Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,093)

Search Parameters:
Keywords = life-cycle costs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3758 KB  
Article
Economic Evaluation and Sustainable Optimisation of Envelope Parameters of Building Energy-Efficiency Design Standards in Cold Regions: A Case Study of Shijiazhuang, China
by Ziyi Li, Yuan Gao, Yunhui Wu and Qingpeng Geng
Sustainability 2025, 17(20), 9065; https://doi.org/10.3390/su17209065 (registering DOI) - 13 Oct 2025
Abstract
To address the global environmental crisis and achieve sustainable development in the construction industry, the thermal-engineering requirements for building envelope structures in China have been increasing year by year. However, the contradiction between the long-term environmental benefits brought by high-level energy-saving standards and [...] Read more.
To address the global environmental crisis and achieve sustainable development in the construction industry, the thermal-engineering requirements for building envelope structures in China have been increasing year by year. However, the contradiction between the long-term environmental benefits brought by high-level energy-saving standards and the short-term initial-investment increment has become increasingly prominent. Based on the marginal benefit theory and multi-objective optimisation algorithm, this study constructed a sustainable optimisation framework for the envelope parameters of building energy-saving design standards in cold regions of China. Taking residential buildings and public buildings in the typical city of Shijiazhuang as examples, the optimal marginal benefit values of the thermal parameters of the building envelope were obtained, as well as a multi-objective-optimisation optimal solution that comprehensively weighs the three-dimensional goals of energy efficiency, life-cycle cost, and thermal comfort. This sustainable optimisation framework can provide a scientific and quantified decision-making basis for relevant stakeholders, such as government departments, builders, or architects. Full article
Show Figures

