Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = ligand exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2947 KB  
Article
1,10-Phenanthroline-Iron Complex-Derived Fe-N-C Electrocatalysts: Enhanced Oxygen Reduction Activity and Stability Through Synthesis Tuning
by Carlos S. A. Vasconcellos, Nelson A. Galiote, Nadeem Khan, Enrique A. Paredes-Salazar, Maykon L. Souza, Kotaro Sasaki, Meng Li and Fabio H. B. Lima
Catalysts 2025, 15(9), 821; https://doi.org/10.3390/catal15090821 - 29 Aug 2025
Viewed by 489
Abstract
The development of electrocatalysts composed of earth-abundant elements is essential for advancing the commercial application of Proton Exchange Membrane Fuel Cells (PEMFC). Among these, single-atom electrocatalysts, such as Fe-N-C, show great promise for the oxygen reduction reaction (ORR). This study aims to improve [...] Read more.
The development of electrocatalysts composed of earth-abundant elements is essential for advancing the commercial application of Proton Exchange Membrane Fuel Cells (PEMFC). Among these, single-atom electrocatalysts, such as Fe-N-C, show great promise for the oxygen reduction reaction (ORR). This study aims to improve the ORR activity and stability of Fe-N-C electrocatalysts by fine-tuning the straightforward 1,10-phenanthroline-iron complexation synthesis method. Key parameters, including iron-to-phenanthroline ratio, carbon powder surface area, and pyrolysis temperature were systematically varied to evaluate their influence on the resulting electrocatalysts. The findings of this study revealed that the electrocatalysts synthesized with 1,10-phenanthroline (Phen) and high-surface-area Black Pearls (BP) possessed much better ORR activity than electrocatalysts prepared by using Vulcan carbon (lower surface area). Interestingly, electrocatalysts prepared with BP, but with a non-bidentate nitrogen-containing ligand molecule, such as imidazole, showed a much poorer activity, as the resulting material predominantly consisted of inactive structures, such as encapsulated iron nanoparticles and iron oxide, as evidenced by HR-TEM, EXAFS, and XRD. Therefore, the results suggest that only the synergistic combination of the bidentate ligand phenanthroline (Phen) and the high-surface-area carbon support (BP) favored the formation of ORR-active Fe-N-C single-atom species upon pyrolysis. The study also unveiled a significant enhancement in electrocatalyst stability during accelerated durability tests (and air storage) as the pyrolysis temperature was increased from 700 to 1300 °C, albeit at the expense of ORR activity, likely resulting from the generation of iron particles. Pyrolysis at 1050 °C yielded the electrocatalyst with the most favorable balance of activity and stability in rotating disk measurements, while maintaining moderate durability under PEM fuel cell operation. The insights obtained in this study may guide the development of more active efficient and durable electrocatalysts, synthesized via a simple method using earth-abundant elements, for application in PEMFC cathodes. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

16 pages, 1626 KB  
Article
Enhanced Magnetocaloric Effect and Single-Molecule Magnet Behavior in a Series of Sulfur-Containing Ligand-Based Ln9 Clusters (Ln = Gd, Tb, and Dy)
by Ya-Wei Geng, Tong Guo, Xiao-Qin Wang and Tian Han
Magnetochemistry 2025, 11(9), 70; https://doi.org/10.3390/magnetochemistry11090070 - 22 Aug 2025
Viewed by 422
Abstract
As an important branch of lanthanide-based complexes, clusters show unique properties in magnetocaloric effect (MCE) and single-molecule magnets (SMMs) using O/N ligands, while research on heavy p-block elements (e.g., S atom) with larger atomic radii and more diffuse p valence orbitals as coordinating [...] Read more.
As an important branch of lanthanide-based complexes, clusters show unique properties in magnetocaloric effect (MCE) and single-molecule magnets (SMMs) using O/N ligands, while research on heavy p-block elements (e.g., S atom) with larger atomic radii and more diffuse p valence orbitals as coordinating atoms remains relatively scarce. Herein, using the sulfur-containing ligand of 2-pyridinethiol 1-oxide (HL), we successfully synthesized a series of hourglass-like Ln9 clusters [Ln9(L)17(μ3-OH)9(μ4-OH)]·nH2O (1: Ln = Gd, n = 3; 2: Ln = Tb, n = 3; 3: Ln = Dy, n = 1). Magnetic data analysis reveals that cluster 1 shows a significant MCE, with the entropy change (−ΔSm) reaching a maximum of 34.41 J kg−1 K−1 at 2 K under ΔH = 7 T. Cluster 3, meanwhile, exhibits distinct frequency- and temperature-dependent behavior, indicating its SMM characteristics. Interestingly, despite possessing the highest molar mass among reported Gd9 clusters with MCE, 1 exhibits a competitive −ΔSm value, highlighting the critical role of sulfur-containing ligand on the structure and even exchange interactions. This work offers new insights into synthesizing high-performance MCE materials and understanding magneto-structural relationships. Full article
Show Figures

