Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,281)

Search Parameters:
Keywords = lattices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3625 KB  
Review
Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
by John Paolo Ramoso, Manoochehr Rasekh and Wamadeva Balachandran
Biosensors 2025, 15(9), 586; https://doi.org/10.3390/bios15090586 (registering DOI) - 6 Sep 2025
Abstract
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse [...] Read more.
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse surface functionalisation through bio-interfacing. This review highlights the core detection mechanisms in graphene-based biosensors. Optical sensing techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), benefit significantly from graphene’s strong light–matter interaction, which enhances signal sensitivity. Although graphene itself lacks intrinsic piezoelectricity, its integration with piezoelectric substrates can augment the performance of piezoelectric biosensors. In electrochemical sensing, graphene-based electrodes support rapid electron transfer, enabling fast response times across a range of techniques, including impedance spectroscopy, amperometry, and voltammetry. Graphene field-effect transistors (GFETs), which leverage graphene’s high carrier mobility, offer real-time, label-free, and highly sensitive detection of biomolecules. In addition, the review also explores multiplexed detection strategies vital for point-of-care diagnostics. Graphene’s nanoscale dimensions and tunable surface chemistry facilitate both array-based configurations and the simultaneous detection of multiple biomarkers. This adaptability makes graphene an ideal material for compact, scalable, and accurate biosensor platforms. Continued advancements in graphene biofunctionalisation, sensing modalities, and integrated multiplexing are driving the development of next-generation biosensors with superior sensitivity, selectivity, and diagnostic reliability. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

11 pages, 288 KB  
Article
A Comprehensive Solution and Solid-State NMR Study of Proton Spin Lattice Relaxation in Paramagnetic Metallocenes
by Gabrielle E. Harmon-Welch, Douglas W. Elliott, Nattamai Bhuvanesh, Vladimir I. Bakhmutov and Janet Blümel
Physchem 2025, 5(3), 36; https://doi.org/10.3390/physchem5030036 - 5 Sep 2025
Abstract
Solid solutions of the metallocenes ferrocene (Cp2Fe), nickelocene (Cp2Ni), and cobaltocene (Cp2Co) have been prepared by manually grinding the components together, or by co-crystallizing them from solution. In the solid solutions Cp2Fe/Cp2Ni and [...] Read more.
Solid solutions of the metallocenes ferrocene (Cp2Fe), nickelocene (Cp2Ni), and cobaltocene (Cp2Co) have been prepared by manually grinding the components together, or by co-crystallizing them from solution. In the solid solutions Cp2Fe/Cp2Ni and Cp2Co/Cp2Ni, the cyclopentadienyl (Cp) protons relax via dipolar electron–proton interactions, which represent the dominant relaxation mechanism. The 1H T1 relaxation times of the molecules Cp2Ni and Cp2Co, dissolved in CDCl3, and in the solid solutions, show that the relaxation takes place intramolecularly. The relaxation of the protons is propagated exclusively via the unpaired electrons of the metal centers to which their Cp rings are coordinated, due to the large intermolecular distances that are greater than 3.91 Å. In contrast, the intramolecular distances between the electrons of the metal atoms and the protons of their coordinated Cp rings are merely 2.70 Å. Using these intramolecular distances and the 1H T1 relaxation times, the electron relaxation times T1e have been determined as 17 × 1013 s in CDCl3 solutions and 45 × 1013 s in the solid state for Cp2Ni. The corresponding T1e times for Cp2Co are calculated as ca. 5 × 1013 s and 20 × 1013 s. Grinding Cp2Fe and Cp2Ni together leads to two different 1H T1 relaxation times for the protons of Cp2Fe. The longer T1 relaxation time indicates domains that consist mostly of Cp2Fe molecules. The short T1 times show a close contact of Cp2Fe and Cp2Ni molecules. An analysis of the short 1H T1 times reveals the presence of at least two to three short distances of 3.91 Å between Cp2Fe and Cp2Ni molecules. These results support the hypothesis that dry grinding of the metallocenes Cp2Fe and Cp2Ni in ratios that were changed in 10% increments from 90%/10% to 30%/70% leads to domains that mostly consist of Cp2Fe molecules, and additionally to domains that contain a mixture of the components on the molecular level. Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Graphical abstract