Figure 1

24 pages, 654 KB  
Article
Economic Dimension of Integrating Electric Vehicle Fleets in V2G-Enabled Cities in the Turkish mFRR Market: Scenario and Life-Cycle Cost Analysis
by Wojciech Lewicki and Hasan Huseyin Coban
Energies 2025, 18(20), 5387; https://doi.org/10.3390/en18205387 (registering DOI) - 13 Oct 2025
Abstract
Despite the ongoing electromobility revolution in urban areas, fleet managers still prefer combustion engines over electric vehicles. Fleet electrification can deliver tangible benefits not only for the urban environment but also for the company itself. However, this requires a robust economic and technical [...] Read more.
Despite the ongoing electromobility revolution in urban areas, fleet managers still prefer combustion engines over electric vehicles. Fleet electrification can deliver tangible benefits not only for the urban environment but also for the company itself. However, this requires a robust economic and technical analysis approach. This study assesses the technical and economic viability of integrating electric vehicle (EV) fleets into the Turkish manual frequency recovery reserve (mFRR) market. Using a life-cycle costing (LCC) framework, three operational scenarios are modeled: Baseline (leased EVs without V2G), V2G+ (leased EVs with aggregator-based mFRR), and High Utilization (owned EVs with full V2G integration and increased rental activity). The baseline scenario assumes a net cost of USD 142,500 over 10 years, excluding revenue share. V2G+ reduces this amount to USD 137,000, generating an annual income of approximately USD 4400 from its share of the frequency reserve. A high utilization scenario, combining V2G with ownership and higher rental income, reduces the net LCC to USD 125,500 and generates over USD 12,000 annually, reaching breakeven around year 7. Sensitivity analyses show that the financial profitability of the system is significantly influenced by EV purchase prices, aggregator fees, mFRR capacity payments, and vehicle utilization rates. Adding a 30–50% solar-powered charging enclosure further reduces operating costs by up to USD 21,500, demonstrating the synergistic potential of integrating V2G and distributed photovoltaics. These results influence not only the priorities for electrifying the urban vehicle fleet, but also smart city regulations in the area of energy management, through the development of bidirectional charging standards and pilot implementation of V2G in emerging markets such as Turkey. Full article
(This article belongs to the Section G1: Smart Cities and Urban Management)
27 pages, 3909 KB  
Article
Second-Life EV Batteries for PV–SLB Hybrid Petrol Stations: A Roadmap for Malaysia’s Urban Energy Transition
by Md Tanjil Sarker, Gobbi Ramasamy, Marran Al Qwaid and Shashikumar Krishnan
Urban Sci. 2025, 9(10), 422; https://doi.org/10.3390/urbansci9100422 (registering DOI) - 13 Oct 2025
Abstract
The rapid growth of electric vehicle (EV) adoption in Malaysia is projected to generate substantial volumes of end-of-life lithium-ion batteries, creating both environmental challenges and opportunities for repurposing into second-life batteries (SLBs). This study investigates the technical, economic, and regulatory feasibility of deploying [...] Read more.
The rapid growth of electric vehicle (EV) adoption in Malaysia is projected to generate substantial volumes of end-of-life lithium-ion batteries, creating both environmental challenges and opportunities for repurposing into second-life batteries (SLBs). This study investigates the technical, economic, and regulatory feasibility of deploying SLBs for photovoltaic (PV) energy storage in petrol stations, an application aligned with the nation’s energy transition goals. Laboratory testing of Nissan Leaf ZE0 battery modules over a 120-day operation period demonstrated stable cycling performance with approximately 7% capacity fade, maintaining state-of-health (SOH) above 47%. A case study of a 12 kWp PV–SLB hybrid system for a typical Malaysian petrol station shows 45 kWh of usable storage, capable of offsetting a daily electricity demand of 45 kWh, reducing capital cost by 30–50% compared to new lithium-ion systems, and achieving 70–80% lifecycle CO2 emission reductions. The proposed architecture leverages SLBs’ suitability for slower, steady discharge to provide reliable nighttime operation and grid load relief, particularly in semi-urban and rural stations. Beyond technical validation, the paper evaluates economic benefits, environmental impacts, and Malaysia’s regulatory readiness, identifying gaps in certification standards, reverse logistics, and workforce skills. Strategic recommendations are proposed to enable large-scale SLB deployment and integration into hybrid PV–petrol station systems. Findings indicate that SLBs can serve as a cost-effective, sustainable energy storage solution, supporting Malaysia’s National Energy Transition Roadmap (NETR), advancing circular economy practices, and positioning the country as a potential ASEAN leader in battery repurposing. Full article
Show Figures

Figure 1

21 pages, 10338 KB  
Article
Sustainable Mining of Open-Pit Coal Mines: A Study on Intelligent Strip Division Technology Based on Multi-Source Data Fusion
by Shuaikang Lv, Ruixin Zhang, Yabin Tao, Zijie Meng, Sibo Wang and Zhigao Liu
Sustainability 2025, 17(20), 9049; https://doi.org/10.3390/su17209049 (registering DOI) - 13 Oct 2025
Abstract
The rational delineation of open-pit mining areas constitutes the core foundation for achieving safe, efficient, economical, and sustainable mining operations. The quality of this decision-making directly impacts the economic benefits experienced throughout the mine’s entire lifecycle and the efficiency of resource recovery. Traditional [...] Read more.
The rational delineation of open-pit mining areas constitutes the core foundation for achieving safe, efficient, economical, and sustainable mining operations. The quality of this decision-making directly impacts the economic benefits experienced throughout the mine’s entire lifecycle and the efficiency of resource recovery. Traditional open-pit mining area delineation relies on an experience-driven manual process that is inefficient and incapable of real-time dynamic data optimization. Thus, there is an urgent need to establish an intelligent decision-making model integrating multi-source data and multi-objective optimization. To this end, this study proposes an intelligent mining area division algorithm. First, a geological complexity quantification model is constructed, incorporating innovative adaptive discretisation resolution technology to achieve precise quantification of coal seam distribution. Second, based on the quantified stripping-to-mining ratio within grids, a block-growing algorithm generates block grids, ensuring uniformity of the stripping-to-mining ratio within each block. Subsequently, a matrix of primary directional variations in the stripping-to-mining ratio is constructed to determine the principal orientation for merging blocks into mining areas. Finally, intelligent open-pit mining area delineation is achieved by comprehensively considering factors such as the principal direction of mining areas, geological conditions, boundary shapes, and economic scale. Practical validation was conducted using the Shitoumei No. 1 Open-Pit Coal Mine in Xinjiang as a case study in engineering. Engineering practice demonstrates that adopting this methodology transforms mining area delineation from an experience-driven to a data-driven approach, significantly enhancing delineation efficiency. Manual simulation of a single scheme previously required approximately 15 days. Applying the methodology proposed herein reduces this to just 0.5 days per scheme, representing a 96% increase in efficiency. Design costs were reduced by approximately CNY 190,000 per iteration. Crucially, the intelligently recommended scheme matched the original design, validating the algorithm’s reliability. This research provides crucial support for theoretical and technological innovation in intelligent open-pit coal mining design, offering technical underpinnings for the sustainable development of open-pit coal mines. Full article
Show Figures

