Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (514)

Search Parameters:
Keywords = laser beam scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6767 KB  
Article
Reduction of Visual Artifacts in Laser Beam Scanning Displays
by Peng Zhou, Huijun Yu, Xiaoguang Li, Wenjiang Shen and Dongmin Wu
Micromachines 2025, 16(8), 949; https://doi.org/10.3390/mi16080949 - 19 Aug 2025
Viewed by 438
Abstract
Laser beam scanning (LBS) projection systems based on MEMS micromirrors offer advantages such as compact size, low power consumption, and vivid color performance, making them well suited for applications like AR glasses and portable projectors. Among various scanning methods, raster scanning is widely [...] Read more.
Laser beam scanning (LBS) projection systems based on MEMS micromirrors offer advantages such as compact size, low power consumption, and vivid color performance, making them well suited for applications like AR glasses and portable projectors. Among various scanning methods, raster scanning is widely adopted; however, it suffers from artifacts such as dark bands between adjacent scanning lines and non-uniform distribution of the scanning trajectory relative to the original image. These issues degrade the overall viewing experience. In this study, we address these problems by introducing random variations to the slow-axis driving signal to alter the vertical offset of the scanning trajectories between different scan cycles. The variation is defined as an integer multiple of 1/8 of the fast-axis scanning period (1/fh) Due to the temporal integration effect of human vision, trajectories from different cycles overlap, thereby enhancing the scanning fill factor relative to the target image area. The simulation and experimental results demonstrate that the maximum ratio of non-uniform line spacing is reduced from 7:1 to 1:1, and the modulation of the scanned display image is reduced to 0.0006—below the human eye’s contrast threshold of 0.0039 under the given experimental conditions. This method effectively addresses scanning display artifacts without requiring additional hardware modifications. Full article
(This article belongs to the Special Issue Recent Advances in MEMS Mirrors)
Show Figures

Figure 1

21 pages, 9876 KB  
Article
Laser-Induced Ablation of Hemp Seed-Derived Biomaterials for Transdermal Drug Delivery
by Alexandru Cocean, Georgiana Cocean, Silvia Garofalide, Nicanor Cimpoesu, Daniel Alexa, Iuliana Cocean and Silviu Gurlui
Int. J. Mol. Sci. 2025, 26(16), 7852; https://doi.org/10.3390/ijms26167852 - 14 Aug 2025
Viewed by 403
Abstract
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct [...] Read more.
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct absorption into the bloodstream, and its ability to bypass hepatic metabolism. The thin films obtained via pulsed laser deposition consist of micro- and nanoparticles capable of migrating through skin pores upon contact. This study investigates the interaction of phenolic compounds in hemp seeds with pulsed laser beams. The main goal is to achieve the ablation and deposition of these compounds as thin films suitable for TDD applications. The other key objective is optimizing laser energy to enhance the industrial feasibility of this method. Thin layers were deposited on glass and hemp fabric using dual pulsed laser (DPL) ablation on a compressed hemp seed target held in a stainless steel ring. The target was irradiated for 30 min with two synchronized pulsed laser beams, each with parameters of 30 mJ, 532 nm, pulse width of 10 ns, and a repetition rate of 10 Hz. Each beam had an angle of incidence with the target surface of 45°, and the angle between the two beams was also 45°. To improve laser absorption, two approaches were used: (1) HS-DPL/glass and HS-DPL/hemp fabric, in which a portion of the stainless steel ring was included in the irradiated area, and (2) HST-DPL/glass and HST-DPL/hemp fabric—hemp seeds were mixed with turmeric powder, which is known to improve laser interaction and biocompatibility. The FTIR and Micro-FTIR spectroscopy (ATR) performed on thin films compared to the target material confirmed the presence of hemp-derived phenolic compounds, including tetrahydrocannabinol (THC), cannabidiol (CBD), ferulic acid, and coumaric acid, along with other functional groups such as amides. The ATR spectra have been validated against Gaussian 6 numerical simulations. Scanning electron microscopy (SEM) and substance transfer tests revealed the microgranular structure of thin films. Through the analyzes carried out, the following were highlighted: spherical structures (0.3–2 μm) for HS-DPL/glass, HS-DPL/hemp fabric, HST-DPL/glass, and HST-DPL/hemp fabric; larger spherical structures (8–13 μm) for HS-DPL/glass and HST-DPL/glass; angular, amorphous-like structures (~3.5 μm) for HS-DPL/glass; and crystalline-like structures (0.6–1.3 μm) for HST-DPL/glass. Microparticle transfer from thin films on the hemp fabric to the filter paper at a human body temperature (37 °C) confirmed their suitability for TDD applications, aligning with the “whole plant medicine” or “entourage effect” concept. Granular, composite, thin films were successfully developed, capable of releasing microparticles upon contact with a surface whose temperature is 37 °C, specific to the human body. Each of the microparticles in the thin films obtained with the DPL technique contains phenolic compounds (cannabinoids and phenolic acids) comparable to those in hemp seeds, effectively acting as “microseeds.” The obtained films are viable for TDD applications, while the DPL technique ensures industrial scalability due to its low laser energy requirements. Full article
Show Figures

