Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Keywords = leading-edge vortex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16172 KB  
Article
Effects of Airfoil Parameters on the Cavitation Performance of Water Jet Propulsion Pumps
by Yingying Zheng, Yun Long, Churui Wan, Jianping Chen, Youlin Cai and Jinqing Zhong
Fluids 2025, 10(9), 227; https://doi.org/10.3390/fluids10090227 - 28 Aug 2025
Viewed by 261
Abstract
This paper investigates the influence of airfoil parameters on the cavitation performance of water jet propulsion pumps through numerical simulation methods. The effects of a varying inlet pressure and different airfoil structures on the critical net positive suction head (NPSH), head, and efficiency [...] Read more.
This paper investigates the influence of airfoil parameters on the cavitation performance of water jet propulsion pumps through numerical simulation methods. The effects of a varying inlet pressure and different airfoil structures on the critical net positive suction head (NPSH), head, and efficiency were systematically studied. Subsequently, the impact pattern of the airfoil structure on the cavitation performance was analyzed. The results demonstrate that the NACA0009-16_0004-16 airfoil exhibited the lowest required NPSH and superior cavitation resistance relative to the other tested airfoils. Nevertheless, the NACA0009-13_0004-13 airfoil demonstrated an optimal comprehensive performance, balancing the efficiency, head, and cavitation resistance. By extracting a water velocity isosurface of 23.6 m/s, we further investigated the flow characteristics of the suction surfaces of different airfoils at different cavitation conditions and found that the cavitation mainly includes TIP cavitation and sheet cavitation. With an increasing cavitation intensity, the sheet cavitation region progressively develops axially from the blade tip towards the blade outlet, extends radially from the shroud to the hub, and eventually nearly extends over the entire blade surface. The area of the TIP cavitation also expands, spreading downward in the same direction as the impeller rotation. The velocity vector exhibits a significantly higher density near the shroud and blade tips, suggesting potential flow separation and complex vortex structures in these regions. Near the blade leading edge, the water velocity isosurface area contracts, whereas near the trailing edge, it expands. These alterations indicate that the cavitation development modifies the flow field velocity distribution and adversely affects the impeller performance. This study establishes a theoretical foundation and offers practical guidelines for the multi-objective collaborative design of water jet propulsion pumps. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