Figure 1

27 pages, 8648 KB  
Article
Sustainability Assessment of Demountable and Reconfigurable Steel Structures
by Adrián Ouro Miguélez, Félix Fernández Abalde, Manuel Cabaleiro Núñez and Fernando Nunes Cavalheiro
Buildings 2025, 15(20), 3651; https://doi.org/10.3390/buildings15203651 (registering DOI) - 10 Oct 2025
Viewed by 95
Abstract
Steel structures that support machines and industrial process installations should ideally be flexible, adaptable, and easily reconfigurable. However, in current practice, new profiles are frequently used and discarded whenever layout modifications are required, leading to considerable material waste, increased costs, and environmental burdens. [...] Read more.
Steel structures that support machines and industrial process installations should ideally be flexible, adaptable, and easily reconfigurable. However, in current practice, new profiles are frequently used and discarded whenever layout modifications are required, leading to considerable material waste, increased costs, and environmental burdens. Such practices conflict with the principles of the circular economy, in which reusability is preferable to recycling. This paper presents a life cycle sustainability assessment (life cycle cost, LCC, and life cycle assessment, LCA) applied to six structural typologies: (a) welded IPE profiles, (b) bolted IPE profiles, (c) welded tubular profiles, (d) bolted tubular profiles, (e) clamped IPE profiles with demountable joints, and (f) flanged tubular profiles with demountable joints. The assessment integrates structural calculations with an updatable database of costs, operation times, and service lives, providing a systematic framework for evaluating both economic and environmental performance in medium-load industrial structures (0.5–9.8 kN/m2). Application to nine representative case studies demonstrated that demountable clamped and flanged joints become economically competitive after three life cycles, and after only two life cycles under high-load conditions (9.8 kN/m2). The findings indicate relative cost savings of up to 75% in optimized configurations and carbon-footprint reductions of approximately 50% after three cycles. These results provide quantitative evidence of the long-term advantages of demountable and reconfigurable steel structures. Their capacity for repeated reuse without loss of performance supports sustainable design strategies, reduces environmental impacts, and advances circular economy principles, making them an attractive option for modern industrial facilities subject to frequent modifications. Full article
Show Figures

