Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (846)

Search Parameters:
Keywords = leaf shape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2254 KiB  
Article
Behaviors of Gas-Rich Crystalline Fluid Inclusions
by Luis Salgado, François Faure and Gérard Coquerel
Crystals 2025, 15(8), 740; https://doi.org/10.3390/cryst15080740 - 20 Aug 2025
Abstract
A novel behavior of fluid inclusions (FIs) in crystals is reported in this study. Typically, at “high” temperature, FIs in molecular crystals become faceted, adopting the morphology of a single crystal. Usually, upon cooling, these faceted FIs develop into rounded cavities containing the [...] Read more.
A novel behavior of fluid inclusions (FIs) in crystals is reported in this study. Typically, at “high” temperature, FIs in molecular crystals become faceted, adopting the morphology of a single crystal. Usually, upon cooling, these faceted FIs develop into rounded cavities containing the mother solution with a retreat gas bubble. After annealing at low temperature, the FIs reshape back into a negative-crystal morphology, but the gas bubble remains. This latter process can take from minutes to very long times depending on the storage temperature and solubility. Investigations into the behavior of FIs of dicumyl peroxide (DCP) under fast cooling rates have revealed a morphological transition from negative crystals to FIs with a holly-leaf shape. The spikes of the holly-leaf-shaped FIs point toward the corners of the former negative crystal, and the sizes of the gas bubbles exceed those of conventional retreat bubbles. Therefore, it is likely that this phenomenon is linked to rapid cooling and an excess of CO2 dissolved in the mother solution from which the DCP single crystals were grown. The concentration of the solution inside the FIs rapidly increases after the nucleation of this large gas bubble. This is consistent with a sharp acceleration of inward crystal growth immediately after its appearance. Interestingly, FIs in pyroclastic olivine crystals grown from CO2-rich lava can also present a holly-leaf shape. Thus, this non-equilibrium morphological transition may be relatively common. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

23 pages, 4531 KiB  
Article
RDL-YOLO: A Method for the Detection of Leaf Pests and Diseases in Cotton Based on YOLOv11
by Xingchao Zhang, Li Li, Zhihua Bian, Chenxu Dai, Zhanlin Ji and Jinyun Liu
Agronomy 2025, 15(8), 1989; https://doi.org/10.3390/agronomy15081989 - 19 Aug 2025
Abstract
Accurate identification of cotton leaf pests and diseases is essential for sustainable cultivation but is challenged by complex backgrounds, diverse pest morphologies, and varied symptoms, where existing deep learning models often show insufficient robustness. To address these challenges, RDL-YOLO model is proposed in [...] Read more.
Accurate identification of cotton leaf pests and diseases is essential for sustainable cultivation but is challenged by complex backgrounds, diverse pest morphologies, and varied symptoms, where existing deep learning models often show insufficient robustness. To address these challenges, RDL-YOLO model is proposed in this study. In the proposed model, RepViT-Atrous Convolution (RepViT-A) is employed as the backbone network to enhance local–global interaction and improve the response intensity and extraction accuracy of key lesion features. In addition, the Dilated Dense Convolution (DDC) module is designed to achieve a dynamic multi-scale receptive field, enabling the network to adapt to lesion defects of different shapes and sizes. LDConv further optimizes the effect of feature fusion. Experimental results showed that the mean Average Precision (mAP) of the proposed model reached 77.1%, representing a 3.7% improvement over the baseline YOLOv11. Compared with leading detectors such as Real-Time Detection Transformer (RT-DETR), You Only Look Once version 11 (YOLOv11), DETRs as Fine-grained Distribution Refinement (D-FINE), and Spatial Transformer Network-YOLO (STN-YOLO). RDL-YOLO exhibits superior performance, enhanced reliability, and strong generalization capabilities in tests on the cotton leaf dataset and public datasets. This advancement offers a practical technical solution for improved agricultural pest and disease management. Full article
(This article belongs to the Special Issue Smart Pest Control for Building Farm Resilience)
Show Figures