Figure 1

14 pages, 4016 KB  
Article
Failure Mechanism of Pre-Stressed CFRP Beam Under Laser Ablation
by Yuting Zhao, Ruokun Zhang and Zhuhua Tan
Polymers 2025, 17(15), 2153; https://doi.org/10.3390/polym17152153 - 6 Aug 2025
Viewed by 342
Abstract
This paper focuses on the failure mechanism of a pre-stressed CFRP cantilever beam under laser ablation. During testing, a mass was applied to the CFRP cantilever beam to achieve a pre-stressed state, and the laser power densities varied from 500 to 1500 W·cm [...] Read more.
This paper focuses on the failure mechanism of a pre-stressed CFRP cantilever beam under laser ablation. During testing, a mass was applied to the CFRP cantilever beam to achieve a pre-stressed state, and the laser power densities varied from 500 to 1500 W·cm−2. Corresponding scanning electron microscope (SEM) tests were also performed on the ablation zone and fracture surface to analyze the failure mechanism. The results showed that the CFRP beam failed in compression at the bottom surface, which was due to a decrease in local stiffness and strength caused by heat softening, rather than by ablation damage on the top surface. The failure time decreased from 19.64 s to 6.52 s as the power density (500–1500 W·cm−2) and pre-stress loading (300–750 N·cm) increased, indicating that pre-stress loading has a more significant influence on the failure time of CFRP beams compared to power density. Full article
Show Figures

Figure 1

19 pages, 4156 KB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 484
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

20 pages, 1890 KB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 443
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

21 pages, 4865 KB  
Article
Impact of Laser Power and Scanning Speed on Single-Walled Support Structures in Powder Bed Fusion of AISI 316L
by Dan Alexander Gallego, Henrique Rodrigues Oliveira, Tiago Cunha, Jeferson Trevizan Pacheco, Oksana Kovalenko and Neri Volpato
J. Manuf. Mater. Process. 2025, 9(8), 254; https://doi.org/10.3390/jmmp9080254 - 30 Jul 2025
Viewed by 536
Abstract
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing [...] Read more.
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing processes, L-PBF stands out, paving the way for the execution of part designs with geometries previously considered unfeasible. Despite offering several advantages, parts with overhang features require the use of support structures to provide dimensional stability of the part. Support structures achieve this by resisting residual stresses generated during processing and assisting heat dissipation. Although the scientific community acknowledges the role of support structures in the success of L-PBF manufacturing, they have remained relatively underexplored in the literature. In this context, the present work investigated the impact of laser power and scanning speed on the dimensioning, integrity and tensile strength of single-walled block type support structures manufactured in AISI 316L stainless steel. The method proposed in this work is divided in two stages: processing parameter exploration, and mechanical characterization. The results indicated that support structures become more robust and resistant as laser power increases, and the opposite effect is observed with an increment in scanning speed. In addition, defects were detected at the interfaces between the bulk and support regions, which were crucial for the failure of the tensile test specimens. For a layer thickness corresponding to 0.060 mm, it was verified that the combination of laser power and scanning speed of 150 W and 500 mm/s resulted in the highest tensile resistance while respecting the dimensional deviation requirement. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

22 pages, 5896 KB  
Article
Point Cloud Generation Method Based on Dual-Prism Scanning with Multi-Parameter Optimization
by Yuanfeng Zhao, Zhen Zheng and Hong Chen
Photonics 2025, 12(8), 764; https://doi.org/10.3390/photonics12080764 - 29 Jul 2025
Viewed by 465
Abstract
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point [...] Read more.
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point cloud generation using dual-prism scanning. By establishing a beam pointing mathematical model, we systematically analyze how prism wedge angles, refractive indices, rotation speed ratios, and placement configurations influence scanning performance, revealing their coupled effects on deflection angles, azimuth control, and coverage. The non-paraxial ray tracing method combined with the Möller–Trumbore algorithm enables efficient point cloud simulation. Experimental results demonstrate that our optimized parameters significantly enhance point cloud density, uniformity, and target feature integrity while overcoming limitations of traditional database construction methods. This work provides both theoretical foundations and practical solutions for high-precision 3D reconstruction in high-speed rendezvous scenarios such as missile-borne laser fuzes, offering advantages in cost-effectiveness and operational reliability. Full article
Show Figures