Figure 1

33 pages, 876 KB  
Review
The Role of the Built Environment in Achieving Sustainable Development: A Life Cycle Cost Perspective
by Ivona Gudac Hodanić, Hrvoje Krstić, Ivan Marović and Martina Gudac Cvelic
Sustainability 2025, 17(20), 8996; https://doi.org/10.3390/su17208996 - 10 Oct 2025
Viewed by 111
Abstract
Life cycle cost (LCC) analysis has become a key tool for evaluating the long-term economic and environmental performance of built assets, yet its application in marinas and marine infrastructure remains underdeveloped. This review provides the first structured attempt to apply LCC to marina [...] Read more.
Life cycle cost (LCC) analysis has become a key tool for evaluating the long-term economic and environmental performance of built assets, yet its application in marinas and marine infrastructure remains underdeveloped. This review provides the first structured attempt to apply LCC to marina infrastructure, addressing the lack of sector-specific models for pontoons, mooring systems, and marina operations. It also synthesizes research on LCC methodologies, challenges, and emerging trends relevant to coastal facilities, with a particular focus on pontoons, mooring systems, and marina management practices. Studies reveal persistent barriers to effective implementation, including fragmented data systems, inconsistent regulations, and limited sector-specific tools. Existing models, largely adapted from other construction contexts, often overlook the unique technical, environmental, and operational demands of marine assets. The review critically examines international standards, procurement frameworks, and methodological approaches, highlighting opportunities to integrate sustainability considerations and address gaps in cost forecasting. It also identifies the need for standardized data collection practices and risk-based maintenance strategies tailored to harsh marine environments. By mapping current knowledge and methodological limitations, this work provides a foundation for developing more accurate, sector-specific LCC models and guidance. This literature review contributes to the advancement of sustainable coastal infrastructure planning by consolidating scattered research, emphasizing knowledge gaps, and outlining priorities for future studies, supporting policymakers, practitioners, and researchers seeking to optimize investment decisions in marinas and related facilities. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