Figure 1

21 pages, 2559 KB  
Article
Calix[4]resorcinarene Amide Derivative: Thermodynamics of Cation Complexation Processes and Its Remarkable Properties for the Removal of Calcium (II) from Water
by Angela F. Danil de Namor, Ahmad Jumaa and Nawal Al Hakawati
Int. J. Mol. Sci. 2025, 26(16), 8043; https://doi.org/10.3390/ijms26168043 - 20 Aug 2025
Viewed by 359
Abstract
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN [...] Read more.
The state of the art in the thermodynamics of calix[4]resorcinarene derivatives and its metal ion complexes is briefly discussed in the introduction. This is followed by the synthesis and characterization of a recyclable calix[4]resorcinarene amide derivative (L). The 1H NMR analyses in CD3CN and CD3OD showed solvent-dependent conformational changes with a notable downfield chemical shift in the aromatic proton (H-2) in moving from deuterated methanol to acetonitrile, indicating an interaction of the solvent within the ligand cavity as suggested by molecular dynamic simulations. 1H NMR complexation in acetonitrile revealed that L forms relatively strong 1:1 complexes with cations, with selectivity for Ca(II) and, to lesser extent, with Pb(II) over other metal cations. The composition of the complexes is corroborated by conductance measurements. The thermodynamics of these systems indicate that the complexation process is predominantly enthalpy controlled in acetonitrile, while it is entropy controlled in methanol. A remarkable outcome of fundamental studies is found in its application as new material for the removal of Ca(II) from water. The capacity of L to remove Ca(II) from water is 24 mmol/g which exceeds by far the capacity of cation exchange resins. Full article
(This article belongs to the Special Issue Supramolecular Receptors for Cations and Anions)
Show Figures

Figure 1

15 pages, 1371 KB  
Article
Protein Adsorption on a Multimodal Cation Exchanger: Effect of pH, Salt Type and Concentration, and Elution Conditions
by Jana Krázel Adamíková, Monika Antošová, Tomáš Kurák and Milan Polakovič
Molecules 2025, 30(16), 3389; https://doi.org/10.3390/molecules30163389 - 15 Aug 2025
Viewed by 612
Abstract
This study investigates key factors affecting the adsorption behavior of proteins on the multimodal chromatographic adsorbent Capto MMC, aiming to enhance selective protein separation strategies. Batch equilibrium experiments were conducted using six model proteins to explore the combined effects of pH, ionic strength, [...] Read more.
This study investigates key factors affecting the adsorption behavior of proteins on the multimodal chromatographic adsorbent Capto MMC, aiming to enhance selective protein separation strategies. Batch equilibrium experiments were conducted using six model proteins to explore the combined effects of pH, ionic strength, and the nature of salts (kosmotropic and chaotropic) on protein–ligand interactions. Given that the Capto MMC ligand supports multiple interaction modes beyond cation exchange, particular focus was placed on acidic proteins (pI 4–5), which exhibited binding even at moderately elevated pH values—conditions ineffective for conventional cation exchangers. Hydrophobic interactions were identified as critical for stable binding of proteins like BSA and fetuin, while hydrophilic proteins such as ovalbumin showed minimal adsorption. Chromatographic column experiments were performed to evaluate elution performance under various buffer conditions, revealing that prolonged adsorption phases can reduce recovery yields for proteins with less stable tertiary structures. The findings highlight how salt type, pH, and protein hydrophobicity interplay to modulate multimodal binding mechanisms, providing practical insights for the design of tailored purification protocols. Full article
(This article belongs to the Special Issue Recent Research Progress of Novel Ion Adsorbents)
Show Figures