Figure 1

34 pages, 3579 KB  
Review
A Comprehensive Review of Mathematical Error Characterization and Mitigation Strategies in Terrestrial Laser Scanning
by Mansoor Sabzali and Lloyd Pilgrim
Remote Sens. 2025, 17(14), 2528; https://doi.org/10.3390/rs17142528 - 20 Jul 2025
Viewed by 795
Abstract
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial [...] Read more.
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial laser scanning (TLS) has commenced a new era in data capture with a high level of efficiency and flexibility for data collection and post processing. Thus, a robust understanding of both data acquisition and processing techniques is required to guarantee high-quality deliverables to geometrically separate the measurement uncertainty and movements. TLS is highly demanding in capturing detailed 3D point coordinates of a scene within either short- or long-range scanning. Although various studies have examined scanner misalignments under controlled conditions within the short range of observation (scanner calibration), there remains a knowledge gap in understanding and characterizing errors related to long-range scanning (scanning calibration). Furthermore, limited information on manufacturer-oriented calibration tests highlights the motivation for designing a user-oriented calibration test. This research focused on investigating four primary sources of error in the generic error model of TLS. These were categorized into four geometries: instrumental imperfections related to the scanner itself, atmospheric effects that impact the laser beam, scanning geometry concerning the setup and varying incidence angles during scanning, and object and surface characteristics affecting the overall data accuracy. This study presents previous findings of TLS calibration relevant to the four error sources and mitigation strategies and identified current challenges that can be implemented as potential research directions. Full article
Show Figures

Figure 1

21 pages, 3171 KB  
Review
Self-Mode-Locking and Frequency-Modulated Comb Semiconductor Disk Lasers
by Arash Rahimi-Iman
Photonics 2025, 12(7), 677; https://doi.org/10.3390/photonics12070677 - 5 Jul 2025
Viewed by 831
Abstract
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing [...] Read more.
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing conditions—thereby suggesting a reduced reliance on a semiconductor saturable-absorber mirror (the SESAM) in the cavity. Self-mode-locked (SML) VECSELs with sub-ps pulse durations were reported repeatedly. This motivated investigations on a Kerr-lensing type effect acting as an artificial saturable absorber. So-called Z-scan and ultrafast beam-deflection experiments were conducted to emphasize the role of nonlinear lensing in the chip for pulse formation. Recently, in addition to allowing stable ultrashort pulsed operation, self-starting mode-locked operation gave rise to another emission regime related to frequency comb formation. While amplitude-modulated combs relate to signal peaks in time, providing a so-called pulse train, a frequency-modulated comb is understood to cause quasi continuous-wave output with its sweep of instantaneous frequency over the range of phase-locked modes. With gain-bandwidth-enhanced chips, as well as with an improved understanding of the impacts of dispersion and nonlinear lensing properties and cavity configurations on the device output, an enhanced employment of SML VECSELs is to be expected. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

18 pages, 4264 KB  
Article
Numerical Simulation and Modeling of Powder Flow for Rectangular Symmetrical Nozzles in Laser Direct Energy Deposition
by Bin Hu, Junhua Wang and Li Zhang
Coatings 2025, 15(7), 744; https://doi.org/10.3390/coatings15070744 - 23 Jun 2025
Viewed by 458
Abstract
Wide-beam laser direct energy deposition (LDED) has been widely used due to its superior deposition efficiency. To achieve optimal laser-powder coupling, this technique typically employs rectangular powder nozzles. This study establishes a simulation model to systematically investigate the powder flow field characteristics of [...] Read more.
Wide-beam laser direct energy deposition (LDED) has been widely used due to its superior deposition efficiency. To achieve optimal laser-powder coupling, this technique typically employs rectangular powder nozzles. This study establishes a simulation model to systematically investigate the powder flow field characteristics of rectangular symmetric nozzles. Through parametric analysis of powder feeding rate, carrier gas flow rate, and shielding gas flow rate, the effects on powder stream convergence behavior are quantitatively evaluated to maximize powder utilization efficiency. Key findings reveal that, while the powder focal plane position is predominantly determined by nozzle geometry, powder feeding parameters exhibit negligible influence on flow field intersections. The resulting powder spot demonstrates a rectangular profile slightly exceeding the laser spot dimensions, and the powder concentration exhibits a distinctive flat-top distribution along the laser’s slow axis, contrasting with a Gaussian distribution along the scanning direction. Experimental validation through powder collection tests confirms strong agreement with the simulation results. Furthermore, a mathematical model was developed to accurately describe the powder concentration distribution at the focal plane. These findings provide fundamental theoretical guidance for optimizing powder feeding systems in wide-beam LDED applications. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
Show Figures