21 pages, 34958 KB  
Article
Investigation of Fluid–Structure Interactions of an Uncontrolled Flexible Hemisphere Utilising Non-Simultaneous Stereo Particle Image Velocimetry and Digital Image Correlation
by Nishanth Menakath, Gareth A. Vio and Nicholas J. Lawson
Aerospace 2025, 12(9), 769; https://doi.org/10.3390/aerospace12090769 - 27 Aug 2025
Viewed by 249
Abstract
This research investigates the interaction between a flexible thin-walled hemisphere and the surrounding wake at ReD=2×105 acting as a simplified model of a flexible surface protuberance immersed within a turbulent boundary layer (BL). A flexible model [...] Read more.
This research investigates the interaction between a flexible thin-walled hemisphere and the surrounding wake at ReD=2×105 acting as a simplified model of a flexible surface protuberance immersed within a turbulent boundary layer (BL). A flexible model and a rigid model, both 100 mm in diameter, are experimentally tested to observe and contrast the flow variation between a rigid structure and a freely deforming structure. Two experiments were conducted. To capture fluid flow behaviour, stereo particle image velocimetry (SPIV) was used. To capture structural deformation of the model, digital image correlation (DIC) was utilised. Experimental testing was conducted non-simultaneously. From the experimental testing, it was observed that the flexible model experienced a leading edge (LE) deformation at 29° of the altitude angle (θ), showing an average deformation of 2.11 mm. All regions of the structure experienced non-zero distortion due to the incoming wind load. This was similar to behaviour observed in previous literature. This caused a modulation in the wake region, giving a parabolic wake velocity contour to form about θ20°. A velocity inflection point is observed for the flexible model at an average of θ=23.39° within the wake. This inflection region extends surrounding the area of maximum structural deflection up to θ40°. This indicates that the deflection across the LE centreline has a direct interaction with location and size of the near wake. Turbulent kinetic energy (TKE) in the wake was observed to drop with the introduction of the flexible model, with a lower dissipation rate observable. This is indicative of energy transfer from the flow to the structure, allowing deformation. The maximum region of TKE coincides with the recirculation vortex core region, which was shown to move from z/D= 0.19 to z/D= 0.35 for the rigid and flexible models, respectively. The results indicate that, with the Reynolds number tested, the rigid behaviour is in line with previous literature trends. The flexibility of the model, therefore, highly influences the wake region, with general shape deformation causing a decrease in near wake TKE and change in wake shape and recirculation core location. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 3836 KB  
Article
Investigation of Blade Root Clearance Flow Effects on Pressure Fluctuations in an Axial Flow Pump
by Fan Meng, Yanjun Li, Mingzhe Li and Chao Ning
Machines 2025, 13(8), 733; https://doi.org/10.3390/machines13080733 - 18 Aug 2025
Viewed by 355
Abstract
This study investigates the leakage vortex influence on pressure pulsation characteristics within a vertical axial flow pump. Three impeller configurations with blade root clearance (δ) of 2.7–8.0 mm were designed to analyze geometric effects on internal flow dynamics. Unsteady RANS simulations [...] Read more.
This study investigates the leakage vortex influence on pressure pulsation characteristics within a vertical axial flow pump. Three impeller configurations with blade root clearance (δ) of 2.7–8.0 mm were designed to analyze geometric effects on internal flow dynamics. Unsteady RANS simulations predicted flow structures under multiple operating conditions (0.8–1.2Qdes). Fast Fourier Transform (FFT) extracted frequency–domain and time–frequency characteristics of pressure pulsations in critical flow regions. Key results reveal: (1) δ enlargement expands low-pressure zones within blade channels due to enhanced leakage vortices; (2) leading-edge pulsation shows 8.2–11.7% reduction in peak-to-peak amplitude and fundamental frequency magnitude with increasing δ; (3) trailing-edge response exhibits non-monotonic behavior, with maximum amplitude at δ = 5.0 mm (42.2% increase at design flow). These findings demonstrate that blade root clearance optimization requires condition-dependent thresholds to balance leakage management and pulsation control. Full article
Show Figures

Figure 1

24 pages, 35400 KB  
Article
Aerodynamic Effects of a Blended Multi-Winglet on an Airliner in Subsonic and Transonic Regimes
by Erina Kobayashi, Kazuhisa Chiba, Wataru Yamazaki and Masahiro Kanazaki
Biomimetics 2025, 10(8), 522; https://doi.org/10.3390/biomimetics10080522 - 10 Aug 2025
Viewed by 650
Abstract
This study investigates the aerodynamic performance of a blended multi-winglet configuration installed on the wingtip of a transonic commercial aircraft, focusing on both subsonic and transonic regimes. Conventional single winglets are typically optimized to reduce induced drag during cruise, but multi-winglets have the [...] Read more.
This study investigates the aerodynamic performance of a blended multi-winglet configuration installed on the wingtip of a transonic commercial aircraft, focusing on both subsonic and transonic regimes. Conventional single winglets are typically optimized to reduce induced drag during cruise, but multi-winglets have the potential to enhance lift during takeoff and landing. However, their effectiveness in transonic conditions remains insufficiently explored. In this work, a reference Boeing 767 blended winglet was divided into three distinct elements, each retaining the original wingtip airfoil. Computational simulations were conducted to compare single- and multi-winglet configurations under cruise conditions. Additional analyses were performed at subsonic speeds to evaluate lift performance. Under transonic conditions, the multi-winglet configuration exhibited a 1.4% increase in total drag due to a greater projected frontal area. However, it achieved reduced induced drag, attributed to the rearmost winglet’s negative cant angle, which suppresses vortex formation by inhibiting upward airflow. In subsonic flight, lift improved by up to 1.3% due to accelerated flow over the upper surface, enhanced by smaller leading-edge radii and air acceleration through inter-winglet gaps. These findings suggest that multi-winglets outperform single winglets in reducing induced drag during cruise and enhancing lift during takeoff and landing. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