Graphical abstract

22 pages, 4751 KB  
Article
Biophysical Insights into the Binding Interactions of Inhibitors (ICA-1S/1T) Targeting Protein Kinase C-ι
by Radwan Ebna Noor, Shahedul Islam, Tracess Smalley, Katarzyna Mizgalska, Mark Eschenfelder, Dimitra Keramisanou, Aaron Joshua Astalos, James William Leahy, Wayne Charles Guida, Aleksandra Karolak, Ioannis Gelis and Mildred Acevedo-Duncan
Biophysica 2025, 5(3), 36; https://doi.org/10.3390/biophysica5030036 - 11 Aug 2025
Viewed by 380
Abstract
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have [...] Read more.
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have demonstrated their specificity and promising efficacy against various cancers. Moreover, the in vivo studies have demonstrated low toxicity levels in acute and chronic murine models. Despite these prior developments, the binding affinities of the inhibitors were never thoroughly explored from a biophysical perspective. Here, we present the biophysical characterizations of PKC-ι in combination with ICA-1S/1T. Various methods based on molecular docking, light scattering, intrinsic fluorescence, thermal denaturation, and heat exchange were applied. The biophysical characteristics including particle sizing, thermal unfolding, aggregation profiles, enthalpy, entropy, free energy changes, and binding affinity (Kd) of the PKC-ι in the presence of ICA-1S were observed. The studies indicate the presence of domain-specific stabilities in the protein–ligand complex. Moreover, the results indicate a spontaneous reaction with an entropic gain, resulting in a possible entropy-driven hydrophobic interaction and hydrogen bonds in the binding pocket. Altogether, these biophysical studies reveal important insights into the binding interactions of PKC-ι and its inhibitors ICA-1S/1T. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

20 pages, 1716 KB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 621
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

20 pages, 44856 KB  
Article
Characterization and Expression of TGF-β Proteins and Receptor in Sea Cucumber (Holothuria scabra): Insights into Potential Applications via Molecular Docking Predictions
by Siriporn Nonkhwao, Jarupa Charoenrit, Chanachon Ratanamungklanon, Lanlalin Sojikul, Supawadee Duangprom, Sineenart Songkoomkrong, Jirawat Saetan, Nipawan Nuemket, Prateep Amonruttanapun, Prasert Sobhon and Napamanee Kornthong
Int. J. Mol. Sci. 2025, 26(14), 6998; https://doi.org/10.3390/ijms26146998 - 21 Jul 2025
Viewed by 878
Abstract
Holothuria scabra has long been acknowledged in traditional medicine for its therapeutic properties. The transforming growth factor-beta (TGF-β) superfamily is crucial in regulating cellular processes, including differentiation, proliferation, and immune responses. This study marks the first exploration of the gene expression localization, sequence [...] Read more.
Holothuria scabra has long been acknowledged in traditional medicine for its therapeutic properties. The transforming growth factor-beta (TGF-β) superfamily is crucial in regulating cellular processes, including differentiation, proliferation, and immune responses. This study marks the first exploration of the gene expression localization, sequence conservation, and functional roles of H. scabra TGF-β proteins, specifically activin (HolscActivin), inhibin (HolscInhibin), and the TGF-β receptor (HolscTGFBR), across various organs. In situ hybridization indicated that HolscActivin and HolscInhibin are expressed in the intestine, respiratory tree, ovary, testis, and inner body wall. This suggests their roles in nutrient absorption, gas exchange, reproduction, and extracellular matrix remodeling. Notably, HolscTGFBR demonstrated a similar tissue-specific expression pattern, except for its absence in the respiratory tree. Bioinformatics analysis reveals that HolscTGFBR shares significant sequence similarity with HomsaTGFBR, especially in regions essential for signal transduction and inhibition. Molecular docking results indicate that HolscActivin may promote receptor activation, while HolscInhibin functions as a natural antagonist, reflecting the signaling mechanisms of human TGF-β proteins. Interestingly, cross-species ternary complex docking with human TGF-β receptors further supports these findings, showing that HolscActivin moderately engages the receptors, whereas HolscInhibin exhibits strong binding, suggestive of competitive inhibition. These results indicate that H. scabra TGF-β proteins retain the structural and functional features of vertebrate TGF-β ligands, supporting their potential applications as natural modulators in therapeutic and functional food development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2047 KB  
Article
Aluminum-Loaded Bifunctional Resins for Efficient Fluoride Removal from Aqueous Solutions
by Mengfei Ma, Yingpeng Gu, Ruijie Wang and Yue Sun
Appl. Sci. 2025, 15(14), 7829; https://doi.org/10.3390/app15147829 - 12 Jul 2025
Viewed by 338
Abstract
The deep defluorination of water remains a significant environmental challenge. In this work, aluminum was loaded onto the bifunctional resin S957 containing a phosphoric-sulfonic acid difunctional group for efficient fluoride removal. Al-S957 demonstrated excellent fluoride removal performance across a broad pH range. When [...] Read more.
The deep defluorination of water remains a significant environmental challenge. In this work, aluminum was loaded onto the bifunctional resin S957 containing a phosphoric-sulfonic acid difunctional group for efficient fluoride removal. Al-S957 demonstrated excellent fluoride removal performance across a broad pH range. When anions and organics coexisted, Al-S957 exhibited significantly better fluoride adsorption performance compared to aluminum-loaded monofunctional resins. The adsorption followed an endothermic chemisorption process on a monolayer surface. FTIR and XPS analyses further revealed that fluoride removal relied on a ligand exchange mechanism. Column adsorption conducted over five cycles highlighted the strong practical potential of Al-S957. The results suggested that Al-S957 exhibits significant potential for practical applications. Full article
(This article belongs to the Special Issue Advances in Pollutant Removal from Water Environments)
Show Figures