Figure 1

56 pages, 2573 KB  
Review
A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation
by Usman Aziz, Marion McAfee, Ioannis Manolakis, Nick Timmons and David Tormey
Materials 2025, 18(12), 2870; https://doi.org/10.3390/ma18122870 - 17 Jun 2025
Cited by 3 | Viewed by 978
Abstract
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), [...] Read more.
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), and electron beam melting (EBM) remains challenged by inherent process-related defects such as residual stresses, porosity, anisotropy, and surface roughness. This review critically examines these AM techniques, focusing on optimizing key manufacturing parameters, mitigating defects, and implementing effective post-processing treatments. This review highlights how process parameters including laser power, energy density, scanning strategy, layer thickness, build orientation, and preheating conditions directly affect microstructural evolution, mechanical properties, and defect formation in AM-fabricated 316/316L stainless steel. Comparative analysis reveals that SLM excels in achieving refined microstructures and high precision, although it is prone to residual stress accumulation and porosity. DED, on the other hand, offers flexibility for large-scale manufacturing but struggles with surface finish and mechanical property consistency. EBM effectively reduces thermal-induced residual stresses due to its sustained high preheating temperatures (typically maintained between 700 °C and 850 °C throughout the build process) and vacuum environment, but it faces limitations related to resolution, cost-effectiveness, and material applicability. Additionally, this review aligns AM techniques with specific defect reduction strategies, emphasizing the importance of post-processing methods such as heat treatment and hot isostatic pressing (HIP). These approaches enhance structural integrity by refining microstructure, reducing residual stresses, and minimizing porosity. By providing a comprehensive framework that connects AM techniques optimization strategies, this review serves as a valuable resource for academic and industry professionals. It underscores the necessity of process standardization and real-time monitoring to improve the reliability and consistency of AM-produced 316/316L stainless steel components. A targeted approach to these challenges will be crucial in advancing AM technologies to meet the stringent performance requirements of various high-value industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

15 pages, 4096 KB  
Article
Fs-Laser-Induced Micro- and Nanostructures on Polycarbonate and Cellulose Acetate Butyrate for Cell Alignment
by Lukas Wagner, Werner Baumgartner, Agnes Weth, Sebastian Lifka and Johannes Heitz
Appl. Sci. 2025, 15(12), 6754; https://doi.org/10.3390/app15126754 - 16 Jun 2025
Viewed by 456
Abstract
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type [...] Read more.
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type of glial cell that can support the regeneration of nerve pathways by guiding the neuronal axons in the direction of their alignment. Polymer surfaces, i.e., polycarbonate (PC) or cellulose acetate butyrate (CAB), were exposed to the beam of a 1040 nm Yb-based amplified fs-laser system with a pulse length of about 350 fs. With appropriate parameters, the laser exposure resulted in a surface topography with oriented micro-grooves, which, for PC, were covered with nano-ripples. Schwann cell growth on these substrates was inspected after 3 to 5 days of cultivation by means of scanning electron microscopy (SEM). We show that Schwann cells can grow in a certain direction, predetermined by micro-groove or nano-ripple orientation. In contrast, cells cultivated on randomly oriented nanofibers or unstructured surfaces show an omnidirectional growth behavior. This method may be used in the future to produce nerve conduits for the treatment of injuries to the peripheral nervous system. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

11 pages, 1840 KB  
Article
Passively Mode-Locked Tm:YAP Laser Utilizing a Mo2TiAlC2 MAX Phase Saturable Absorber for Modulation
by Chen Wang, Tianjie Chen, Zhe Meng, Sujian Niu, Zhaoxue Li and Xining Yang
Photonics 2025, 12(6), 610; https://doi.org/10.3390/photonics12060610 - 13 Jun 2025
Viewed by 464
Abstract
This study reports a novel MAX phase material, Mo2TiAlC2, as a passively mode-locking (PML) saturable absorber (SA) for a Tm:YAP laser operating in the 2 μm wavelength range. The systematic characterization of its nonlinear optical properties was quantitatively analyzed [...] Read more.
This study reports a novel MAX phase material, Mo2TiAlC2, as a passively mode-locking (PML) saturable absorber (SA) for a Tm:YAP laser operating in the 2 μm wavelength range. The systematic characterization of its nonlinear optical properties was quantitatively analyzed using I-scan methodology, demonstrating a significant modulation depth of 3.5%, which indicated strong nonlinear optical activity. Within the realm of optimal cavity conditions, a remarkable performance by the PML configuration can be discerned. A stable pulsed emission was manifested at 1937 nm, wherein an average output power reaching 620 mW was achieved. A pulse temporal span of 989.5 ps was acquired with a corresponding repetition frequency of 103.1 MHz, indicating robust mode-locked synchronization. Notably, the beam quality factors (M2) along the orthogonal spatial axes were observed with values measuring 1.12 and 1.18, respectively, indicating propagation characteristics close to those of diffraction-limited beams. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