19 pages, 4608 KB  
Article
Experimental Study on the Influence of Groove-Flap and Concave Cavity on the Output Characteristics of Vertical Axis Wind Turbine
by Jiale Xue, Yongyan Chen, Li Song, Yifan Xing, Baiqiang Wang and Yansong Sun
Fluids 2025, 10(8), 208; https://doi.org/10.3390/fluids10080208 - 8 Aug 2025
Viewed by 280
Abstract
To address the low wind energy utilization efficiency of vertical axis wind turbines (VAWTs) and enhance their engineering applicability, cavity and groove-flap structures were incorporated into turbine blades. Numerical simulations were performed to optimize these configurations, followed by wind tunnel experiments investigating output [...] Read more.
To address the low wind energy utilization efficiency of vertical axis wind turbines (VAWTs) and enhance their engineering applicability, cavity and groove-flap structures were incorporated into turbine blades. Numerical simulations were performed to optimize these configurations, followed by wind tunnel experiments investigating output power variations of three VAWT types under different wind speeds at installation angles of 0°, 2°, 4°, and 6°. The Omega criterion was employed to comparatively analyze vortex evolution patterns at the leading and trailing edges for installation angles of 0°, 3°, and 5°. Experimental results demonstrated nonlinear growth in output power with increasing wind speed and rotational velocity, with groove-flap VAWTs exhibiting superior performance. The optimal installation angle was identified within 2.5–3.5°, where appropriate angles reduced adverse pressure gradients, delayed boundary layer separation, and mitigated vortex shedding effects. Excessive angles induced vortex accumulation and wake disturbances, compromising flow field stability. This study provides critical insights for optimizing VAWT aerodynamic performance through structural modifications and installation angle adjustments. Full article
(This article belongs to the Special Issue Vortex Definition and Identification)
Show Figures

Figure 1

30 pages, 8795 KB  
Article
Numerical Simulation of Flapping Airfoil Aerodynamic Characteristics
by Junjie Xu, Shizhen Zheng, Ziyu Guo and Jianlong Chang
Appl. Sci. 2025, 15(15), 8484; https://doi.org/10.3390/app15158484 - 30 Jul 2025
Viewed by 377
Abstract
Flapping airfoil flight technology is widely used in defense and civilian fields, and huge economic benefits can be created. The bionic flapping airfoil is the research object of this paper. The influence of flapping frequency, flight trajectory, different airfoil types, and various flapping [...] Read more.
Flapping airfoil flight technology is widely used in defense and civilian fields, and huge economic benefits can be created. The bionic flapping airfoil is the research object of this paper. The influence of flapping frequency, flight trajectory, different airfoil types, and various flapping layouts on the aerodynamic characteristics of the flapping airfoil is investigated through numerical calculation. It is found that an increase in the flutter frequency can lead to an increase in the lift and drag of the flutter airfoil, as well as the strength of the flutter airfoil leading edge vortex, thereby improving the aerodynamic characteristics of the flutter airfoil, but the increase in the frequency leads to the decrease in the lifting efficiency. With the same symmetry of the trajectory of the flapping airfoil, the flapping airfoil lift characteristics are the same, but the drag characteristics may be different. If the symmetry of the flapping airfoil trajectory is distinct, the lift and drag characteristics of the flapping airfoil are different, and it is also found that the best lifting efficiency occurred in the “∞” trajectory. If the curvature and thickness of the airfoil are different, the aerodynamic characteristics of the flapping airfoil are distinct. Finally, the effect of different layouts on the aerodynamic characteristics of the flapping airfoil is examined. It is found that both tandem and parallel layout flapping airfoils can effectively increase the lift drag, but both tandem and parallel layout flapping airfoils lead to a decrease in the lifting efficiency. Full article
(This article belongs to the Special Issue Application of Fluid Mechanics and Aerodynamics in Aerospace)
Show Figures