Figure 1

17 pages, 2255 KB  
Article
Engineering a Radiohybrid PSMA Ligand with an Albumin-Binding Moiety and Pharmacokinetic Modulation via an Albumin-Binding Competitor for Radiotheranostics
by Saki Hirata, Hiroaki Echigo, Masayuki Munekane, Kenji Mishiro, Kohshin Washiyama, Takeshi Fuchigami, Hiroshi Wakabayashi, Kazuhiro Takahashi, Seigo Kinuya and Kazuma Ogawa
Molecules 2025, 30(13), 2804; https://doi.org/10.3390/molecules30132804 - 29 Jun 2025
Viewed by 603
Abstract
The prostate-specific membrane antigen (PSMA) is a well-established target for radiotheranostics in prostate cancer. We previously demonstrated that 4-(p-astatophenyl)butyric acid (APBA), an albumin-binding moiety (ABM) labeled with astatine-211 (211At), enables the modulation of pharmacokinetics and enhancement of therapeutic efficacy [...] Read more.
The prostate-specific membrane antigen (PSMA) is a well-established target for radiotheranostics in prostate cancer. We previously demonstrated that 4-(p-astatophenyl)butyric acid (APBA), an albumin-binding moiety (ABM) labeled with astatine-211 (211At), enables the modulation of pharmacokinetics and enhancement of therapeutic efficacy when combined with the post-administration of an albumin-binding competitor. However, this strategy has not been explored in PSMA-targeting ligands. We designed and synthesized [211At]6, a novel PSMA ligand structurally analogous to PSMA-617 with APBA. The compound was obtained via a tin–halogen exchange reaction from the corresponding tributylstannyl precursor. Comparative cellular uptake and biodistribution studies were conducted with [211At]6, its radioiodinated analog [125I]5, and [67Ga]Ga-PSMA-617. To assess pharmacokinetic modulation, sodium 4-(p-iodophenyl)butanoate (IPBA), an albumin-binding competitor, was administered 1 h postinjection of [125I]5 and [211At]6 at a 10-fold molar excess relative to blood albumin. The synthesis of [211At]6 gave a radiochemical yield of 15.9 ± 7.7% and a radiochemical purity > 97%. The synthesized [211At]6 exhibited time-dependent cellular uptake and internalization, with higher uptake levels than [67Ga]Ga-PSMA-617. Biodistribution studies of [211At]6 in normal mice revealed a prolonged blood retention similar to those of [125I]5. Notably, post-administration of IPBA significantly reduced blood radioactivity and non-target tissue accumulation of [125I]5 and [211At]6. We found that ABM-mediated pharmacokinetic control was applicable to PSMA-targeted radiotherapeutics, broadening its potential for the optimization of radiotheranostics. Full article
(This article belongs to the Special Issue Advance in Radiochemistry, 2nd Edition)
Show Figures