Figure 1

26 pages, 4308 KiB  
Article
Analysis of Insect Resistance and Ploidy in Hybrid Progeny of Transgenic BtCry1Ac Triploid Poplar 741
by Yan Zhou, Hongyu Cai, Renjie Zhao, Chunyu Wang, Jun Zhang, Minsheng Yang and Jinmao Wang
Plants 2025, 14(16), 2563; https://doi.org/10.3390/plants14162563 - 18 Aug 2025
Viewed by 166
Abstract
With the increasing severity of forest pest problems, breeding insect-resistant varieties has become a crucial task for the sustainable development of forestry. The highly insect-resistant triploid Populus line Pb29, genetically modified with BtCry1Ac, served as the maternal parent in controlled hybridization with [...] Read more.
With the increasing severity of forest pest problems, breeding insect-resistant varieties has become a crucial task for the sustainable development of forestry. The highly insect-resistant triploid Populus line Pb29, genetically modified with BtCry1Ac, served as the maternal parent in controlled hybridization with three paternal Populus cultivars. Hybrid progenies were obtained through embryo rescue and tissue culture. Results showed that 4 °C storage was favorable for pollen preservation, with 84K poplar exhibiting superior pollen viability and embryo germination rates. All progenies displayed significantly lower seedling height and ground diameter growth than the maternal parent (p < 0.05), with some showing leaf shape and branching variations. Among the three crosses, the 84K-sired progeny exhibited the best growth performance but the highest variability. PCR analysis confirmed stable inheritance of the BtCry1Ac and Kan genes from Pb29, showing tight linkage. Progenies carrying BtCry1Ac exhibited detectable gene transcription and toxic protein accumulation, though expression levels varied due to copy number, insertion sites, and potential co-suppression effects. Ploidy analysis suggested all hybrids were aneuploid, with lower survival rates than the maternal parent. Insect-feeding assays confirmed high resistance in all BtCry1Ac-inheriting progenies, with an average larval mortality rate of 97.03%. Mortality rates and death indices significantly correlated with transcript abundance and toxin protein levels. These results demonstrate that BtCry1Ac insect resistance is stably inherited through hybridization. Transgene expression appears co-modulated by copy number, insertion sites, and ploidy status. Simultaneously, it was found that the aneuploid progeny derived from triploid hybridization exhibited growth disadvantages. This provides an important basis for subsequent poplar improvement breeding. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

22 pages, 6953 KiB  
Article
Chayote [Sechium edule (Jacq.) Sw.] Fruit Quality Influenced by Plant Pruning
by Jorge Cadena-Iñiguez, Ma. de Lourdes Arévalo-Galarza, Juan F. Aguirre-Medina, Carlos H. Avendaño-Arrazate, Daniel A. Cadena-Zamudio, Jorge David Cadena-Zamudio, Ramón M. Soto-Hernández, Víctor M. Cisneros-Solano, Lucero del Mar Ruiz-Posadas, Celeste Soto-Mendoza and Jorge L. Mejía-Méndez
Horticulturae 2025, 11(8), 965; https://doi.org/10.3390/horticulturae11080965 - 14 Aug 2025
Viewed by 214
Abstract
Plant pruning is the selective removal of specific plant parts to enhance growth, shape, and health. In this work, the effects of pruning were evaluated regarding the physiological parameters, maturity, quality, and harvest indices and the nutritional quality features of twelve chayote [ [...] Read more.
Plant pruning is the selective removal of specific plant parts to enhance growth, shape, and health. In this work, the effects of pruning were evaluated regarding the physiological parameters, maturity, quality, and harvest indices and the nutritional quality features of twelve chayote [Sechium edule (Jacq.) Sw] (Cucurbitaceae) varieties. GC-FID approaches were utilized to determine CO2 assimilation rates. The results demonstrated that pruning upregulated the leaf temperature and conductance but decreased transpiration and CO2 assimilation rates within the evaluated period (06:30 a.m.–16:23 p.m.). It was noted that the implementation of pruning also impacted samples with enhanced photosynthetically active radiation activity, with a positive correlation with CO2 assimilation. The macro- and micronutrient content was higher in samples with an epidermis, especially for S. edule var. albus spinosum. Nevertheless, the analyzed samples presented low (5–10 mL CO2 kg−1 h−1), medium (10–15 mL CO2 kg−1 h−1), and high levels (15–20 mL CO2 kg−1 h−1) of respiratory intensity and weight loss (7–17%)—effects attributed to botanical differences between the studied chayote varieties. This work demonstrates, for the first time, the effects of pruning in chayote orchards and expands the knowledge regarding the implementation of effective approaches to produce plants with culinary, cultural, and medicinal implications. Further approaches are required to determine the effects of pruning on chayote after harvest. Full article
Show Figures