25 pages, 5693 KB  
Article
Experimental Study of Post-Dryout Heat Transfer in a Tight-Lattice 3-Rod Bundle
by Shuo Chen, Wei Zhang and Xiaowen Wang
Appl. Sci. 2025, 15(17), 9764; https://doi.org/10.3390/app15179764 - 5 Sep 2025
Abstract
Fuel with a tight lattice structure in the reactor core is an important design direction for high-performance water reactors. Due to the dispersed flow characteristic, research on post-dryout heat transfer is limited. However, a better understanding of post-dryout heat transfer characteristics under accident [...] Read more.
Fuel with a tight lattice structure in the reactor core is an important design direction for high-performance water reactors. Due to the dispersed flow characteristic, research on post-dryout heat transfer is limited. However, a better understanding of post-dryout heat transfer characteristics under accident conditions is significantly important for fuel design and safety analysis. This study experimentally investigates the characteristics of post-dryout dispersed flow heat transfer in a 3-rod tight-lattice bundle with a pitch-to-diameter ratio of 1.2. The working conditions are as follows: system pressure ranging from 6 to 10 MPa, mass flux between 65 to 200 kg/(m2s), and heat flux varying from 75 to 200 kW/m2. Circumferentially non-uniform heat transfer is obviously observed. The wall temperature is higher in the narrow gaps between rods, while lower in the vicinity of the subchannel center. The specific mechanisms of the above phenomena are analyzed. Parametric effects on post-dryout heat transfer are discussed and illustrated. Using the experimental data, commonly utilized correlations for transition boiling and film boiling are evaluated. In order to improve the prediction accuracy, new heat transfer correlations for transition boiling and film boiling in the tight-lattice under low mass flux and low heat flux are developed based on the experimental data and mechanistic analysis. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

13 pages, 2233 KB  
Article
Interfacial Defect Suppression and Enhanced Optical Properties in InP Quantum Dots via Two-Step ZnSe Shelling Strategy
by Jaehyeong Yoo, Sung-Yoon Joe and Jae-Hyeon Ko
Materials 2025, 18(17), 4172; https://doi.org/10.3390/ma18174172 - 5 Sep 2025
Abstract
This study investigates the interfacial structural origin of enhanced optical performance in InP-based quantum dots (QDs) employing a 2-step ZnSe shelling strategy. By comparing InP/ZnSe/ZnS QDs synthesized via 1-step and 2-step shelling methods using identical InP cores, we demonstrate that the 2-step approach [...] Read more.
This study investigates the interfacial structural origin of enhanced optical performance in InP-based quantum dots (QDs) employing a 2-step ZnSe shelling strategy. By comparing InP/ZnSe/ZnS QDs synthesized via 1-step and 2-step shelling methods using identical InP cores, we demonstrate that the 2-step approach results in improved core–shell lattice matching, more favorable carrier dynamics, and enhanced thermal stability. These enhancements are attributed to the formation of an initial thin ZnSe interfacial layer, which facilitates uniform shell growth and suppresses interfacial defect formation. High-resolution transmission electron microscopy and elemental mapping via energy-dispersive X-ray spectroscopy analyses confirm the improved crystallinity and reduced oxygen-related trap states in the 2-step samples. The findings highlight the critical role of interfacial control in determining QD performance and establish the 2-step ZnSe shelling strategy as an effective route to achieving structurally and optically robust QD emitters for advanced optoelectronic applications. Full article
Show Figures