Figure 1

15 pages, 6317 KB  
Article
Long-Range Allosteric Communication Modulated by Active Site Mn(II) Coordination Drives Catalysis in Xanthobacter autotrophicus Acetone Carboxylase
by Jenna R. Mattice, Krista A. Shisler, Jadyn R. Malone, Nic A. Murray, Monika Tokmina-Lukaszewska, Arnab K. Nath, Tamara Flusche, Florence Mus, Jennifer L. DuBois, John W. Peters and Brian Bothner
Int. J. Mol. Sci. 2025, 26(13), 5945; https://doi.org/10.3390/ijms26135945 - 20 Jun 2025
Viewed by 436
Abstract
Acetone carboxylase (AC) from Xanthobacter autotrophicus is a 360 KDa α2β2γ2 heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of X. autotrophicus [...] Read more.
Acetone carboxylase (AC) from Xanthobacter autotrophicus is a 360 KDa α2β2γ2 heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of X. autotrophicus AC (XaAC) with and without nucleotides reveal that the binding and phosphorylation of the two substrates occurs ~40 Å from the Mn(II) active sites where acetoacetate is formed. Based on the crystal structures, a significant conformational change was proposed to open and close a tunnel that facilitates the passage of reaction intermediates between the sites for nucleotide binding and phosphorylation of substrates and Mn(II) sites of acetoacetate formation. We have employed electron paramagnetic resonance (EPR), kinetic assays, and hydrogen/deuterium exchange mass spectrometry (HDX-MS) of poised ligand-bound states and site-specific amino acid variants to complete an in-depth analysis of Mn(II) coordination and allosteric communication throughout the catalytic cycle. In contrast with the established paradigms for carboxylation, our analyses of XaAC suggested a carboxylate shift that couples both local and long-range structural transitions. Shifts in the coordination mode of a single carboxylic acid residue (αE89) mediate both catalysis proximal to a Mn(II) center and communication with an ATP active site in a separate subunit of a 180 kDa α2β2γ2 complex at a distance of 40 Å. This work demonstrates the power of combining structural models from X-ray crystallography with solution-phase spectroscopy and biophysical techniques to elucidate functional aspects of a multi-subunit enzyme. Full article
(This article belongs to the Special Issue Emerging Topics in Macromolecular Crystallography)
Show Figures