29 pages, 1219 KB  
Review
Economic Impact Assessment for Positive Energy Districts: A Literature Review
by Marco Volpatti, Andreas Tuerk, Camilla Neumann, Ilaria Marotta, Maria Beatrice Andreucci, Matthias Haase, Francesco Guarino, Rosaria Volpe and Adriano Bisello
Energies 2025, 18(20), 5341; https://doi.org/10.3390/en18205341 - 10 Oct 2025
Viewed by 96
Abstract
To address the global challenge of sustainable energy transition in cities, there is a growing demand for innovative solutions to provide flexible, low-carbon, and socio-economically profitable energy systems. In this context, there is a need for holistic evaluation frameworks for the prioritization and [...] Read more.
To address the global challenge of sustainable energy transition in cities, there is a growing demand for innovative solutions to provide flexible, low-carbon, and socio-economically profitable energy systems. In this context, there is a need for holistic evaluation frameworks for the prioritization and economic optimization of interventions. This paper provides a literature review on sustainable planning and economic impact assessment of innovative urban areas, such as Positive Energy Districts (PEDs), to analyze research trends in terms of evaluation methods, impacts, system boundaries, and identify conceptual and methodological gaps. A dedicated search was conducted in the Scopus database using several query strings to conduct a systematic review. At the end, 57 documents were collected and categorized by analysis approach, indicators, project interventions, and other factors. The review shows that the Cost–Benefit Analysis (CBA) is the most frequently adopted method, while Life Cycle Costing and Multi-Criteria Analysis result in a more limited application. Only in a few cases is the reduction in GHG emissions and disposal costs a part of the economic model. Furthermore, cost assessments usually do not consider the integration of the district into the wider energy network, such as the interaction with energy markets. From a more holistic perspective, additional costs and benefits should be included in the analysis and monetized, such as the co-impact on the social and environmental dimensions (e.g., social well-being, thermal comfort improvement, and biodiversity preservation) and other operational benefits (e.g., increase in property value, revenues from Demand Response, and Peer-To-Peer schemes) and disposal costs, considering specific discount rates. By adopting this multi-criteria thinking, future research should also deepen the synergies between urban sectors by focusing more attention on mobility, urban waste and green management, and the integration of district heating networks. According to this vision, investments in PEDs can generate a better social return and favour the development of shared interdisciplinary solutions. Full article
(This article belongs to the Special Issue Emerging Trends and Challenges in Zero-Energy Districts)
18 pages, 319 KB  
Review
Health Technology Assessment of mRNA Vaccines: Clinical, Economic, and Public Health Implications
by Giovanni Genovese, Caterina Elisabetta Rizzo and Cristina Genovese
Vaccines 2025, 13(10), 1045; https://doi.org/10.3390/vaccines13101045 - 10 Oct 2025
Viewed by 238
Abstract
Health Technology Assessment (HTA) is a multidimensional and multidisciplinary approach for analyzing the medical–clinical, social, organizational, economic, ethical, and legal implications of a technology, through the evaluation of multiple dimensions such as efficacy, safety, costs, and social–organizational impact. In the healthcare context, “technology” [...] Read more.
Health Technology Assessment (HTA) is a multidimensional and multidisciplinary approach for analyzing the medical–clinical, social, organizational, economic, ethical, and legal implications of a technology, through the evaluation of multiple dimensions such as efficacy, safety, costs, and social–organizational impact. In the healthcare context, “technology” refers to any tool—including pharmaceuticals (or, in this case, vaccines)—that is applied to healthcare practice. HTA focuses on assessing both the real and potential effects of a given technology, either prospectively or throughout its life cycle, as well as the consequences that the introduction or exclusion of an intervention may have on the healthcare system, the economy, and society at large. Full article
45 pages, 9186 KB  
Article
Life Cycle Assessment of Shipbuilding Materials and Potential Exposure Under the EU CBAM: Scenario-Based Assessment and Strategic Responses
by Bae-jun Kwon, Sang-jin Oh, Byong-ug Jeong, Yeong-min Park and Sung-chul Shin
J. Mar. Sci. Eng. 2025, 13(10), 1938; https://doi.org/10.3390/jmse13101938 - 10 Oct 2025
Viewed by 125
Abstract
This study evaluates the environmental impacts of shipbuilding materials through life cycle assessment (LCA) and assesses potential exposure under the EU Carbon Border Adjustment Mechanism (CBAM). Three representative vessel types, a pure car and truck carrier (PCTC), a bulk carrier, and a container [...] Read more.
This study evaluates the environmental impacts of shipbuilding materials through life cycle assessment (LCA) and assesses potential exposure under the EU Carbon Border Adjustment Mechanism (CBAM). Three representative vessel types, a pure car and truck carrier (PCTC), a bulk carrier, and a container ship, were analyzed across scenarios reflecting different steelmaking routes, recycling rates, and regional energy mixes. Results show that structural steel (AH36, EH36, DH36, A/B grades) overwhelmingly dominates embedded emissions, while aluminium and copper contribute secondarily but with high sensitivity to recycling and energy pathways. Coatings, polymers, and yard processes add smaller but non-negligible effects. Scenario-based CBAM cost estimates for 2026–2030 indicate rising liabilities, with container vessels facing the highest exposure, followed by bulk carriers and PCTCs. The findings highlight the strategic importance of steel sourcing, recycling strategies, and verifiable supply chain data for reducing embedded emissions and mitigating financial risks. While operational emissions still dominate the life cycle, the relative importance of construction-phase emissions will grow as shipping decarbonizes. Current EU-level discussions on extending CBAM to maritime services, together with recognition of domestic carbon pricing as a potential pathway to reduce liabilities, underscore regulatory uncertainty and emphasize the need for harmonized methods, transparent datasets, and digital integration to support decarbonization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 2740 KB  
Systematic Review
A Conceptual Framework for Enabling Structural Steel Reuse Utilizing Circular Economy in Modular Construction
by Shrouk Gharib and Osama Moselhi
Sustainability 2025, 17(19), 8945; https://doi.org/10.3390/su17198945 - 9 Oct 2025
Viewed by 303
Abstract
Steel production is a major contributor to resource use and greenhouse gas emissions, accounting for nearly 8% of global CO2 emissions, with structural steel accounting for more than half of this share. As the construction sector moves toward decarbonization, strategies for reuse, [...] Read more.
Steel production is a major contributor to resource use and greenhouse gas emissions, accounting for nearly 8% of global CO2 emissions, with structural steel accounting for more than half of this share. As the construction sector moves toward decarbonization, strategies for reuse, particularly within Modular and Offsite Construction (MOC), are receiving growing attention. This study presents a digitally integrated framework for the recovery, testing, and reuse of structural steel in MOC, grounded in Circular Economy (CE) principles. The framework is based on a systematic review of 162 academic, industry, and case study records and is structured across four stages: (1) material recovery, (2) testing and certification, (3) integration into MOC, and (4) performance evaluation. Building Information Modeling (BIM) and Material Passports (MPs) provide digital infrastructure for traceability, documentation, and compliance with established protocols, such as SCI P427 and P440. Reuse outcomes are assessed using the Modular Reuse Ratio (MRR), Carbon Savings (CS), Lifecycle Cost Savings (LCS), and a tailored Material Circularity Indicator (MCI). By aligning certification requirements with digital processes, the framework addresses current gaps in traceability, standardization, and decision support. It provides a scalable and replicable model that advances structural steel reuse, contributes to sector-wide decarbonization, and supports alignment with emerging CE and performance-based certification schemes. Full article
Show Figures

