-slip, and wear. The model is verified against CONTACT, an established surface-discretization reference based on the Boundary Element Method (BEM), demonstrating close agreement in contact pressure, shear stress, and stick–slip patterns across the Manchester Contact Benchmark cases. Accuracy is quantified using error metrics (MAE, RMSE), with discrepancies analyzed in high-yaw, near-flange conditions. Compared with prior FEM-based contact models, the main contributions are: (i) a rigid–flexible domain partition, which reduces 3D computational cost without compromising local contact accuracy; (ii) a frictionless preconditioning step followed by friction restoration, eliminating artificial shear-induced deformation at first contact and accelerating convergence; (iii) an automated selection of the elastic slip tolerance (slto) based on frictional-energy consistency, ensuring numerical robustness; and (iv) an IRW-oriented parametrization of toe angle, camber, and wheel spacing. The proposed framework provides a robust basis for large-scale studies and can be extended to transient or elastoplastic analyses relevant to dynamic loading, curved tracks, and wheel defects. Full article
Show Figures

Figure 1

22 pages, 6320 KB  
Article
Mechanisms of Overburden and Surface Damage Conduction in Shallow Multi-Seam Mining
by Guojun Zhang, Shigen Fu, Yunwang Li, Mingbo Chi and Xizhong Zhao
Eng 2025, 6(9), 235; https://doi.org/10.3390/eng6090235 - 8 Sep 2025
Viewed by 264
Abstract
Focusing on the issues of severe mining pressure and discontinuous surface deformation caused by the large-scale mining of multiple coal seams, and taking into account the research background of Shigetai Coal Mine in Shendong Mining Area, this study adopts physical similarity simulation, theoretical [...] Read more.
Focusing on the issues of severe mining pressure and discontinuous surface deformation caused by the large-scale mining of multiple coal seams, and taking into account the research background of Shigetai Coal Mine in Shendong Mining Area, this study adopts physical similarity simulation, theoretical analysis, and on-site verification methods to carry out research on rock migration, stress evolution, and overlying rock fracture mechanism at shallow burial depths and in multiple-coal-seam mining. The research results indicate that as the working face advances, the overlying rock layers break layer by layer, and the intact rock mass on the outer side of the main fracture forms an arched structure and expands outward, showing a pattern of layer-by-layer breaking of the overlying rock and slow settlement of the loose layer. The stress of the coal pillars on both sides in front of and behind the workplace shows an increasing trend followed by a decreasing trend before and after direct top fracture. The stress on the bottom plate of the goaf increases step by step with the collapse of the overlying rock layer, and its increment is similar to the gravity of the collapsed rock layer. When mining multiple coal seams, when the fissures in the overlying strata of the current coal seam penetrate to the upper coal seam, the stress in this coal seam suddenly increases, and the pressure relief effect of the upper coal seam is significant. Based on the above laws, three equilibrium structural models of overlying strata were established, and the maximum tensile stress and maximum shear stress yield strength criteria were used as stability criteria for overlying strata structures. The evolution mechanism of mining damage caused by layer-by-layer fracturing and the upward propagation of overlying strata was revealed. Finally, the analysis of the hydraulic support working resistance during the backfilling of the 31,305 working face in Shigetai Coal Mine confirmed the accuracy of the similarity simulation and theoretical model. The above research can provide support for key theoretical and technological research on underground mine safety production, aquifer protection, surface ecological restoration, and source loss reduction and control. Full article
Show Figures