Figure 1

10 pages, 1040 KB  
Article
Gaussian Process Regression for Mapping Free EnergyLandscape of Mg2+-Cl Ion Pairing in Aqueous Solution: Molecular Insights and Computational Efficiency
by Wasut Pornpatcharapong
Molecules 2025, 30(12), 2595; https://doi.org/10.3390/molecules30122595 - 15 Jun 2025
Viewed by 490
Abstract
Free energy landscapes are pivotal for understanding molecular interactions in solution, yet their reconstruction in complex systems remains computationally demanding. In this study, we integrated Gaussian process regression (GPR) with well-tempered metadynamics (WT-MTD) to efficiently map the free energy landscape of the Mg [...] Read more.
Free energy landscapes are pivotal for understanding molecular interactions in solution, yet their reconstruction in complex systems remains computationally demanding. In this study, we integrated Gaussian process regression (GPR) with well-tempered metadynamics (WT-MTD) to efficiently map the free energy landscape of the Mg2+-Cl ion pairing in an aqueous solution, a system central to biological processes such as magnesium hydration and ligand exchange. We compared traditional umbrella sampling (WHAM) with WT-MTD-derived free energy profiles, identifying critical discrepancies attributed to insufficient sampling in barrier regions. WT-MTD captures two distinct minima corresponding to the contact ion pair (CIP: 0.23 nm) and solvent-separated ion pair (SSIP: 0.47 nm) configurations, consistent with previous computational and experimental studies. GPR, trained on free energy gradients from WT-MTD trajectories, reconstructs smooth landscapes with small datasets (5000 points) while reducing computational costs via grid sparsification. Our results demonstrate that GPR hyperparameters can be optimized based on the insights from WT-MTD simulations, enabling accurate reconstructions even in sparse data regimes. This approach bridges computational efficiency with molecular-level resolution, offering a robust framework for studying ion solvation dynamics and hydration effects in complex systems, where this work is the first application of GPR in ionic solvation environments. The methodology’s scalability to multidimensional landscapes further underscores its potential for advancing molecular simulations in biochemistry and material science. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 6351 KB  
Article
Magnetic Resonance Imaging and X-Ray Imaging Properties of Ultrasmall Lanthanide Oxide (Ln = Eu, Gd, and Tb) Nanoparticles Synthesized via Thermal Decomposition
by Shuwen Liu, Tirusew Tegafaw, Son Long Ho, Huan Yue, Dejun Zhao, Ying Liu, Endale Mulugeta, Xiaoran Chen, Hansol Lee, Dabin Ahn, Ji-ung Yang, Ji Ae Park, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Molecules 2025, 30(12), 2519; https://doi.org/10.3390/molecules30122519 - 9 Jun 2025
Cited by 1 | Viewed by 612
Abstract
Owing to their 4f electrons and high atomic numbers, lanthanide (Ln) elements impart lanthanide oxide (Ln2O3) nanoparticles with excellent biomedical imaging properties. This study reports synthesis for three types of ultrasmall and monodisperse Ln2O3 nanoparticles (Ln [...] Read more.
Owing to their 4f electrons and high atomic numbers, lanthanide (Ln) elements impart lanthanide oxide (Ln2O3) nanoparticles with excellent biomedical imaging properties. This study reports synthesis for three types of ultrasmall and monodisperse Ln2O3 nanoparticles (Ln = Eu, Gd, and Tb) via thermal decomposition in oleylamine at 280 °C, followed by ligand exchange with citric acid (CA) to produce water-dispersible, CA-grafted Ln2O3 nanoparticles with high colloidal stability. The resulting CA-grafted Ln2O3 nanoparticles had average diameters of approximately 2 nm. We characterized their physicochemical properties, including in vitro cytotoxicity, magnetic resonance imaging properties (i.e., water proton spin relaxivities), and X-ray imaging properties (i.e., X-ray attenuation). Full article
(This article belongs to the Special Issue Advanced Magnetic Resonance Methods in Materials Chemistry Analysis)
Show Figures

Graphical abstract

13 pages, 1841 KB  
Article
A Heptacobalt(II/III) Dicubane Cluster with Polyoxometalate and Acetato Ligands: Synthesis, Crystal Structure, and Magnetic Properties
by Gonzalo Abellán-Dumont, Juan Modesto Clemente-Juan and Carlos Giménez-Saiz
Magnetochemistry 2025, 11(6), 48; https://doi.org/10.3390/magnetochemistry11060048 - 3 Jun 2025
Cited by 1 | Viewed by 888
Abstract
The new polyoxometalate [Co7(OH)6(H2O)2(CH3COO)4(PW9O34)2]13− (1) has been synthesized and characterized by IR, UV-Vis-NIR, TGA-TDA, X-ray single crystal analysis, and magnetic studies; 1 [...] Read more.
The new polyoxometalate [Co7(OH)6(H2O)2(CH3COO)4(PW9O34)2]13− (1) has been synthesized and characterized by IR, UV-Vis-NIR, TGA-TDA, X-ray single crystal analysis, and magnetic studies; 1 consists of two trilacunary heptadentate B-α-[PW9O34]9− ligands encapsulating a heptacobalt dicubane-like {CoII6CoIIIO8} core, in which the Co2+ ions are further coordinated by two water molecules and four acetate anions acting as monodentate ligands. The magnetic properties of 1 have been fitted according to an anisotropic exchange model in the low-temperature regime and discussed on the basis of ferromagnetic interactions between Co2+ ions with angles Co–L–Co (L = O, OH) close to orthogonality and weakly antiferromagnetic interactions between Co2+ ions connected through a central diamagnetic Co3+ ion. Full article
Show Figures