15 pages, 7909 KB  
Article
Study on the Microstructure Evolution and Ablation Mechanism of SiCp/Al Composites Processed by a Water-Jet Guided Laser
by Wendian Yin, Ze Yu, Guanghao Xing, Feng Yang and Zhigang Dong
Materials 2025, 18(12), 2749; https://doi.org/10.3390/ma18122749 - 11 Jun 2025
Viewed by 405
Abstract
In this study, the influence of different process parameters on the macroscopic and microscopic morphology of the microgroove in the water-jet guided laser was studied. In addition, the microstructure evolution and material ablation mechanism of the microgroove were studied. The results show that [...] Read more.
In this study, the influence of different process parameters on the macroscopic and microscopic morphology of the microgroove in the water-jet guided laser was studied. In addition, the microstructure evolution and material ablation mechanism of the microgroove were studied. The results show that with the increase in laser power, the depth of the microgroove increases from 154 μm to 492 μm, the width from 63 μm to 74 μm, and the depth-to-width ratio from 2.45 to 6.62; with the increase in scanning speed, the depth of the microgroove decreases from 525.33 μm to 227.16 μm, and the width from 67.61 μm to 71.02 μm, and the depth-to-width ratio from 7.77 to 3.20. With the increase in water jet pressure, the depth increases from 312.29 μm to 3.20. With the increase in water jet pressure, the depth increased from 312.29 μm to 362.39 μm, the width decreased from 71.59 μm to 62.78 μm, and the depth-to-width ratio increased from 4.38 to 5.77. In addition, the water guided laser processing of SiCp/Al composites produces thermal–mechanical coupling and chemical reaction synergies: the material melts and vaporizes under the action of a high-energy laser beam, and the SiC particles are oxidized and thermally decomposed at local high temperatures due to their high thermal stability. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

13 pages, 1228 KB  
Article
Radiographic and Clinical Outcomes of Laser-Enhanced Disinfection in Endodontic Therapy
by Janos Kantor, Sorana Maria Bucur, Eugen Silviu Bud, Victor Nimigean, Ioana Maria Crișan and Mariana Păcurar
J. Clin. Med. 2025, 14(12), 4055; https://doi.org/10.3390/jcm14124055 - 8 Jun 2025
Viewed by 751
Abstract
Background and Objectives: Periapical healing and bone regeneration are key indicators of endodontic success. This study evaluated the effectiveness of laser-assisted disinfection compared to conventional chemical irrigation in promoting periapical healing across various bone densities (D1–D5), using cone-beam computed tomography (CBCT) over [...] Read more.
Background and Objectives: Periapical healing and bone regeneration are key indicators of endodontic success. This study evaluated the effectiveness of laser-assisted disinfection compared to conventional chemical irrigation in promoting periapical healing across various bone densities (D1–D5), using cone-beam computed tomography (CBCT) over multiple follow-up intervals. Materials and Methods: A total of 120 patients with radiographically confirmed periapical lesions were enrolled and allocated into two groups: an experimental group (n = 60, chemical irrigation + Er,Cr:YSGG laser disinfection) and a control group (n = 60, chemical irrigation only). CBCT scans were obtained at 6 months, 1 year, 2 years, and 2.5 years post-treatment to assess lesion size and CBCT-PAI scores. Lesions were classified radiographically as either well-defined radiolucent lesions or undefined periapical radiolucencies. Paired t-tests and ANOVA were used for statistical comparisons. Results: The experimental group demonstrated significantly greater reductions in lesion size and improvements in CBCT-PAI scores at all time points. Healing was especially enhanced in low-density bone (D4–D5). Complete healing rates were higher in the laser group for well-defined radiolucent (89.5% vs. 68.4%) and undefined lesions (81.8% vs. 59.1%). Post hoc power analysis confirmed statistical reliability (Cohen’s d = 3.48; power > 0.99). Conclusions: Laser-assisted endodontic disinfection significantly accelerates periapical healing and promotes bone regeneration, particularly in low-density bone. CBCT imaging supports its clinical superiority over conventional irrigation methods. Full article
Show Figures

Figure 1

Back to TopTop