Figure 1

16 pages, 11221 KB  
Article
Effect of Fe2O3 on Compressive Strength and Microstructure of Porous Acicular Mullite
by Mia Omerašević, Miomir Krsmanović, Nada Adamović, Chang-An Wang and Dušan Bučevac
Ceramics 2025, 8(3), 111; https://doi.org/10.3390/ceramics8030111 - 5 Sep 2025
Abstract
Porous acicular mullite was fabricated at 1300 °C starting from Al2O3 and mixture of SiO2 and MoO3 obtained by previous oxidation of waste MoSi2. It was found that the presence of MoO3 favors formation of [...] Read more.
Porous acicular mullite was fabricated at 1300 °C starting from Al2O3 and mixture of SiO2 and MoO3 obtained by previous oxidation of waste MoSi2. It was found that the presence of MoO3 favors formation of acicular (prism-like) mullite grains with sharp edges. The effect of addition of Fe2O3 (4–12 wt.%) on phase composition, compressive strength, thermal conductivity and microstructure was studied. The addition of Fe2O3 improved the compressive strength from approximately 25 MPa in pure mullite to about 76 MPa in samples containing 12 wt.% Fe2O3, while the open porosity decreased from 55.4% to 51.8%. The presence of Fe2O3 caused a decrease in mullite formation temperature owing to the formation of liquid phase and accelerated diffusion. The solubility of iron oxide in mullite lattice was between 8 and 12 wt.% Fe2O3. The incorporated iron ions also promoted the rounding of sharp edges in prismatic mullite grains, leading to a reduced specific surface area of 0.55 m2/g in the sample with 12 wt.% Fe2O3. The thermal conductivity of mullite increased with addition of 12 wt.% Fe2O3 reaching value of 1.17 W/m·K. Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
Show Figures

Figure 1

16 pages, 3555 KB  
Article
Optimization of Microbial Consortium Formulation for Oily Food Waste Composting Using Mixture Design Methodology
by Yun Zhang, Yujun Shen, Jingtao Ding, Haibin Zhou, Hang Zhao, Hongsheng Cheng, Pengxiang Xu, Yiwei Qin and Yang Jia
Microorganisms 2025, 13(9), 2066; https://doi.org/10.3390/microorganisms13092066 - 5 Sep 2025
Abstract
The efficient compounding of microbial agents for use in aerobic composting processes is a pressing problem that needs to be addressed. This work focused on the lack of effective oil-degrading microorganisms and the challenges in formulating microbial consortia during the composting of food [...] Read more.
The efficient compounding of microbial agents for use in aerobic composting processes is a pressing problem that needs to be addressed. This work focused on the lack of effective oil-degrading microorganisms and the challenges in formulating microbial consortia during the composting of food waste (FW). Following the isolation of three bacteria and three fungi with high oil-degrading ability, a simplex-lattice mixture design methodology was used to conduct compounding within and between groups of bacteria and fungi. Three special cubic response models were successfully developed and validated by performing an analysis of variance. From our analysis, it was demonstrated that the three models had high R2 values of 96.06%, 97.18%, and 96.27%. The global solution of the mixture optimization predicted the optimal value for a blend comprising 11.83% Agrobacterium tumefaciens, 8.10% Pseudomonas geniculata, 10.97% Luteibacter rhizovicinus, 20.9% Simplicillium cylindrosporum, 22.3% Fusarium proliferatum, and 25.9% Simplicillium lanosoniveum. Thus, these proportions were considered the optimal combination of strains for oil degradation during FW composting. Composting verification in a 60 L fermenter revealed that the composite microbial agent group had a 31.3% higher oil degradation efficiency than the control group. This work provides valuable insights for the compounding of microbial agents and the resource utilization of rural FW. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