Figure 1

25 pages, 5843 KiB  
Article
Scaling Plant Functional Strategies from Species to Communities in Regenerating Amazonian Forests: Insights for Restoration in Deforested Landscapes
by Carlos H. Rodríguez-León, Armando Sterling, Dorman D. Daza-Giraldo, Yerson D. Suárez-Córdoba and Lilia L. Roa-Fuentes
Diversity 2025, 17(8), 570; https://doi.org/10.3390/d17080570 - 14 Aug 2025
Viewed by 242
Abstract
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional [...] Read more.
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional trait space using principal component analyses (PCAs) based on eight traits related to leaf, stem, and seed morphology across 226 tree species and 33 forest communities along a chronosequence of natural regeneration following cattle ranching abandonment in deforested landscapes of the Colombian Amazon. We identified three species-level functional axes—namely, the ‘Structural–Reproductive Allocation Axis’, the ‘Mechanical Support and Tissue Investment Axis’, and the ‘Leaf Economics Axis’—and two community-level axes: the ‘Colonization–Longevity Axis’ and the ‘Persistence–Acquisition Axis’. These axes aligned with the life-history strategies of short-lived pioneers, long-lived pioneers, and old-growth species, and reflected their relationships with key environmental drivers. Community-level functional composition reflected species-level patterns, but was also shaped by soil properties, microclimate, and tree species richness. Forest age and precipitation promoted conservative strategies, while declining soil fertility suggested a decoupling between above- and belowground recovery. Functional richness and divergence were highest in mid-successional forests dominated by long-lived pioneers. Our findings highlight the role of environmental and successional filters in shaping functional trait space and emphasize the value of functionally diverse communities. Particularly, our results indicate that long-lived pioneers (LLP) such as Astrocaryum chambira Burret and Pouteria campanulata Baehni, with traits like large height, intermediate wood density, and larger seed size, represent ideal candidates for early enrichment strategies due to their facilitation roles in succession supporting restoration efforts in regenerating Amazonian forests. Full article
Show Figures

Figure 1

20 pages, 4150 KiB  
Article
Testing and EDEM Simulation Analysis of Material Properties of Small Vegetable Seeds for Sustainable Seeding Process
by Jiaoyang Duan, Xingrui Shi and Baolong Wang
Sustainability 2025, 17(16), 7292; https://doi.org/10.3390/su17167292 - 12 Aug 2025
Viewed by 306
Abstract
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural [...] Read more.
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural materials is of great significance. The basic physical parameters of agricultural materials include their shape, size, density, porosity, and moisture content. This study focuses on the triaxial dimensions, 1000-grain weight, moisture content, and tribological properties (sliding friction angle, natural repose angle) of the seeds of 16 varieties of small-seeded vegetables commonly grown in Hainan, including flowering Chinese cabbage, Chinese cabbage, lettuce, and leaf lettuce. Measurements were conducted using instruments such as a digital vernier caliper (Deli, Ningbo, China; accuracy 0.01 mm), an electronic balance (LICHEN, Shanghai, China; accuracy 0.001 g), a constant-temperature oven (Shangyi, Shanghai, China), and self-developed sliding friction angle and natural repose angle testers. Discrete element simulations were performed via EDEM 2021 software to validate the tribological properties by establishing particle models (spherical for flowering Chinese cabbage and Chinese cabbage; long–flat for lettuce and leaf lettuce) and instrument geometric models. Additionally, seed germinability (germination potential, germination rate, and germination speed) was tested using a constant-temperature incubation method. The results showed distinct differences between near-spherical and long–flat seeds in geometric characteristics, 1000-grain weight (2.27–3.06 g vs. 1.00–1.29 g), and tribological behavior (e.g., smaller natural repose angles for near-spherical seeds indicating better flowability). Plastic plates were identified as optimal for seed box guides due to lower sliding friction coefficients. EDEM 2021 simulations effectively verified the experimental data. High-germination-rate seeds (e.g., Hong Kong flowering Chinese cabbage, and Lifeng No.3 Chinese cabbage) were recommended for subsequent trials. These findings provide data support for the selection, design, and optimization of seed rope braiding machine components and sustainable seeding process. Full article
(This article belongs to the Special Issue Agricultural Engineering for Sustainable Development)
Show Figures