Figure 1

18 pages, 4614 KB  
Article
The Formation Process of Coal-Bearing Strata Normal Faults Based on Physical Simulation Experiments: A New Experimental Approach
by Zhiguo Xia, Junbo Wang, Wenyu Dong, Chenglong Ma and Bing Chen
Processes 2025, 13(9), 2799; https://doi.org/10.3390/pr13092799 - 1 Sep 2025
Viewed by 507
Abstract
This study investigates the formation mechanism and stress response characteristics of normal faults in coal-bearing strata through large-scale physical simulation experiments. A multi-layer heterogeneous model with a geometric similarity ratio of 1:300 was constructed using similar materials that were tailored to match the [...] Read more.
This study investigates the formation mechanism and stress response characteristics of normal faults in coal-bearing strata through large-scale physical simulation experiments. A multi-layer heterogeneous model with a geometric similarity ratio of 1:300 was constructed using similar materials that were tailored to match the mechanical properties of real strata. Real-time monitoring techniques, including fiber Bragg grating strain sensors and a DH3816 static strain system, were employed to record the evolution of deformation, strain, and displacement fields during the fault development. The results show that the normal fault formation process includes five distinct stages: initial compaction, fault initiation, crack propagation, fault slip, and structural stabilization. Quantitatively, the vertical displacement of the hanging wall reached up to 5.6 cm, equivalent to a prototype value of 16.8 m, and peak horizontal stress increments near the fault exceeded 0.07 MPa. The experimental data reveal that stress concentration during the fault slip stage causes severe damage to the upper coal seam roof, with localized vertical stress fluctuations exceeding 35%. Structural planes were found to control crack nucleation and slip paths, conforming to the Mohr–Coulomb shear failure criterion. This research provides new insights into the dynamic coupling of tectonic stress and fault mechanics, offering novel experimental evidence for understanding fault-induced disasters. The findings contribute to the predictive modeling of stress redistribution in fault zones and support safer deep mining practices in structurally complex coalfields, which has potential implications for petroleum geomechanics and energy resource extraction in similar tectonic settings. Full article
Show Figures

Figure 1

25 pages, 15343 KB  
Article
Experimental Investigation of the Effects of Moisture Levels on Geocomposite Drainage–Geomembrane Interface Shear Behavior
by Juan Hou, Ying Zhang and Xuelei Xie
Sustainability 2025, 17(17), 7850; https://doi.org/10.3390/su17177850 - 31 Aug 2025
Viewed by 504
Abstract
Engineered landfill covers are vital for environmental sustainability. This study investigates the shear behaviors of geocomposite drainage (GCD) and geomembrane (GM) interfaces—smooth (GMS), impinged texture (GMTI), and embossed texture (GMTE)—under 10, 30, and 50 kPa of normal stress and 0%, 50%, and 100% [...] Read more.
Engineered landfill covers are vital for environmental sustainability. This study investigates the shear behaviors of geocomposite drainage (GCD) and geomembrane (GM) interfaces—smooth (GMS), impinged texture (GMTI), and embossed texture (GMTE)—under 10, 30, and 50 kPa of normal stress and 0%, 50%, and 100% moisture levels using large-scale direct shear tests. All interfaces showed strain-softening behavior. At 50 kPa and 0% moisture, GCD–GMTI had the highest peak strength (28 kPa), whereas GCD–GMS had the lowest (10 kPa) at 100% moisture. Moisture and normal stress showed a coupling effect, reducing strength and friction angle. At a 0% moisture level, the strength of the GCD–GMS and GCD–GMTI interfaces under 50 kPa of normal stress was 500% and 250% of that at 10 kPa, respectively; at a 100% moisture level, these proportions decreased to 310% and 230%, respectively. For GCD–GMTE, the ratio slightly increased from 3.0 to 3.2, indicating better wet performance. Texture significantly affected strength: peak strength at 50 kPa was reduced by 41% (GCD–GMS), 16% (GCD–GMTI), and 26% (GCD–GMTE) as moisture increased from 0% to 100%. Large displacement (LD)-to-peak ratios were 0.8–0.9 (GCD–GMS), 0.7–0.8 (GCD–GMTI), and up to 1.0 (GCD–GMTE). Friction angles were reduced from 18° to 9°, 23° to 18°, and 18° to 14° for GCD–GMS, GCD–GMTI, and GCD–GMTE, respectively. Vertical deformation was <0.6 mm. Shear mechanisms depended on texture and moisture. Microscopic and 3D scans revealed moisture-induced GMTI smoothing, reducing interlocking and strength. Full article
Show Figures