40 pages, 6644 KB  
Article
Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination
by Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli and Emmanuel Koudoumas
Nanomaterials 2025, 15(17), 1369; https://doi.org/10.3390/nano15171369 - 4 Sep 2025
Abstract
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into [...] Read more.
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er2O3, Sm2O3, and La(OH)3). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93–2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential. Full article
17 pages, 5755 KB  
Article
CeO2-Cobalt Ferrite Composite as a Dual-Function Catalyst for Hydrogen Peroxide Decomposition and Organic Pollutants Degradation
by Tetiana Tatarchuk and Volodymyr Kotsyubynsky
Metals 2025, 15(9), 985; https://doi.org/10.3390/met15090985 - 4 Sep 2025
Abstract
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. [...] Read more.
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. Additionally, the 50Ce-CFO sample was further activated with H2O2 treatment. XRD, FTIR, and SEM analyses confirmed the formation of a spinel phase alongside segregated CeO2, which acts as a grain-growth inhibitor. The increased Ce content promotes particle amorphization. FTIR showed changes in the intensity of the M–O stretching band, indicating Ce-induced bond polarization in the spinel lattice. In H2O2 decomposition tests, the 50Ce-CFO catalyst fully decomposes H2O2 in 160 min, while the activated sample completes it in 125 min. Fenton-like degradation of CR and OTC by untreated and activated 50Ce-CFO sample followed pseudo-first-order kinetics. Catalyst stability was confirmed using post-reaction XRD, FTIR, and SEM analyses. Incorporation of CeO2 into CoFe2O4 refines the crystallite size, increases the BET surface area, and enhances adsorption capacity, while the Ce4+/Ce3+ redox couple promotes reactive oxygen species generation. Owing to this dual structural and catalytic role, the CeO2-CoFe2O4 composites exhibit significantly improved Fenton-like catalytic activity, enabling the efficient degradation of organic pollutants. Full article
(This article belongs to the Section Powder Metallurgy)
Show Figures

Figure 1

29 pages, 2957 KB  
Review
Grid Technologies in Lattice Boltzmann Method: A Comprehensive Review
by Bo An, K. D. Chen and J. M. Bergadà
Mathematics 2025, 13(17), 2861; https://doi.org/10.3390/math13172861 - 4 Sep 2025
Abstract
A review of the development of grid technologies and corresponding numerical approaches based on the lattice Boltzmann method (LBM) is performed in the present study. The history of the algorithmic development and practical applications is presented and followed by a short introduction of [...] Read more.
A review of the development of grid technologies and corresponding numerical approaches based on the lattice Boltzmann method (LBM) is performed in the present study. The history of the algorithmic development and practical applications is presented and followed by a short introduction of the basic theory of LBM, especially the classic lattice Bhatnagar–Gross–Krook LBGK D2Q9 model. In reality, all the different grid technologies reported aim to solve one but very important problem, the local grid refinement, which largely influences the stability, efficiency, accuracy, and flexibility of the conventional LBM. The improvement of these numerical properties after employing various grid technologies is analyzed. Several grid technologies, such as body-fitted grid, multigrid, non-uniform rectangular grid, quadtree Cartesian square grid, unstructured grid and meshless discrete points, as well as the corresponding numerical approaches are compared and discussed. Full article
Show Figures

Figure 1

13 pages, 12319 KB  
Article
Effects of Homogenization Heat Treatment on Microstructure of Inconel 718 Lattice Structures Manufactured by Selective Laser Melting
by Lucia-Antoneta Chicos, Camil Lancea, Sebastian-Marian Zaharia, Grzegorz Cempura, Adam Kruk and Mihai Alin Pop
Materials 2025, 18(17), 4149; https://doi.org/10.3390/ma18174149 - 4 Sep 2025
Abstract
Inconel 718 is a nickel-based superalloy that has a wide range of applications in the industries that require corrosion resistance or high-temperature resistance. It is well known that parts display internal stresses, anisotropy, and alloying element segregation after the selective laser melting (SLM) [...] Read more.
Inconel 718 is a nickel-based superalloy that has a wide range of applications in the industries that require corrosion resistance or high-temperature resistance. It is well known that parts display internal stresses, anisotropy, and alloying element segregation after the selective laser melting (SLM) process. A homogenization heat treatment, which reduces internal stresses and homogenizes the material structure, can resolve these shortcomings. The present study focuses on the impact of this heat treatment on the microstructure of the Inconel 718 material produced by SLM. The research results indicate that this heat treatment improves both the material microstructure and mechanical performance by lessening the microstructural inhomogeneities, dissolving the Laves phases, and promoting grain coarsening. The findings of this study can contribute to the optimization of post-fabrication strategies for Inconel 718 parts fabricated by SLM. Full article
Show Figures