Graphical abstract

25 pages, 1344 KB  
Article
Is Green Hydrogen a Strategic Opportunity for Albania? A Techno-Economic, Environmental, and SWOT Analysis
by Andi Mehmeti, Endrit Elezi, Armila Xhebraj, Mira Andoni and Ylber Bezo
Clean Technol. 2025, 7(4), 86; https://doi.org/10.3390/cleantechnol7040086 - 9 Oct 2025
Viewed by 309
Abstract
Hydrogen is increasingly recognized as a clean energy vector and storage medium, yet its viability and strategic role in the Western Balkans remain underexplored. This study provides the first comprehensive techno-economic, environmental, and strategic evaluation of hydrogen production pathways in Albania. Results show [...] Read more.
Hydrogen is increasingly recognized as a clean energy vector and storage medium, yet its viability and strategic role in the Western Balkans remain underexplored. This study provides the first comprehensive techno-economic, environmental, and strategic evaluation of hydrogen production pathways in Albania. Results show clear trade-offs across options. The levelized cost of hydrogen (LCOH) is estimated at 8.76 €/kg H2 for grid-connected, 7.75 €/kg H2 for solar, and 7.66 €/kg H2 for wind electrolysis—values above EU averages and reliant on lower electricity costs and efficiency gains. In contrast, fossil-based hydrogen via steam methane reforming (SMR) is cheaper at 3.45 €/kg H2, rising to 4.74 €/kg H2 with carbon capture and storage (CCS). Environmentally, Life Cycle Assessment (LCA) results show much lower Global Warming Potential (<1 kg CO2-eq/kg H2) for renewables compared with ~10.39 kg CO2-eq/kg H2 for SMR, reduced to 3.19 kg CO2-eq/kg H2 with CCS. However, grid electrolysis dominated by hydropower entails high water-scarcity impacts, highlighting resource trade-offs. Strategically, Albania’s growing solar and wind projects (electricity prices of 24.89–44.88 €/MWh), coupled with existing gas infrastructure and EU integration, provide strong potential. While regulatory gaps and limited expertise remain challenges, competition from solar-plus-storage, regional rivals, and dependence on external financing pose additional risks. In the near term, a transitional phase using SMR + CCS could leverage Albania’s gas assets to scale hydrogen production while renewables mature. Overall, Albania’s hydrogen future hinges on targeted investments, supportive policies, and capacity building aligned with EU Green Deal objectives, with solar-powered electrolysis offering the potential to deliver environmentally sustainable green hydrogen at costs below 5.7 €/kg H2. Full article
Show Figures