Graphical abstract

25 pages, 1746 KB  
Review
The Influence Mechanism of Dissolved Organic Matter on the Photocatalytic Oxidation of Pharmaceuticals and Personal Care Products
by Jie Wang, Minyi Zhu, Anli Sun, Rongfang Yuan, Huilun Chen and Beihai Zhou
Molecules 2025, 30(11), 2266; https://doi.org/10.3390/molecules30112266 - 22 May 2025
Cited by 1 | Viewed by 821
Abstract
With the worsening global water pollution crisis, pharmaceuticals and personal care products (PPCPs) have been increasingly detected in aquatic environments. The effective removal of PPCPs remains challenging for conventional water treatment technologies, whereas photocatalytic technology has shown distinct promise. Dissolved organic matter (DOM), [...] Read more.
With the worsening global water pollution crisis, pharmaceuticals and personal care products (PPCPs) have been increasingly detected in aquatic environments. The effective removal of PPCPs remains challenging for conventional water treatment technologies, whereas photocatalytic technology has shown distinct promise. Dissolved organic matter (DOM), a ubiquitous component of aquatic ecosystems, exerts multifaceted effects on the photocatalytic oxidation of PPCPs. In this article, the influence of DOM on the performance of various photocatalysts in PPCP removal is systematically summarized and analyzed. This review highlights DOM’s role in altering the migration and transformation of PPCPs via processes including adsorption and complexation. The adsorption of PPCPs on photocatalysts is achieved by competitive adsorption or by providing more adsorption sites. DOM modifies the structural properties of photocatalysts through mechanisms such as ligand exchange, intermolecular forces, electrostatic forces, and hydrophobic interactions. DOM inhibits the formation of active species via light attenuation and shielding effects while simultaneously enhancing their generation through photosensitization and electron transfer facilitation. In this review, the interaction mechanism among DOM, PPCPs, and photocatalysts within the PPCP photocatalytic oxidation system is expounded on. These findings provide novel insights into optimizing photocatalytic reaction conditions and enhancing treatment efficiency, while providing a theoretical foundation for advancing efficient, eco-friendly PPCPs remediation technologies. Full article
(This article belongs to the Special Issue Advanced Oxidation of Emerging Pollutants in Water)
Show Figures

Graphical abstract

11 pages, 4570 KB  
Article
Molecular-Level Regulation of Nitrogen-Doped Ordered Mesoporous Carbon Materials via Ligand Exchange Strategy
by Dandan Han, Zhen Quan, Congyuan Hu, Xiaopeng Wang, Lixia Wang, Ruige Li, Xia Sheng, Yanyan Liu, Meirong Song and Xianfu Zheng
Processes 2025, 13(5), 1558; https://doi.org/10.3390/pr13051558 - 18 May 2025
Viewed by 617
Abstract
Ordered mesoporous carbon materials (OMCMs) are widely used as high-performance electrode materials due to their uniform pore structure, excellent electrical conductivity, and good stability. In this paper, three OMCMs with controllable N content were prepared by a nanocasting method using Fe3O [...] Read more.
Ordered mesoporous carbon materials (OMCMs) are widely used as high-performance electrode materials due to their uniform pore structure, excellent electrical conductivity, and good stability. In this paper, three OMCMs with controllable N content were prepared by a nanocasting method using Fe3O4 nanocrystals as the template and organic ligands as the carbon source. By adopting a ligand exchange strategy, oleic acid, oleic amine, and octyl amine were successfully capped onto the Fe3O4 nanocrystals, respectively, which allowed the rational control of the elemental composition of OMCMs at the molecular level. Further characterizations revealed that the nitrogen content of the resulting OMCMs increased as the proportion of nitrogen atoms in the ligand increased, while the order of the porous structure decreased as the hydrocarbon chain length decreased. This study demonstrates that both the N-doping content and the order of the OMCMs are influenced by the N-containing ligand. This finding will provide a fundamental aspect for their further applications as high-performance electrode and catalytic materials in the field of electrochemistry. Full article
(This article belongs to the Special Issue Design and Performance Optimization of Heterogeneous Catalysts)
Show Figures

Figure 1

Back to TopTop