Figure 1

17 pages, 2210 KiB  
Article
Foliar Morphoanatomical and Phytochemical Variations Shape Resistance to Key Insect Herbivores and Leaf Quality in Cyclocarya paliurus
by Zhanhong Xu, Wanxia Yang, Xulan Shang, Xiangxiang Fu, Caowen Sun and Shengzuo Fang
Plants 2025, 14(16), 2495; https://doi.org/10.3390/plants14162495 - 11 Aug 2025
Viewed by 206
Abstract
To reveal the effects of genotype–herbivore interactions on leaf quality, foliar variations in phytochemicals, morphoanatomy, and herbivory damage ratio were investigated in a Cyclocarya paliurus (Batalin) Iljinsk. (Juglandaceae) germplasm resources bank. Results showed less herbivory damage in genotypes with a higher leaf thickness, [...] Read more.
To reveal the effects of genotype–herbivore interactions on leaf quality, foliar variations in phytochemicals, morphoanatomy, and herbivory damage ratio were investigated in a Cyclocarya paliurus (Batalin) Iljinsk. (Juglandaceae) germplasm resources bank. Results showed less herbivory damage in genotypes with a higher leaf thickness, but more herbivory damage in genotypes with a higher leaf stomatal density. Herbivory damage ratios were significantly correlated with the contents of leaf secondary metabolites, whereas the response of secondary metabolites to insect attack was type-specific and varied between intact leaves and damaged leaves. Based on key indicators of leaf quality (contents of triterpenoids, flavonoids, polyphenols, pterocaryoside A, pterocaryoside B, and cyclocaric acid B), the investigated genotypes were divided into three distinct groups by integrating TOPSIS and cluster analysis, while four genotypes with slight insect damage demonstrated the prioritization for future applications. Our findings lay a foundation for further selection of its superior varieties with both insect resistance and high leaf quality. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

24 pages, 1967 KiB  
Article
Water Stress Promotes Secondary Sexual Dimorphism in Ecophysiological Traits of Papaya Seedlings
by Ingrid Trancoso, Guilherme A. R. de Souza, João Vitor Paravidini de Souza, Rosana Maria dos Santos Nani de Miranda, Diesily de Andrade Neves, Miroslava Rakocevic and Eliemar Campostrini
Plants 2025, 14(15), 2445; https://doi.org/10.3390/plants14152445 - 7 Aug 2025
Viewed by 321
Abstract
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification [...] Read more.
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification in papaya may help to reduce orchard costs because the most desirable fruit shape is formed by hermaphrodite plants. We hypothesized that (a) gender ecophysiological phenotyping can be an alternative to make gender segregations in papaya seedlings, and (b) such gender segregation will be more efficient after a short drought exposure than under adequate water conditions. To test such hypotheses, seedlings of two papaya varieties (‘Candy’ and ‘THB’) were exposed to two kind of treatments: (1) water shortage (WS) for 45 h, after which they were well watered, and (2) continuously well-watered (WW). Study assessed the ecophysiological responses, such as stomatal conductance (gs), SPAD index, optical reflectance indices, morphological traits, and biomass accumulation in females (F) and hermaphrodites (H). In WS treatment, the SSD was expressed in 14 of 18 traits investigated, while in WW treatment, the SSD was expressed only in 7 of 18 traits. As tools for SSD expression, gs and simple ratio pigment index (SRPI) must be measured on the first or second day after the imposed WS was interrupted, respectively, while the other parameters must be measured after a period of four days. In some traits, the SSD was expressed in only one variety, or the response of H and F plants were of opposite values for two varieties. The choice of the clearest responses of gender segregation in WS treatment will be greenness index, combination of normalized difference vegetation index (CNDVI), photochemical reflectance index (PRI), water band index (WBI), SRPI, leaf number, leaf dry mass, and leaf mass ratio. If the WW conditions are maintained for papaya seedling production, the recommendation in gender segregation will be the analysis of CNDVI, carotenoid reflectance index 2 (CRI2), WBI, and SRPI. The non-destructive optical leaf indices segregated papaya hermaphrodites from females under both water conditions and eventually could be adjusted for wide-scale platform evaluations, with planned space arrangements of seedlings, and sensor’s set. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