Figure 1

24 pages, 7584 KB  
Article
Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test
by Qinglai Fan, Zhaoxia Lin, Mengmeng Sun, Yunrui Han and Ruiying Yin
J. Mar. Sci. Eng. 2025, 13(9), 1648; https://doi.org/10.3390/jmse13091648 - 28 Aug 2025
Viewed by 557
Abstract
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant [...] Read more.
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant underestimation. Furthermore, the deep resistance factor is inherently influenced by the strain-softening behavior of clay rather than maintaining the constant value (typically 10.5) as conventionally assumed in practice. To address this issue, large-deformation finite element (LDFE) simulations incorporating an advanced exponential strain-softening constitutive model were performed to replicate the full T-bar penetration process—from shallow embedment to deeper depths below the mudline. A series of parametric studies were conducted to examine the influence of key parameters on the resistance factor and the associated failure mechanisms during penetration. Based on numerical results, empirical formulas were derived to predict critical penetration depths for both trapped cavity formation and full-flow mechanism initiation. For penetration depths shallower than the full-flow depth, an expression for the softening correction factor was developed to calibrate the shallow resistance factor. Finally, combined with global optimization algorithms, a computer-aided back-analysis procedure was established to estimate strain-softening parameters using resistance-penetration curves from initial penetration tests in marine clay. The reliability of the back-analysis procedure was validated through extensive comparisons with a series of numerical simulation results. This procedure can be applied to the interpretation of T-bar in situ test results in soft marine clay, enabling the evaluation of its strain-softening behavior. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 13405 KB  
Article
Landslide Displacement Intelligent Dynamic Inversion: Technical Framework and Engineering Application
by Yue Dai, Wujiao Dai, Chunhua Chen, Minsi Ao, Jiaxun Li and Qian Huang
Remote Sens. 2025, 17(16), 2820; https://doi.org/10.3390/rs17162820 - 14 Aug 2025
Viewed by 390
Abstract
Displacement back-analysis is a crucial approach to enhance the effectiveness of landslide monitoring data. To improve the computational efficiency and reliability of large-scale three-dimensional landslide displacement inversion, this study develops a novel Landslide Displacement Intelligent Dynamic Inversion Framework (LDIDIF), which integrates the Bayesian [...] Read more.
Displacement back-analysis is a crucial approach to enhance the effectiveness of landslide monitoring data. To improve the computational efficiency and reliability of large-scale three-dimensional landslide displacement inversion, this study develops a novel Landslide Displacement Intelligent Dynamic Inversion Framework (LDIDIF), which integrates the Bayesian displacement back-analysis (BBA) approach, a Long Short-Term Memory (LSTM) surrogate model, and the RANdom SAmple Consensus (RANSAC) algorithm. Specifically, BBA is employed to dynamically calibrate geotechnical parameters with uncertainty, the LSTM model replaces traditional numerical simulations to reduce computational cost, and RANSAC filters inlier observations to enhance the robustness of the inversion model. A case study of the Dawanzi GNSS landslide is conducted. Results show that the LSTM surrogate model achieves prediction errors below 2 mm and enhances computational efficiency by approximately 50,000 times. The RANSAC algorithm effectively identifies and removes GNSS outliers. Notably, LDIDIF significantly reduces the uncertainty of shear strength parameters within the slip zone, yielding a calibrated displacement precision better than 10 mm. The calibrated model reveals that the landslide is buoyancy-driven and that frontal failure may trigger progressive deformation in the rear slope. These findings offer valuable insights for landslide early warning and reservoir operation planning in the Dawanzi area. Full article
Show Figures

Figure 1

34 pages, 12831 KB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 445
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

29 pages, 2673 KB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 678
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