Graphical abstract

31 pages, 6076 KB  
Article
MSWindD-YOLO: A Lightweight Edge-Deployable Network for Real-Time Wind Turbine Blade Damage Detection in Sustainable Energy Operations
by Pan Li, Jitao Zhou, Jian Zeng, Qian Zhao and Qiqi Yang
Sustainability 2025, 17(19), 8925; https://doi.org/10.3390/su17198925 - 8 Oct 2025
Viewed by 213
Abstract
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate [...] Read more.
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate real-time inference capabilities. In response to these limitations, we put forward MSWindD-YOLO, a lightweight real-time detection model for wind turbine blade damage. Building upon YOLOv5s, our work introduces three key improvements: (1) the replacement of the Focus module with the Stem module to enhance computational efficiency and multi-scale feature fusion, integrating EfficientNetV2 structures for improved feature extraction and lightweight design, while retaining the SPPF module for multi-scale context awareness; (2) the substitution of the C3 module with the GBC3-FEA module to reduce computational redundancy, coupled with the incorporation of the CBAM attention mechanism at the neck network’s terminus to amplify critical features; and (3) the adoption of Shape-IoU loss function instead of CIoU loss function to facilitate faster model convergence and enhance localization accuracy. Evaluated on the Wind Turbine Blade Damage Visual Analysis Dataset (WTBDVA), MSWindD-YOLO achieves a precision of 95.9%, a recall of 96.3%, an mAP@0.5 of 93.7%, and an mAP@0.5:0.95 of 87.5%. With a compact size of 3.12 MB and 22.4 GFLOPs inference cost, it maintains high efficiency. After TensorRT acceleration on Jetson Orin NX, the model attains 43 FPS under FP16 quantization for real-time damage detection. Consequently, the proposed MSWindD-YOLO model not only elevates detection accuracy and inference efficiency but also achieves significant model compression. Its deployment-compatible performance in edge environments fulfills stringent industrial demands, ultimately advancing sustainable wind energy operations through lightweight lifecycle maintenance solutions for wind farms. Full article
Show Figures

Figure 1

22 pages, 1356 KB  
Article
A Holistic Sustainability Evaluation for Heritage Upcycling vs. Building Construction Projects
by Elena Fregonara, Chiara Senatore, Cristina Coscia and Francesca Pasquino
Real Estate 2025, 2(4), 17; https://doi.org/10.3390/realestate2040017 - 8 Oct 2025
Viewed by 354
Abstract
The paper contributes to the debate on the holistic sustainability assessment of real estate projects, integrating economic, financial, environmental, and social aspects. A methodological study is presented to support decision-making processes involving the preferability ranking of alternative investment scenarios: new building production vs. [...] Read more.
The paper contributes to the debate on the holistic sustainability assessment of real estate projects, integrating economic, financial, environmental, and social aspects. A methodological study is presented to support decision-making processes involving the preferability ranking of alternative investment scenarios: new building production vs. retrofitting the existing stock, in the context of urban transformation interventions. The study integrates life cycle approaches by introducing the social components besides the economic and environmental ones. Firstly, a composite unidimensional (monetary) indicator calculation is illustrated. The sustainability components are internalized in the NPV calculation through a Discounted Cash-Flow Analysis (DCFA). Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) are suggested to assess the economic and environmental impacts, and the Social Return on Investment (SROI) to assess the intervention’s extra-financial value. Secondly, a methodology based on multicriteria techniques is proposed. The Hierarchical Analytical Process (AHP) model is suggested to harmonize various performance indicators. Focus is placed on the criticalities emerging in both the methodological approaches, while highlighting the relevance of multidimensional approaches in decision-making processes and for supporting urban policies and urban resilience. Full article
Show Figures