21 pages, 5496 KiB  
Article
Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings
by Dezheng Wu, Canyu Ding and Mingder Jean
Materials 2025, 18(15), 3658; https://doi.org/10.3390/ma18153658 - 4 Aug 2025
Viewed by 336
Abstract
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which [...] Read more.
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which allowed the computation of the distribution of residual stresses. The results show that the isotherms in the simulation of the temperature field are elliptical in shape, and that the isotherms in front of the moving heat source are dense with a larger temperature gradient, while the isotherms behind the heat source are sparse with a smaller temperature gradient. In addition, the observed microstructural evolution shows that the melting zone domains of WC(Co,Ni) are mainly composed of unmelted carbides. These carbides are dendritic, rod-like, leaf-like, or net-like, and are agglomerated into smaller groups. The W content of these unmelted carbides exceeds 80%, while the C content is around 1.5–3.0%. The grey areas are composed of WC, Co and Ni compounds. Based on the regression model, a quadratic model was successfully constructed. A three-dimensional profile model of the residual stress behaviour was further explored. The estimated values of the RSM-based FEA model for residual stress are very similar to the actual results, which shows that the model is effective in reducing residual stress by laser cladding. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

16 pages, 2968 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 - 3 Aug 2025
Viewed by 303
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

15 pages, 2636 KiB  
Article
Genome-Wide Identification of DNA Methyltransferase and Demethylase in Populus sect. Turanga and Their Potential Roles in Heteromorphic Leaf Development in Populus euphratica
by Chen Qiu, Jianhao Sun, Mingyu Jia, Xiaoli Han, Jia Song, Zhongshuai Gai and Zhijun Li
Plants 2025, 14(15), 2370; https://doi.org/10.3390/plants14152370 - 1 Aug 2025
Viewed by 278
Abstract
DNA methylation, mediated by DNA methyltransferases (DMTs) and demethylases (DMLs), is an important epigenetic modification that maintains genomic stability and regulates gene expression in plant growth, development, and stress responses. However, a comprehensive characterization of these gene families in Populus sect. Turanga remains [...] Read more.
DNA methylation, mediated by DNA methyltransferases (DMTs) and demethylases (DMLs), is an important epigenetic modification that maintains genomic stability and regulates gene expression in plant growth, development, and stress responses. However, a comprehensive characterization of these gene families in Populus sect. Turanga remains lacking. In this study, eight PeDMT and two PeDML genes were identified in Populus euphratica, and six PpDMT and three PpDML genes in Populus pruinosa. Phylogenetic analysis revealed that DMTs and DMLs could be classified into four and three subfamilies, respectively. The analysis of cis-acting elements indicated that the promoter regions of both DMTs and DMLs were enriched with elements responsive to growth and development, light, phytohormones, and stress. Collinearity analysis detected three segmentally duplicated gene pairs (PeDMT5/8, PeDML1/2, and PpDML2/3), suggesting potential functional diversification. Transcriptome profiling showed that several PeDMTs and PeDMLs exhibited leaf shape- and developmental stage-specific expression patterns, with PeDML1 highly expressed during early stages and in broad-ovate leaves. Whole-genome bisulfite sequencing revealed corresponding decreases in DNA methylation levels, suggesting that active demethylation may contribute to heteromorphic leaf formation. Overall, this study provides significant insights for exploring the functions and expression regulation of plant DMTs and DMLs and will contribute to future research unraveling the molecular mechanisms of epigenetic regulation in P. euphratica. Full article
Show Figures