23 pages, 6095 KB  
Article
Investigation on Shear Lugs Used in Equipment Foundations of Nuclear Engineering
by Yuan Gong, Xinbo Li, Chen Zhao and Yanhua Zhao
Buildings 2025, 15(14), 2435; https://doi.org/10.3390/buildings15142435 - 11 Jul 2025
Viewed by 321
Abstract
This paper investigates the shear performance of shear lugs commonly used in nuclear equipment foundations. A total of six groups of H-shaped steel shear lug specimens, six groups of angle steel shear lug specimens, and eight groups of steel plate shear lug specimens [...] Read more.
This paper investigates the shear performance of shear lugs commonly used in nuclear equipment foundations. A total of six groups of H-shaped steel shear lug specimens, six groups of angle steel shear lug specimens, and eight groups of steel plate shear lug specimens are designed and tested under horizontal shear loading. The failure modes, shear capacities, and deformation characteristics of the specimens are systematically examined. Furthermore, the influence of the embedment depth of the shear lug and the distance from the shear lug to the concrete edge on the shear performance of specimens is thoroughly analyzed. Based on the test results, equations for calculating the shear capacity of shear lugs are proposed. The result indicates that the failure modes of the three types of specimens under shear loading mainly show concrete shear breakout failure, and the changes in the embedment depth and concrete edge distance have a large effect on the shear capacity and ductility of the specimen. The proposed equations show good agreement with the test results, which can provide a theoretical foundation for the design of the shear lugs used in nuclear engineering. Full article
Show Figures

Figure 1

24 pages, 24243 KB  
Article
Seismic Damage Mechanism of Five-Story and Three-Span Underground Complex in Soft Soil Site
by Yikun Liu, Qingjun Chen, Xi Chen and Cong Liao
Buildings 2025, 15(14), 2380; https://doi.org/10.3390/buildings15142380 - 8 Jul 2025
Viewed by 436
Abstract
Investigating the seismic damage mechanism of large underground complexes is essential for the safe development of urban underground space. This paper examines a five-story and three-span underground complex situated in a soft soil site. Shaking table tests were designed and conducted on both [...] Read more.
Investigating the seismic damage mechanism of large underground complexes is essential for the safe development of urban underground space. This paper examines a five-story and three-span underground complex situated in a soft soil site. Shaking table tests were designed and conducted on both the free field and the soil–underground complex interaction system. The time–frequency evolution of the free field under various seismic motions was investigated. A combined experimental and numerical simulation approach was employed to examine the seismic response of the soil–underground complex interaction system. The structural deformation evolution, stress distribution, and development process of plastic damage under different seismic motions were analyzed. The results reveal that soft soil exhibits a significant energy amplification effect under far-field long-period ground motions. Structural deformation is mainly governed by horizontal shear. Under strong seismic excitation, plastic damage first initiates at the end of the bottom-story columns and extends to column-to-slab and wall-to-slab connections, where abrupt stiffness changes occur. Under the far-field long-period ground motion, the structural deformation, stress distribution, and plastic damage are significantly greater than those under the Shanghai artificial wave. These findings provide valuable insights for the seismic design of large underground complexes in soft soil sites. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 5597 KB  
Article
40Ar-39Ar Chronometry Supports Multi-Stage Tectonic Thermal Events in the Bayan Obo Fe-Nb-REE Deposit
by Xinke Gao, Dongsheng Wang, Hongying Li, Yike Li, Hongquan She, Jianjun Yang, Li Zhang, Changhui Ke, Jian Zhao, Shouxian Ma, Chenghao Ren and Futing Yin
Minerals 2025, 15(7), 683; https://doi.org/10.3390/min15070683 - 26 Jun 2025
Viewed by 430
Abstract
The Bayan Obo deposit, located on the northern margin of the North China Plate (NCP), is the world’s largest comprehensive Fe-REE-Nb deposit. After its formation, this deposit was affected by multiple tectonic thermal events, but the ages of these geological events are controversial. [...] Read more.
The Bayan Obo deposit, located on the northern margin of the North China Plate (NCP), is the world’s largest comprehensive Fe-REE-Nb deposit. After its formation, this deposit was affected by multiple tectonic thermal events, but the ages of these geological events are controversial. To determine the evolutionary history of the Bayan Obo deposit, we conducted a detailed study of the macroscopic and microscopic deformation characteristics of the ore district and selected representative minerals, such as riebeckite and biotite, which are widely present in the banded rocks of the deposit, for an 40Ar-39Ar isotopic analysis. The results show that a large number of deformation structures have developed in the carbonatite and surrounding rocks, including mineral bands, boudins, tight folds, and rotated porphyroclasts, suggesting that the region has undergone intense compression and shearing and that the deformation temperature can reach ~550 °C. 40Ar-39Ar plateau ages of 414.9 ± 1.4 Ma and 264.5 ± 2.5 Ma were obtained for the riebeckite and biotite, respectively. Using these results in conjunction with regional geological data and considering the closure temperature of the mineral isotope system, it was inferred that these two ages corresponded to two distinct reworking events experienced by the deposit during the Early Paleozoic and Late Paleozoic following its initial formation. These events corresponded to the collision between the Bainaomiao Arc and the NCP and the magmatic activity induced by a continental–continental collision during the closure of the Paleo-Asian Ocean (PAO), respectively. Full article
(This article belongs to the Special Issue Mineralization and Metallogeny of Iron Deposits)
Show Figures