Figure 1

14 pages, 3347 KB  
Article
Leaching Behavior and Mechanisms of Li, Rb, K, Sr, and Mg in Clay-Type Lithium Ore via a Roasting–Water Leaching Process
by Bo Feng, Dong An, Huaigang Cheng, Xiaoou Zhang and Jing Zhao
Minerals 2025, 15(9), 944; https://doi.org/10.3390/min15090944 - 4 Sep 2025
Abstract
The extraction of lithium from clay-type lithium ores has attracted significant attention, but the leaching behavior of associated elements, such as Rb, K, and Sr, remains less explored. This study quantitatively investigated the leaching behaviors and mechanisms of Li, Rb, K, Sr, and [...] Read more.
The extraction of lithium from clay-type lithium ores has attracted significant attention, but the leaching behavior of associated elements, such as Rb, K, and Sr, remains less explored. This study quantitatively investigated the leaching behaviors and mechanisms of Li, Rb, K, Sr, and Mg in clay-type lithium ore through water leaching and roasting–water leaching processes. The results show that during direct water leaching, the leaching efficiency of K ranged between 10% and 13%, while Li and Sr exhibited lower extraction rates, requiring prolonged high-temperature leaching. Rb dissolution was minimal, and the leaching efficiency of Mg was significantly affected by temperature. In contrast, roasting–water leaching significantly enhanced the leaching efficiency, achieving extraction rates of 90.65% for Li, 92.91% for Rb, 75.85% for K, and 36.99% for Sr. However, Mg leaching was suppressed to below 1%. Roasting disrupted the original silicate and carbonate lattices, generating new phases that altered the ore’s microstructure into aggregated dense phases and needle-like porous phases upon water leaching, thereby facilitating the release of Li, Rb, K, and Sr. A research finding was that the new phase generated by magnesium inhibited its leaching, which indirectly enhanced subsequent Li, Rb, K, and Sr extraction and separation. These findings provide a quantitative foundation for optimizing multi-element co-extraction from clay-type lithium ores. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 4774 KB  
Review
Review of the Integration of Fused Filament Fabrication with Complementary Methods for Fabricating Hierarchical Porous Polymer Structures
by Savvas Koltsakidis and Dimitrios Tzetzis
Appl. Sci. 2025, 15(17), 9703; https://doi.org/10.3390/app15179703 - 3 Sep 2025
Viewed by 93
Abstract
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures [...] Read more.
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures using fused filament fabrication (FFF), the most widely used polymer additive manufacturing technique. Unlike earlier reviews that consider lattice architectures and foaming chemistries separately, this work integrates both within a single analysis. It begins with an overview of FFF fundamentals and how process parameters affect macropore formation. Design strategies for achieving macroporosity (≳100 µm) with a single thermoplastic are presented and categorized: 2D infill patterns, strut-based lattices, triply periodic minimal surfaces (TPMS), and Voronoi structures, along with functionally graded approaches. The discussion then shifts to functional filaments incorporating chemical or physical blowing agents, thermally expandable or hollow microspheres, and sacrificial porogens, which create microporosity (≲100 µm) either in situ or through post-processing. Each material approach is connected to case studies that demonstrate its application. A comparative analysis highlights the advantages of each method. Key challenges such as viscosity control, thermal gradient management, dimensional instability during foaming, environmental concerns, and the absence of standardized porosity measurement techniques are addressed. Finally, emerging solutions and future directions are explored. Overall, this review provides a comprehensive perspective on strategies that enhance FFF’s capability to fabricate hierarchically porous polymer structures. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