Figure 1

0 pages, 2504 KiB  
Article
Phenotypic Profiling of Anchote (Coccinia abyssinica (Lam.) Cogn.) Accessions Through Agro-Morphological and Physiological Markers
by Dejene Bekele Dibaba, Temesgen Magule Olango, Bizuayehu Tesfaye Asfaw, Desta Fikadu Mijena and Meseret Tesema Terfa
Plants 2025, 14(15), 2334; https://doi.org/10.3390/plants14152334 - 28 Jul 2025
Viewed by 279
Abstract
Anchote (Coccinia abyssinica) is a neglected high-potential food and nutrition security tuber crop in Ethiopia. Phenotyping core germplasm collections using agro-morphological and physiological markers is essential for effective crop improvement and utilization. A total of 282 anchote germplasms were profiled using [...] Read more.
Anchote (Coccinia abyssinica) is a neglected high-potential food and nutrition security tuber crop in Ethiopia. Phenotyping core germplasm collections using agro-morphological and physiological markers is essential for effective crop improvement and utilization. A total of 282 anchote germplasms were profiled using six qualitative and twenty-six quantitative agro-morphological and physiological traits. Augmented Block Design was used for the experiment at the Debre Zeit Agricultural Research Center. The chi-square test and Shannon diversity index indicated the presence of substantial phenotypic variation and diversity among the accessions based on the predominant qualitative traits studied. The quantitative agro-morphological and physiological traits showed wider variability and ranges for the accessions. The broad-sense heritability and genetic advance as a percentage of the mean were notably high for quantitative traits such as root yield, vine length, and leaf area index. A significantly positive correlation was observed among agronomically important traits such as root yield and root diameter as well as root yield and leaf area. The principal component analysis for qualitative and quantitative traits found that ten components explained 72.2% of the variation for qualitative traits, whereas nine components accounted for 69.96% of the variation in quantitative traits. The primary contributors to the variations are traits such as root (shape, flesh color, and yield), leaf (color, length, diameter, area) and fruit (length, diameter, and weight). Further, the accessions were grouped into two and three clusters based on qualitative and quantitative traits, respectively, indicating that quantitative characters better differentiated among the accessions. Similarly, the tanglegram showed little similarity between the qualitative and quantitative agro-morphological and physiological traits in clustering the accessions. These findings indicate the presence of sizable trait variation among the accessions that can be exploited as a selection marker to design and facilitate conservation and breeding strategies of anchote. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Selenium Nanoparticles Improve Morpho-Physiological and Fruit Quality Parameters of Tomato
by Juan José Reyes-Pérez, Tomás Rivas-García, Luis Tarquino Llerena-Ramos, Rommel Arturo Ramos-Remache, Luis Humberto Vásquez Cortez, Pablo Preciado-Rangel and Rubí A. Martínez-Camacho
Horticulturae 2025, 11(8), 876; https://doi.org/10.3390/horticulturae11080876 - 28 Jul 2025
Viewed by 448
Abstract
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, [...] Read more.
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, size, shape), and application (foliar or drenching). For this reason, the objective of this study was to investigate the impact of biostimulating tomato plants under no stressor conditions (Solanum lycopersicum cv. ‘Pomodoro’ L.) with SeNPs on morpho-physiological and fruit quality parameters. Three doses of Selenium nanoparticles (5, 15, and 30 mg L−1), and a control were applied via a foliar application after transplanting. The results indicate that a 5 mg L−1 SeNP treatment improved the growth and yield of the tomato, with the exception of the root length and leaf weight. Moreover, all doses modified the evaluated physiology, bioactive compounds, and fruit quality parameters. This research helped in understanding the SeNPs’ effect on tomato plants in greenhouses under a no stressor condition. Full article
Show Figures