Figure 1

23 pages, 12169 KB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 327
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 4555 KB  
Article
Influence of Geometric Effects on Dynamic Stall in Darrieus-Type Vertical-Axis Wind Turbines for Offshore Renewable Applications
by Qiang Zhang, Weipao Miao, Kaicheng Zhao, Chun Li, Linsen Chang, Minnan Yue and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(7), 1327; https://doi.org/10.3390/jmse13071327 - 11 Jul 2025
Viewed by 388
Abstract
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due [...] Read more.
The offshore implementation of vertical-axis wind turbines (VAWTs) presents a promising new paradigm for advancing marine wind energy utilization, owing to their omnidirectional wind acceptance, compact structural design, and potential for lower maintenance costs. However, VAWTs still face major aerodynamic challenges, particularly due to the pitching motion, where the angle of attack varies cyclically with the blade azimuth. This leads to strong unsteady effects and susceptibility to dynamic stalls, which significantly degrade aerodynamic performance. To address these unresolved issues, this study conducts a comprehensive investigation into the dynamic stall behavior and wake vortex evolution induced by Darrieus-type pitching motion (DPM). Quasi-three-dimensional CFD simulations are performed to explore how variations in blade geometry influence aerodynamic responses under unsteady DPM conditions. To efficiently analyze geometric sensitivity, a surrogate model based on a radial basis function neural network is constructed, enabling fast aerodynamic predictions. Sensitivity analysis identifies the curvature near the maximum thickness and the deflection angle of the trailing edge as the most influential geometric parameters affecting lift and stall behavior, while the blade thickness is shown to strongly impact the moment coefficient. These insights emphasize the pivotal role of blade shape optimization in enhancing aerodynamic performance under inherently unsteady VAWT operating conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

19 pages, 2560 KB  
Article
Aerodynamic Instability Mechanisms of Iced Eight-Bundled Conductors: Frequency-Domain Analysis and Stability Assessment via Wind Tunnel–CFD Synergy
by Bolin Zhong, Minghao Qiao, Mengqi Cai and Maoming Hu
Sensors 2025, 25(13), 4120; https://doi.org/10.3390/s25134120 - 1 Jul 2025
Viewed by 414
Abstract
Icing on transmission lines in cold regions can cause asymmetry in the conductor cross-section. This asymmetry can lead to low-frequency, large-amplitude oscillations, posing a serious threat to the stability and safety of power transmission systems. In this study, the aerodynamic characteristics of crescent-shaped [...] Read more.
Icing on transmission lines in cold regions can cause asymmetry in the conductor cross-section. This asymmetry can lead to low-frequency, large-amplitude oscillations, posing a serious threat to the stability and safety of power transmission systems. In this study, the aerodynamic characteristics of crescent-shaped and sector-shaped iced eight-bundled conductors were systematically investigated over an angle of attack range from 0° to 180°. A combined approach involving wind tunnel tests and high-precision computational fluid dynamics (CFD) simulations was adopted. In the wind tunnel tests, static aerodynamic coefficients and dynamic time series data were obtained using a high-precision aerodynamic balance and a turbulence grid. In the CFD simulations, transient flow structures and vortex shedding mechanisms were analyzed based on the Reynolds-averaged Navier–Stokes (RANS) equations with the SST k-ω turbulence model. A comprehensive comparison between the two ice accretion geometries was conducted. The results revealed distinct aerodynamic instability mechanisms and frequency-domain characteristics. The analysis was supported by Fourier’s fourth-order harmonic decomposition and energy spectrum analysis. It was found that crescent-shaped ice, due to its streamlined leading edge, induced a dominant single vortex shedding. In this case, the first-order harmonic accounted for 67.7% of the total energy. In contrast, the prismatic shape of sector-shaped ice caused migration of the separation point and introduced broadband energy input. Stability thresholds were determined using the Den Hartog criterion. Sector-shaped iced conductors exhibited significant negative aerodynamic damping under ten distinct operating conditions. Compared to the crescent-shaped case, the instability risk range increased by 60%. The strong agreement between simulation and experimental results validated the reliability of the numerical approach. This study establishes a multiscale analytical framework for understanding galloping mechanisms of iced conductors. It also identifies early warning indicators in the frequency domain and provides essential guidance for the design of more effective anti-galloping control strategies in resilient power transmission systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