24 pages, 10386 KB  
Article
Chaotic Dynamics and Fractal Geometry in Ring Lattice Systems of Nonchaotic Rulkov Neurons
by Brandon B. Le
Fractal Fract. 2025, 9(9), 584; https://doi.org/10.3390/fractalfract9090584 - 3 Sep 2025
Viewed by 110
Abstract
This paper investigates the complex dynamics and fractal attractors that arise in a 60-dimensional ring lattice system of electrically coupled nonchaotic Rulkov neurons. While networks of chaotic Rulkov neurons have been widely studied, systems of nonchaotic Rulkov neurons have not been extensively explored [...] Read more.
This paper investigates the complex dynamics and fractal attractors that arise in a 60-dimensional ring lattice system of electrically coupled nonchaotic Rulkov neurons. While networks of chaotic Rulkov neurons have been widely studied, systems of nonchaotic Rulkov neurons have not been extensively explored due to the piecewise complexity of the nonchaotic Rulkov map. Here, we find that rich dynamics emerge from the electrical coupling of regular-spiking Rulkov neurons, including chaotic spiking, synchronized chaotic bursting, and synchronized hyperchaos. By systematically varying the electrical coupling strength between neurons, we also uncover general trends in the maximal Lyapunov exponent across the system’s dynamical regimes. By means of the Kaplan–Yorke conjecture, we examine the fractal geometry of the ring system’s high-dimensional chaotic attractors and find that these attractors can occupy as many as 45 of the 60 dimensions of state space. We further explore how variations in chaotic behavior—quantified by the full Lyapunov spectra—correspond to changes in the attractors’ fractal dimensions. This analysis advances our understanding of how complex collective behavior can emerge from the interaction of multiple simple neuron models and highlights the deep interplay between dynamics and geometry in high-dimensional systems. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

22 pages, 2870 KB  
Review
Two Approaches to Solid-State NMR of Mobile Molecules in Nanoporous Materials
by Alexander Panich
Molecules 2025, 30(17), 3603; https://doi.org/10.3390/molecules30173603 - 3 Sep 2025
Viewed by 219
Abstract
This paper reviews two solid-state NMR approaches for investigating mobile molecules in nanoporous materials, with a focus on the motion-averaged dipole–dipole interactions of nuclear spins. The first approach addresses intramolecular dipole–dipole interactions, where the anisotropic molecular motion in solids leads to partially averaged [...] Read more.
This paper reviews two solid-state NMR approaches for investigating mobile molecules in nanoporous materials, with a focus on the motion-averaged dipole–dipole interactions of nuclear spins. The first approach addresses intramolecular dipole–dipole interactions, where the anisotropic molecular motion in solids leads to partially averaged interactions that reflect the spatial distribution of molecular positions during motion. The second approach examines intermolecular dipole–dipole interactions, which produce anisotropic features in NMR spectra and affect nuclear spin relaxation due to the Brownian motion of molecules within non-spherical nanoscale pores. The applicability of these methods is considered for systems exhibiting molecular mobility, including zeolites, collagen tissues, intercalation compounds, and plant stems. Full article
Show Figures

Figure 1

43 pages, 733 KB  
Review
Unfolding Post-Quantum Cryptosystems: CRYSTALS-Dilithium, McEliece, BIKE, and HQC
by Vaghawan Prasad Ojha, Sumit Chauhan, Shantia Yarahmadian and David Carvalho
Mathematics 2025, 13(17), 2841; https://doi.org/10.3390/math13172841 - 3 Sep 2025
Viewed by 228
Abstract
The advent of quantum computers poses a significant threat to the security of classical cryptographic systems. To address this concern, researchers have been actively investigating the development of post-quantum cryptography, which aims to provide encryption schemes that remain secure even in the face [...] Read more.
The advent of quantum computers poses a significant threat to the security of classical cryptographic systems. To address this concern, researchers have been actively investigating the development of post-quantum cryptography, which aims to provide encryption schemes that remain secure even in the face of powerful quantum adversaries. To address this serious problem, the National Institute of Standards and Technology (NIST), a body of the US government, has been working on the selection and standardization of cryptographic algorithms through competitive and rigorous evaluation on different fronts. NIST has selected different candidate algorithms to standardize public-key encryption, including key establishment algorithms and digital signature algorithms. This paper reviews some selected cryptosystems, mainly based on lattice- and code-based cryptosystems. These include digital signature algorithms, such as CRYSTALS-Dilithium, code-based cryptosystems, such as McEliece, and key encapsulation methods, specifically, Classic McEliece, BIKE and HQC. We will review these algorithms and discuss their security aspects and the current state-of-the-art in the development of these algorithms post NIST 3rd finalized selection. We will also touch briefly on the differences and practical applications of each of these schema. This review is intended for engineers and practitioners alike. Full article
(This article belongs to the Special Issue Recent Advances in Post-Quantum Cryptography)
Show Figures

Figure 1

Back to TopTop