Figure 1

31 pages, 2687 KB  
Review
Advances and Challenges in Bio-Based Lubricants for Sustainable Tribological Applications: A Comprehensive Review of Trends, Additives, and Performance Evaluation
by Jay R. Patel, Kamlesh V. Chauhan, Sushant Rawal, Nicky P. Patel and Dattatraya Subhedar
Lubricants 2025, 13(10), 440; https://doi.org/10.3390/lubricants13100440 - 6 Oct 2025
Viewed by 261
Abstract
Bio-based lubricants are rapidly gaining prominence as sustainable alternatives to petroleum-derived counterparts, driven by their inherent biodegradability, low ecotoxicity, and strong alignment with global environmental and regulatory imperatives. Despite their promising tribological properties, their widespread adoption continues to confront significant challenges, particularly related [...] Read more.
Bio-based lubricants are rapidly gaining prominence as sustainable alternatives to petroleum-derived counterparts, driven by their inherent biodegradability, low ecotoxicity, and strong alignment with global environmental and regulatory imperatives. Despite their promising tribological properties, their widespread adoption continues to confront significant challenges, particularly related to oxidative and thermal instability, cold-flow behavior, and cost competitiveness in demanding high-performance applications. This comprehensive review critically synthesizes the latest advancements in bio-based lubricant technology, spanning feedstock innovations, sophisticated chemical modification strategies, and the development of advanced additive systems. Notably, recent formulations demonstrate remarkable performance enhancements, achieving friction reductions of up to 40% and contributing to substantial CO2 emission reductions, ranging from 30 to 60%, as evidenced by comparative life-cycle assessments and energy efficiency studies. Distinguishing this review from existing literature, this study offers a unique, holistic perspective by integrally analyzing global market trends, industrial adoption dynamics, and evolving regulatory frameworks, such as the European Union Eco-Label and the U.S. EPA Vessel General Permit, alongside technological advancements. This study critically assesses emerging methodologies for tribological evaluation and benchmark performance across diverse, critical sectors including automotive, industrial, and marine applications. By connecting in-depth technical innovations with crucial socio-economic and environmental considerations, this paper not only identifies key research gaps but also outlines a pragmatic roadmap for accelerating the mainstream adoption of bio-based lubricants, positioning them as an indispensable cornerstone of sustainable tribology. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
Show Figures

Figure 1

25 pages, 46031 KB  
Article
Cross-Scale Modeling of CFRP Stacking Sequence in Filament-Wound Composite Pressure Vessels: In-Plane and Inter-Layer Homogenization Analysis
by Ziqi Wang, Ji Shi, Xiaodong Zhao, Hui Li, Huiming Shen, Jianguo Liang and Jun Feng
Materials 2025, 18(19), 4612; https://doi.org/10.3390/ma18194612 - 5 Oct 2025
Viewed by 253
Abstract
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization [...] Read more.
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization method to achieve cross-scale modeling of carbon fiber-reinforced plastic (CFRP) layers, accounting for both lay-up sequence and in-plane FW diamond-shaped form. The stacking sequence in an FW Type IV composite pressure vessel is numerically investigated through ply modeling and cross-scale homogenization. The composite tank structure, featuring a polyamide PA66 liner, is designed for a working pressure of 70 MPa and comprises 12 helical winding layers and 17 hoop winding layers. An FW cross-undulation representative volume element (RVE) is developed based on actual in-plane mesostructures, suggesting an equivalent laminate RVE effective elastic modulus. Furthermore, six different lay-up sequences are numerically compared using ply models and fully and partially homogenized models. The structural displacements in both radial and axial directions are validated across all modeling approaches. The partial homogenization method successfully captures the detailed fiber-direction stress distribution in the innermost two hoop or helical layers. By applying the Hashin tensile failure criterion, the burst pressure of the composite tank is evaluated, revealing 7.56% deviation between the partial homogenization model and the ply model. Fatigue life analysis of the Type IV composite pressure vessel is conducted using ABAQUS® coupled with FE-SAFE, incorporating an S-N curve for polyamide PA66. The results indicate that the fatigue cycles of the liner exhibit only 0.28% variation across different stacking sequences, demonstrating that homogenization has a negligible impact on liner lifecycle predictions. The proposed cross-scale modeling framework offers an effective approach for multiscale simulation of FW composite pressure vessels, balancing computational efficiency with accuracy. Full article
Show Figures

Figure 1

Back to TopTop