23 pages, 11585 KB  
Article
Dynamic Stall Mechanisms of Pitching Airfoil: IDDES Study Across Different Mach Numbers
by Simeng Jing, Fan Lu, Li Ma, Qijun Zhao and Guoqing Zhao
Appl. Sci. 2025, 15(13), 7309; https://doi.org/10.3390/app15137309 - 28 Jun 2025
Viewed by 510
Abstract
This study investigates dynamic stall mechanisms of a pitching NACA 0012 airfoil through high-fidelity computational fluid dynamics (CFD) simulations. The improved delayed detached eddy simulation (IDDES) method based on a sliding mesh system is constructed and validated against experimental airload measurements. The results [...] Read more.
This study investigates dynamic stall mechanisms of a pitching NACA 0012 airfoil through high-fidelity computational fluid dynamics (CFD) simulations. The improved delayed detached eddy simulation (IDDES) method based on a sliding mesh system is constructed and validated against experimental airload measurements. The results demonstrate a good agreement and the capability to capture three-dimensional flow structures. Comparative analyses at two Mach numbers of 0.283 and 0.5 reveal distinct stall physics. At the Mach number of 0.283, a notable 9.7° delay is observed between the static and dynamic stall. The airfoil experiences a leading-edge stall dominated by a strong adverse pressure gradient and generates rapid airload variations. In addition, trailing-edge vortex (TEV) and secondary leading-edge vortices (LEVs) induce distinct airload fluctuations. After the shedding of primary vortices, secondary vortices develop. In contrast, the airfoil at the Mach number of 0.5 presents a reduced stall delay of 6.4° and a shock-induced dynamic stall characterized by dispersed, smaller vortices, which results in mild airload variations during stall. Aerodynamic damping analysis identifies stall delay as a primary contributor to negative damping. Enhanced pitching stability at the higher Mach number correlates with reduced stall delay and different LEV development characteristics. Results across varying reduced frequencies show that increasing reduced frequency delays the aerodynamic response and stall onset. At Ma = 0.283, this increasement promotes a divergent tendency in pitching motion, whereas at Ma = 0.5, it induces greater oscillatory stability attributed to distinct stall characteristics. Full article
Show Figures

Figure 1

25 pages, 9825 KB  
Article
Noise Reduction Mechanism and Spectral Scaling of Slat Gap Filler Device at Low Angle of Attack
by Yingzhe Zhang, Peiqing Liu and Baohong Bai
Aerospace 2025, 12(6), 541; https://doi.org/10.3390/aerospace12060541 - 15 Jun 2025
Viewed by 492
Abstract
Slat noise poses a significant challenge during aircraft landing. Slat gap filler (SGF) technology has shown promise in mitigating slat noise, yet its noise reduction mechanisms and characteristics remain unclear. This study numerically investigates the noise reduction mechanisms of SGF and analyzes its [...] Read more.
Slat noise poses a significant challenge during aircraft landing. Slat gap filler (SGF) technology has shown promise in mitigating slat noise, yet its noise reduction mechanisms and characteristics remain unclear. This study numerically investigates the noise reduction mechanisms of SGF and analyzes its noise characteristics using the high-lift common research model (CRM-HL). The lattice Boltzmann solver simulates the unsteady flow field, and the Ffowcs-Williams and Hawkings (FW-H) equation predicts far-field noise. The computed results exhibit a satisfactory concordance with experimental measurements. Furthermore, the near-field flow dynamics have been elucidated through proper orthogonal decomposition. The findings demonstrate that the SGF alters the distribution patterns of flow dynamics and pressure fluctuations, thereby effectively attenuating the mode energy. Moreover, our findings demonstrate that SGF significantly reduces slat noise. The noise reduction mechanism can be attributed to decreased surface pressure fluctuations on the leading edge of the main wing, and a shifted broadband noise peak to a lower frequency due to the enlarged slat cove flow vortex caused by SGF. Finally, a scaling analysis of the slat noise spectra indicates that the SGF noise spectra align well with baseline slat noise spectra when the characteristic length scale is determined by the vortex structure. Full article
Show Figures