Figure 1

8 pages, 900 KB  
Proceeding Paper
Repercussions on the Shear Force of an Internal Beam–Column Connection from Two Symmetrical Uniformly Distributed Loads at Different Positions on the Beam
by Albena Doicheva
Eng. Proc. 2025, 87(1), 85; https://doi.org/10.3390/engproc2025087085 - 26 Jun 2025
Cited by 2 | Viewed by 2467
Abstract
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in [...] Read more.
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in the beam–column connection of the frame. During the last 60 decades, a large number of experimental studies have been carried out on frame assemblies, where various parameters and their compatibility under cyclic activities have been investigated. What remains misunderstood is the magnitude and distribution of the forces passing through the joint and their involvement in the magnitude of the shear force. Here, the creation of a new mathematical model for the beam and column contributes significantly to our understanding of the flow of forces in the frame connection. For this purpose, the full dimensions of the beam and its material properties are taken into account. All investigations were carried out before crack initiation and after crack propagation along the face of the column, where it separates from the beam. In the present work, the beam is subjected to two symmetrical, transverse, uniformly distributed loads. Expressions are derived to determine the magnitudes of the support reactions from the beam, as a function of the height of its lateral edge. The load positions corresponding to the extreme values of the support reactions are determined. Numerical results are presented for the effect over the magnitudes of the support reactions from different strengths of concrete and steel on the beam. The results are compared with those given in the Eurocode for shear force calculation. It is found that the shear force determined by the proposed new model exceeds the force calculated by Eurocode by 4–62.5%, depending on the crack development stage and the beam materials. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 8370 KB  
Article
Lateral Performance of Monopile Foundations for Offshore Wind Turbines in Clay Soils: A Finite Element Investigation
by Yazeed A. Alsharedah
J. Mar. Sci. Eng. 2025, 13(7), 1222; https://doi.org/10.3390/jmse13071222 - 25 Jun 2025
Viewed by 841
Abstract
The continued upscaling of offshore wind turbines (OWTs) necessitates the development of foundation systems capable of sustaining increased lateral loads. As monopiles remain the most widely used foundation type for OWTs, a detailed investigation into their lateral behavior and soil flow under operational [...] Read more.
The continued upscaling of offshore wind turbines (OWTs) necessitates the development of foundation systems capable of sustaining increased lateral loads. As monopiles remain the most widely used foundation type for OWTs, a detailed investigation into their lateral behavior and soil flow under operational loading is warranted. This study utilized a nonlinear three-dimensional finite element model (FEM) to assess the lateral performance of monopiles supporting a 5 MW turbine in clayey soils. The results revealed that the lateral capacity and deformation behavior are governed primarily by soil shear strength and the monopile’s length-to-diameter ratio (L/D). In softer soils, increasing the L/D ratio led to notable enhancements in lateral resistance, up to fivefold, as well as significant reductions in pile head displacement and rotation. In contrasts, monopiles in stiff clay exhibited distinct failure patterns and less sensitivity to L/D variations. Soil deformation patterns at the ultimate state varied depending on stiffness, indicating distinct failure mechanisms in soft and stiff clays. These findings highlight the importance of incorporating realistic soil behavior and geometric influences in monopile foundation design for large OWTs. Full article
(This article belongs to the Special Issue Offshore Renewable Energy, Second Edition)
Show Figures

Figure 1

Back to TopTop