Figure 1

13 pages, 704 KiB  
Article
Population Substructures of Castanopsis tribuloides in Northern Thailand Revealed Using Autosomal STR Variations
by Patcharawadee Thongkumkoon, Jatupol Kampuansai, Maneesawan Dansawan, Pimonrat Tiansawat, Nuttapol Noirungsee, Kittiyut Punchay, Nuttaluck Khamyong and Prasit Wangpakapattanawong
Plants 2025, 14(15), 2306; https://doi.org/10.3390/plants14152306 - 26 Jul 2025
Viewed by 329
Abstract
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We [...] Read more.
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We analyzed population samples collected from three distinct locations within Doi Suthep Mountain in northern Thailand using Short Tandem Repeat (STR) markers to assess both intra- and inter-population genetic relationships. DNA was extracted from leaf samples and analyzed using a panel of polymorphic microsatellite loci specifically optimized for Castanopsis species. Statistical analyses included the assessment of forensic parameters (number of alleles, observed and expected heterozygosity, gene diversity, polymorphic information content), population differentiation metrics (GST), inbreeding coefficients (FIS), and gene flow estimates (Nm). We further examined population history through bottleneck analysis using three models (IAM, SMM, and TPM) and visualized genetic relationships through principal coordinate analysis and cluster analysis. Our results revealed significant patterns of genetic structuring across the sampled populations, with genetic distance metrics showing statistically significant differentiation between certain population pairs. The PCA and cluster analyses confirmed distinct population groupings that correspond to geographic distribution patterns. These findings provide the first comprehensive assessment of C. tribuloides population genetics in this region, establishing baseline data for monitoring genetic diversity and informing conservation strategies. This research contributes to our understanding of how landscape features and ecological factors shape genetic diversity patterns in essential forest tree species, with implications for managing forest genetic resources in the face of environmental change. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

16 pages, 5847 KiB  
Article
Exploring the Metabolic Pathways of Melon (Cucumis melo L.) Yellow Leaf Mutants via Metabolomics
by Fan Zhang, Kexin Chen, Dongyang Dai, Bing Liu, Yaokun Wu and Yunyan Sheng
Plants 2025, 14(15), 2300; https://doi.org/10.3390/plants14152300 - 25 Jul 2025
Viewed by 234
Abstract
A yellow leaf mutant named ‘ZT00091’ was discovered during the cultivation of the melon variety ‘ZT091’. An analysis of the leaf ultrastructure revealed that the chloroplasts of ‘ZT00091’ were significantly smaller than those of ‘ZT091’, with irregular shapes, blurred contours, and no starch [...] Read more.
A yellow leaf mutant named ‘ZT00091’ was discovered during the cultivation of the melon variety ‘ZT091’. An analysis of the leaf ultrastructure revealed that the chloroplasts of ‘ZT00091’ were significantly smaller than those of ‘ZT091’, with irregular shapes, blurred contours, and no starch granules. Metabolomic analysis revealed 792 differentially abundant metabolites between ‘ZT00091’ and ‘ZT091’, with 273 upregulated and 519 downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results indicated that the differentially abundant metabolites were enriched mainly in the carotenoid pathway. qRT-PCR was used to analyze key genes in the carotenoid pathway of melon. Compared with those in ‘ZT091’, the genes promoting carotenoids and lutein in ‘ZT00091’ were significantly upregulated, which may explain the yellow color of ‘ZT00091’ leaves. Significant differences in the chlorophyll contents (chlorophyll a, chlorophyll b, and total chlorophyll) and carotenoid contents were found between ‘ZT00091’ and ‘ZT091’, indicating that the yellowing of melon leaves is related to changes in the carotenoid and chlorophyll contents. This study provides a theoretical basis for research on the molecular mechanism of melon yellowing. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

Back to TopTop