Figure 1

25 pages, 6637 KB  
Article
Influence of Gurney Flap and Leading-Edge/Trailing-Edge Flaps on the Stall Characteristics and Aeroacoustic Performance of Airfoils
by Zelin Liu, Kaidi Li and Xiaojing Sun
Fluids 2025, 10(6), 152; https://doi.org/10.3390/fluids10060152 - 9 Jun 2025
Viewed by 1252
Abstract
In aerospace, flow control techniques have improved the separation flow characteristics around airfoils by various means. In this paper, the delayed detached eddy simulation (DDES) technique is used to simulate the detailed flow field around the NACA0021 airfoil with two different flow control [...] Read more.
In aerospace, flow control techniques have improved the separation flow characteristics around airfoils by various means. In this paper, the delayed detached eddy simulation (DDES) technique is used to simulate the detailed flow field around the NACA0021 airfoil with two different flow control methods (Gurney flaps and leading- and trailing-edge flaps) applied at an angle of attack of 20°. The aerodynamic characteristics around the airfoil under these two flow control methods are investigated, and the results show that both flow control methods lead to a significant increase in the pressure on the suction surface of the airfoil, which contributes to an increase in lift. The aeroacoustic characteristics of the original airfoil, the Gurney flapped airfoil and the airfoil with leading-edge and trailing-edge flaps are then analyzed using a combination of DDES and FW-H acoustic analog equations. The results show that the total sound pressure level of the Gurney flap airfoil and the leading-edge and trailing-edge flap airfoil are improved in most azimuthal angles of the acoustic pointing distribution, among which the degree of improvement of the leading-edge and trailing-edge flap airfoil is greater than that of the Gurney flap airfoil near the trailing edge, and the total sound pressure level of the band leading- and trailing-edge flap airfoil decreases in the azimuthal angles near the leading edge. Compared with the original airfoil, the noise value is thus reduced by up to 4.13 dB. The results of pressure pulsation cloud map, sound pressure level cloud map on the airfoil surface and vortex cloud map distribution show that the two flow controls increase the pressure pulsation near the trailing edge, the range and peak value of sound emission on the airfoil surface increase, and the trailing vortex becomes more finely grained, which leads to an increase in noise. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

16 pages, 5781 KB  
Article
Hydrodynamic Performance and Vortex Structure Analysis of a Toroidal Propeller
by Jie Bai, Yunhai Li, Xiaohui Liu, Hongliang Zhang and Liuzhen Ren
J. Mar. Sci. Eng. 2025, 13(6), 1046; https://doi.org/10.3390/jmse13061046 - 26 May 2025
Cited by 1 | Viewed by 901
Abstract
Because of their distinctive toroidal blade configuration, toroidal propellers can improve propulsion efficiency, reduce underwater noise, and enhance blade stability and strength. In recent years, they have emerged as an extremely promising novel underwater propulsion technology. To investigate their working mechanism, a geometric [...] Read more.
Because of their distinctive toroidal blade configuration, toroidal propellers can improve propulsion efficiency, reduce underwater noise, and enhance blade stability and strength. In recent years, they have emerged as an extremely promising novel underwater propulsion technology. To investigate their working mechanism, a geometric model of the toroidal propeller was initially established, and an unsteady numerical calculation model was constructed based on the sliding mesh technique. Subsequently, with the E779A conventional propeller as the research subject, the numerical model was verified, and a grid independence test was accomplished. Thereafter, the hydrodynamic performance of the toroidal propeller under diverse advance coefficients was analyzed based on the numerical model, and open water characteristic curves were established. Eventually, the surface pressure distribution, velocity field, and vorticity field of the toroidal propeller under various working conditions were studied. The outcomes demonstrate that the toroidal propeller attains the maximum propulsion efficiency at high advance coefficients, possesses a broad range of working condition adaptability, and is more applicable to high-speed vessels. At low advance coefficients, the toroidal propeller exhibits a relatively strong thrust performance, with the thrust generated by the front propeller being greater than that generated by the rear propeller, and the pressure peak emerges at the leading edge of the transition section of the front blade. The analysis of the velocity field indicates that its acceleration effect is superior to that of the conventional propeller. The analysis of the vorticity field reveals that the trailing vortices shed from the leading edge of the transition section of the front propeller merge and develop with the tip vortices, resulting in a more complex vortex structure. This research clarifies the working mechanism of the toroidal propeller through numerical simulation methods, providing an important basis for its performance optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 26314 KB  
Article
Effects of Wing Kinematics on Aerodynamics Performance for a Pigeon-Inspired Flapping Wing
by Tao Wu, Kai Wang, Qiang Jia and Jie Ding
Biomimetics 2025, 10(5), 328; https://doi.org/10.3390/biomimetics10050328 - 17 May 2025
Viewed by 721
Abstract
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of [...] Read more.
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of the real flapping motion. The purpose of this article was to study the effects of wing kinematics on aerodynamic performance for a pigeon-inspired flapping wing. In this article, the dynamic geometric shape of a flapping wing was reconstructed based on data of the pigeon wing profile. The 3D wingbeat kinematics of a flying pigeon was extracted from the motion trajectories of the wingtip and the wrist during cruise flight. Then, we used a hybrid RANS/LES method to study the effects of wing kinematics on the aerodynamic performance and flow patterns of the pigeon-inspired flapping wing. First, we investigated the effects of dynamic spanwise twisting on the lift and thrust performance of the flapping wing. Numerical results show that the twisting motion weakens the leading-edge vortex (LEV) on the upper surface of the wing during the downstroke by reducing the effective angle of attack, thereby significantly reducing the time-averaged lift and power consumption. Then, we further studied the effects of the 3D sweeping motion on the aerodynamic performance of the flapping wing. Backward sweeping reduces the wing area and weakens the LEV on the lower surface of the wing, which increases the lift and reduces the aerodynamic power consumption significantly during the upstroke, leading to a high lift efficiency. These conclusions are significant for improving the aerodynamic performance of bionic flapping-wing micro air vehicles. Full article
Show Figures

Figure 1

22 pages, 8094 KB  
Article
Corrugation at the Trailing Edge Enhances the Aerodynamic Performance of a Three-Dimensional Wing During Gliding Flight
by Kaipeng Li, Na Xu, Licheng Zhong and Xiaolei Mou
Biomimetics 2025, 10(5), 329; https://doi.org/10.3390/biomimetics10050329 - 17 May 2025
Viewed by 537
Abstract
Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° [...] Read more.
Dragonflies exhibit remarkable flight capabilities, and their wings feature corrugated structures that are distinct from conventional airfoils. This study investigates the aerodynamic effects of three corrugation parameters on gliding performance at a Reynolds number of 1350 and angles of attack ranging from 0° to 20°: (1) chordwise corrugation position, (2) linear variation in corrugation amplitude toward the trailing edge, and (3) the number of trailing-edge corrugations. The results show that when corrugation structures are positioned closer to the trailing edge, they generate localized vortices in the mid-forward region of the upper surface, thereby enhancing aerodynamic performance. Further studies show that a linear increase in corrugation amplitude toward the trailing edge significantly delays the shedding of the leading-edge vortex (LEV), produces a more coherent LEV, and reduces the number of vortices within the corrugation grooves on the lower surface. Consequently, the lift coefficient is maximized with an enhancement of 28.99%. Additionally, reducing the number of trailing-edge corrugations makes the localized vortices on the upper surface approach the trailing edge and merge into larger, more continuous LEVs. The vortices on the lower surface grooves also decrease in number, and the lift coefficient is maximally increased by 20.09%. Full article
(This article belongs to the Special Issue Bio-Inspired Propulsion and Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop