Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = light hydrocarbons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5128 KB  
Article
Effect of Drought and High-Light Stress on Volatile Compounds and Quality of Welsh Onion (Allium fistulosum L.)
by Xuena Liu, Zijing Chen, Kun Xu and Kang Xu
Agronomy 2025, 15(10), 2349; https://doi.org/10.3390/agronomy15102349 - 6 Oct 2025
Viewed by 54
Abstract
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized [...] Read more.
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized LED-intelligent spectral-customized lamps to simulate high-light stress and a 10% PEG-6000 Hoagland solution to simulate drought stress. The effects of different stress treatments on the nutritional quality, volatile compounds, and mineral element composition of the edible portions were systematically analyzed. The results demonstrated that drought stress significantly promoted the accumulation of alcoholic compounds in leaf tissues while reducing the content of sulfur-containing compounds. High-light stress markedly increased the levels of hydrocarbon compounds in leaves. Sulfur-containing compounds in leaf tissues were predominantly disulfides, but under combined drought and high-light stress, their content decreased, while the proportion of trisulfides significantly increased. Volatile compounds in pseudostems were primarily composed of sulfur-containing and aldehyde compounds, yet their levels markedly declined under combined stress. Additionally, combined stress led to reductions in pyruvic acid, soluble sugars, and soluble protein content in the edible portions, while the crude fiber content increased, thereby significantly impairing nutritional quality. This study provides a scientific basis for understanding the abiotic stress response mechanisms of Welsh onion and offers valuable insights for cultivation management and quality regulation. Full article
Show Figures

Figure 1

17 pages, 896 KB  
Article
Photocatalytic Remediation of Carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) Using UV/FeCl3 in Industrial Soil
by Mohamed Hamza EL-Saeid, Abdulaziz G. Alghamdi, Zafer Alasmary and Thawab M. Al-Bugami
Catalysts 2025, 15(10), 956; https://doi.org/10.3390/catal15100956 - 5 Oct 2025
Viewed by 244
Abstract
Currently, the potential environmental concerns around the world for polycyclic aromatic hydrocarbon carcinogenic (PAHCs) contamination as carcinogenic compounds in industrial soils (automobile industry) are rising day by day. At present, the technology of treating contaminated soils using photocatalysts is commonly used; however, this [...] Read more.
Currently, the potential environmental concerns around the world for polycyclic aromatic hydrocarbon carcinogenic (PAHCs) contamination as carcinogenic compounds in industrial soils (automobile industry) are rising day by day. At present, the technology of treating contaminated soils using photocatalysts is commonly used; however, this study tested photolysis and photocatalysis through ultraviolet light (306 nm) due to its high treatment efficiency. FeCl3 (0.3, 0.4 M) was used as an iron catalyst for each treatment in the presence of H2O2 (10%, 20%) as an oxidizing agent. The impact of light treatment on soils that contained various concentrations of PAHCs like naphthalene (NAP), chrysene (CRY), benzo(a) pyrene (BaP), indeno (1,2,3-cd) pyrene (IND) was investigated. The QuEChERS method was used to extract PAHCs, and a gas chromatograph mass spectrometer (GCMSMS) was used to determine concentration. The concentrations of PAHCs were measured for soils at intervals of every 2 h after exposure to ultraviolet rays. The results showed a decrease in PAHCs concentrations with increased exposure to UV irradiation, as the initial values were 26.8 ng/g (NAP), 97 ng/g (CRY), 9.1 ng/g (BaP) and 9.7 ng/g (IND), which decreased to 2.17 ng/g (NAP), 3.14 ng/g (CRY), 0.33 ng/g (BaP) and 0.46 ng/g (IND) at 20, 40, 30 and 40 h of UV exposure; moreover, with an increase in concentration of the catalyst (0.4 M FeCl3 with 20% H2O2), NAP, CRY, BaP and IND became undetectable at 8, 26, 14 and 20 h, respectively. It was concluded that a significant effect of ultraviolet rays on the photolysis of PAHCs, along with Photovoltaic at 306 nm wavelength, was observed while using FeCl3 (0.4 M) combined with H2O2 (20%) produced better results in a shorter time compared to FeCl3 (0.3 M) with H2O2 (10%). Full article
(This article belongs to the Special Issue Advances in Photocatalytic Wastewater Purification, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 5074 KB  
Article
Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance
by Congyu Cai, Yufeng Sun, Yulan Xiao, Weiye Zheng, Minhui Pan and Weiwei Wang
Molecules 2025, 30(19), 3980; https://doi.org/10.3390/molecules30193980 - 4 Oct 2025
Viewed by 179
Abstract
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 [...] Read more.
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 reduction activity. The optimized catalyst exhibits CH4 and CO production rates that are 3.3 and 4.9 times higher, respectively, than those of pristine ZnFe2O4 over 6 h. This significant enhancement in photocatalytic performance is attributed to the Type-II band alignment, which not only broadens light absorption but also greatly promotes efficient charge separation. It is corroborated by a series of experimental evidence: a two-fold enhancement in photocurrent response, a 15.1% reduction in PL intensity, decreased electrochemical impedance, and an extended charge carrier lifetime. Furthermore, in situ FTIR spectroscopy confirms that the heterojunction facilitates the formation of key intermediates (specifically *COOH and HCOO). This study highlights the importance of precise interface design based on a Type-II heterojunction in heterostructured composite catalysts and provides mechanistic insights for developing highly efficient CO2 photoreduction systems. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 2201 KB  
Article
Performance and Emission Characteristics of n-Pentanol–Diesel Blends in a Single-Cylinder CI Engine
by Doohyun Kim, Jeonghyeon Yang and Jaesung Kwon
Energies 2025, 18(19), 5083; https://doi.org/10.3390/en18195083 - 24 Sep 2025
Viewed by 361
Abstract
This work provides a systematic evaluation of the performance and regulated emissions of binary n-pentanol–diesel blends under steady-state conditions, thereby clarifying condition-dependent efficiency–emission trade-offs across multiple loads and speeds. A single-cylinder, air-cooled diesel engine was operated at two speeds (1700 and 2700 rpm) [...] Read more.
This work provides a systematic evaluation of the performance and regulated emissions of binary n-pentanol–diesel blends under steady-state conditions, thereby clarifying condition-dependent efficiency–emission trade-offs across multiple loads and speeds. A single-cylinder, air-cooled diesel engine was operated at two speeds (1700 and 2700 rpm) and four brake mean effective pressure (BMEP) levels (0.25–0.49 MPa) using commercial diesel (D100) and three n-pentanol–diesel blends at volume ratios of 10%, 30%, and 50% (designated D90P10, D70P30, and D50P50, respectively). Brake thermal efficiency (BTE), brake specific energy consumption (BSEC), and brake specific fuel consumption (BSFC) were measured alongside exhaust emissions of nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2), and smoke opacity. The results show that due to a lower cetane number, high latent heat of vaporization, and reduced heating value, n-pentanol blends incur efficiency and fuel consumption penalties at light to moderate loads. However, these disadvantages diminish or reverse at high loads and speeds: D50P50 surpasses D100 in BTE and matches or improves BSEC and BSFC at 2700 rpm and 0.49 MPa. Emission data reveal that the blend’s fuel-bound oxygen and enhanced mixing provide up to 16% NOx reduction; 35% and 45% reductions in CO and HC, respectively; and a 74% reduction in smoke opacity under demanding conditions, while CO2 per unit work output aligns with or falls below D100 at high load. These findings demonstrate that optimized n-pentanol–diesel blends can simultaneously improve efficiency and mitigate emissions, offering a practical pathway for low-carbon diesel engines. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

33 pages, 12070 KB  
Review
Hybrid Electrospun Conductive Nanofibers for Emerging Organic Contaminants’ Degradation in Visible Light Photocatalysis: A Review
by Maria Râpă, Badriyah Alhalaili, Florin Aurel Dincă, Andra Mihaela Predescu, Ecaterina Matei and Ruxandra Vidu
Int. J. Mol. Sci. 2025, 26(18), 9055; https://doi.org/10.3390/ijms26189055 - 17 Sep 2025
Viewed by 353
Abstract
Emerging organic contaminants (EOCs), including polychlorinated bisphenyls (PCBs), pharmaceuticals, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAH), and dyes, are among the most hazardous pollutants found in water bodies and sediments. These substances pose serious threats to the environment and human health due [...] Read more.
Emerging organic contaminants (EOCs), including polychlorinated bisphenyls (PCBs), pharmaceuticals, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAH), and dyes, are among the most hazardous pollutants found in water bodies and sediments. These substances pose serious threats to the environment and human health due to their high toxicity, long-range mobility, and bioaccumulation potential. Although various methods for degradation of organic pollutants exist, photocatalysis using ultraviolet (UV) and visible light (VIS) has emerged as a promising approach. However, its practical applications remain limited due to challenges such as the use of powdered photocatalysts, which complicates their removal and recycling in industrial settings, and the restricted solar availability of UV light (~4% of the solar spectrum). This review investigates the effectiveness of hybrid electrospun conductive polymer nanofibers on metal oxide photocatalysts such as TiO2 and ZnO (including doped and co-doped forms) and fabricated via mono- or coaxial electrospinning, in the degradation of EOCs in water under visible light. Furthermore, strategies to enhance the fabrication of these hybrid electrospun conductive nanofibers as visible-light-responsive photocatalysts, such as the inclusion of dopants and/or plasmonic materials, are discussed. Finally, the current challenges and future research directions related to electrospun nanofibers combined with photocatalysts for the degradation of EOCs in water treatment applications are outlined. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Nanoscience)
Show Figures

Figure 1

21 pages, 32034 KB  
Article
Fluid Properties, Charging Stages, and Hydrocarbon Accumulation Process in the Pinghu Oil and Gas Field, Xihu Sag, East China Sea Shelf Basin
by Yang Liu, Zhiwei Zeng, Chenyu Yang, Wenfeng Li, Hui Hu, Jinglin Chen, Meng Wei and Weimin Guo
J. Mar. Sci. Eng. 2025, 13(9), 1730; https://doi.org/10.3390/jmse13091730 - 8 Sep 2025
Viewed by 372
Abstract
The Pinghu Oil and Gas Field in the East China Sea Shelf Basin represents a significant offshore hydrocarbon-producing region in East Asia. However, the Paleogene hydrocarbon system in the Pinghu Oil and Gas Field is complex, and the fluid properties, charging stages, and [...] Read more.
The Pinghu Oil and Gas Field in the East China Sea Shelf Basin represents a significant offshore hydrocarbon-producing region in East Asia. However, the Paleogene hydrocarbon system in the Pinghu Oil and Gas Field is complex, and the fluid properties, charging stages, and hydrocarbon accumulation process are still unclear. A comprehensive integrated analysis of the hydrocarbon accumulation characteristics, fluid properties, temperature pressure regimes, primary hydrocarbon sources and origins (genesis), charging stages, preservation conditions, and evolutionary history of hydrocarbon accumulation have been studied by utilizing a series of well data, oil and gas geochemical parameters, carbon isotope, and fluid inclusion analyses. Hydrocarbon charging in the Huagang Formation experienced one stage, and the crude oil is characterized as light and conventional, exhibiting low density and viscosity, a low pour point, and low contents of wax, resin, and sulfur. In contrast, the reservoir of the overpressured Pinghu Formation experienced a two-stage hydrocarbon charging process (oil filling and gas filling), exhibiting higher density, viscosity, and wax content compared to the Huagang Formation. The hydrocarbon charging and evolution process of the Pinghu Formation and Huagang Formation in the Pinghu Oil and Gas Field can be summarized in three different stages, including the oil filling period (10–5 Ma), gas filling period (5–2 Ma), and oil and gas adjustment period. The Pinghu Oil and Gas Field, especially in the lower Pinghu Slope Belt (Fangheting Structure), has good potential for further exploration. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

29 pages, 1200 KB  
Review
Microbiota-Derived Tryptophan Metabolite Indole-3-Propionic Acid-Emerging Role in Neuroprotection
by Maja Owe-Larsson, Dominik Drobek, Paulina Iwaniak, Renata Kloc, Ewa M. Urbanska and Mirosława Chwil
Molecules 2025, 30(17), 3628; https://doi.org/10.3390/molecules30173628 - 5 Sep 2025
Viewed by 1979
Abstract
In recent years, gut–brain axis signaling has been recognized as an essential factor modifying behavior, mood, cognition, and cellular viability under physiological and pathological conditions. Consequently, the intestinal microbiome has become a potential therapeutic target in neurological and psychiatric disorders. The microbiota-derived metabolite [...] Read more.
In recent years, gut–brain axis signaling has been recognized as an essential factor modifying behavior, mood, cognition, and cellular viability under physiological and pathological conditions. Consequently, the intestinal microbiome has become a potential therapeutic target in neurological and psychiatric disorders. The microbiota-derived metabolite of tryptophan (Trp), indole-3-propionic acid (IPA), was discovered to target a number of molecular processes and to impact brain function. In this review, we outline the key mechanisms by which IPA may affect neuronal activity and survival and provide an update on the evidence supporting the neuroprotective action of the compound in various experimental paradigms. Accumulating data indicates that IPA is a free radical scavenger, a ligand of aryl hydrocarbon receptors (AhR) and pregnane X receptors (PXR), and an anti-inflammatory molecule. IPA decreases the synthesis of the proinflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-α (TNF-α), and other cytokines, reduces the generation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and enhances the synthesis of neurotrophic factors. Furthermore, produced in the gut, or administered orally, IPA boosts the central levels of kynurenic acid (KYNA), a neuroprotective metabolite of Trp. IPA reduces the release of proinflammatory molecules in the gut, breaking the gut–inflammation–brain vicious cycle, which otherwise leads to neuronal loss. Moreover, as a molecule that easily enters central compartment, IPA may directly impact brain function and cellular survival. Overall, the gathered data confirms neuroprotective features of IPA, and supports its potential use in high-risk populations, in order to delay the onset and ameliorate the course of neurodegenerative disorders and cognitive impairment. Clinical trials evaluating IPA as a promising therapeutic add-on, able to slow down the progress of neurodegenerative disorders such as Alzheimer’s or Parkinson’s disease and to limit the morphological and behavioral consequences of ischemic stroke, are urgently needed. Full article
(This article belongs to the Special Issue Natural Products and Microbiology in Human Health)
Show Figures

Figure 1

35 pages, 28133 KB  
Article
Modeling of Hydrocarbon Migration and Hydrocarbon-Phase State Behavior Evolution Process Simulation in Deep-Ultradeep Reservoirs of the Mo-Yong Area, Junggar Basin
by Bingbing Xu, Yuhong Lei, Likuan Zhang, Naigui Liu, Chao Li, Yan Li, Yuedi Jia, Jinduo Wang and Zhiping Zeng
Appl. Sci. 2025, 15(17), 9694; https://doi.org/10.3390/app15179694 - 3 Sep 2025
Viewed by 573
Abstract
To elucidate the mechanisms governing hydrocarbon accumulation and phase evolution in the deep–ultradeep reservoirs of the Mo-Yong area, this study integrated 2D basin modeling and multi-component phase state simulation techniques, investigating the differences in maturity and hydrocarbon generation history between the Fengcheng Formation [...] Read more.
To elucidate the mechanisms governing hydrocarbon accumulation and phase evolution in the deep–ultradeep reservoirs of the Mo-Yong area, this study integrated 2D basin modeling and multi-component phase state simulation techniques, investigating the differences in maturity and hydrocarbon generation history between the Fengcheng Formation (P1f) and the Lower Wuerhe Formation (P2w) source rocks, as well as their coupling relationship with fault activity in controlling hydrocarbon migration, accumulation, and phase evolution. The results indicate that the P1f and P2w in the Mo-Yong area source rocks differ in thermal maturity and hydrocarbon generation evolution. The dual-source charging from both the P1f and P2w significantly enhances hydrocarbon accumulation number, volume, and saturation. The temporal-spatial coupling between peak hydrocarbon generation and multi-stage fault reactivation not only facilitates extra-source accumulation but also drives condensate reservoir formation through gas-oil ratio elevation and light-component enrichment. Based on these results, a model of hydrocarbon accumulation and phase evolution of deep reservoirs was proposed. The model elucidates the fundamental geological principle that source-fault spatiotemporal coupling controls hydrocarbon enrichment degree, while phase differentiation determines reservoir fluid types. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

11 pages, 2829 KB  
Article
Low-Cost, LED-Based Photoacoustic Spectrophone Using Hemispherical Acoustic Resonant Cavity for Measurement of Hydrocarbon Gases
by Gaoxuan Wang, Lingxiao Hou, Fangjun Li, Lihui Wang, Chao Fei, Xiaojian Hong and Sailing He
Atmosphere 2025, 16(9), 1012; https://doi.org/10.3390/atmos16091012 - 28 Aug 2025
Viewed by 600
Abstract
Spherical acoustic resonant cavities have been increasingly reported in photoacoustic spectroscopy due to their small volume and enhanced effective gas absorption path length. For further reducing the acoustic cavity volume and exploiting broadband LED as a light source, this paper reports a low-cost, [...] Read more.
Spherical acoustic resonant cavities have been increasingly reported in photoacoustic spectroscopy due to their small volume and enhanced effective gas absorption path length. For further reducing the acoustic cavity volume and exploiting broadband LED as a light source, this paper reports a low-cost, LED-based photoacoustic gas-sensing system using a hemispherical acoustic resonant (HAR) cavity with a radius of 15 mm and a volume of 7.07 mL. The placement of both the excitation light source and transducer, as important elements in photoacoustic spectroscopy, was systematically optimized for improving the generation efficient of photoacoustic signal. The frequency response of the HAR cavity was thoroughly characterized for exploring an optimal operation frequency of the light source. Through positional and frequency optimization, the developed low-cost, LED-based photoacoustic spectrophone realized highly sensitive measurements of hydrocarbon gases with measurement sensitivities of 111.6 ppm (3σ) for isobutane, 140.1 ppm (3σ) for propane, and 866.4 ppm (3σ) for ethylene at an integration time of 1 s. These results demonstrate the strong potential of low-cost, LED-HAR-based PA-sensing systems in the field of gas sensing for widespread deployment in distributed sensor networks and atmospheric monitoring platforms. Full article
Show Figures

Figure 1

21 pages, 2947 KB  
Article
Effect of Fe on Co-Based SiO2Al2O3 Mixed Support Catalyst for Fischer–Tropsch Synthesis in 3D-Printed SS Microchannel Microreactor
by Meric Arslan, Sujoy Bepari, Juvairia Shajahan, Saif Hassan and Debasish Kuila
Molecules 2025, 30(17), 3486; https://doi.org/10.3390/molecules30173486 - 25 Aug 2025
Viewed by 901
Abstract
This research explores the effect of a composite support of SiO2 and Al2O3 with Fe and Co incorporated as catalysts for Fischer–Tropsch synthesis (FTS) using a 3D-printed stainless steel (SS) microchannel microreactor. Two mesoporous catalysts, FeCo/SiO2Al2 [...] Read more.
This research explores the effect of a composite support of SiO2 and Al2O3 with Fe and Co incorporated as catalysts for Fischer–Tropsch synthesis (FTS) using a 3D-printed stainless steel (SS) microchannel microreactor. Two mesoporous catalysts, FeCo/SiO2Al2O3 and Co/SiO2Al2O3, were synthesized via a one-pot (OP) method and extensively characterized using N2 physisorption, XRD, SEM, TEM, H2-TPR, TGA-DSC, FTIR, and XPS. H2-TPR results revealed that the synthesis method significantly affected the reducibility of metal oxides, thereby influencing the formation of active FTS sites. SEM-EDS and TEM further revealed a well-defined hexagonal matrix with a porous surface morphology and uniform metal ion distribution. FTS reactions, carried out in the 200–350 °C temperature range at 20 bar with a H2/CO molar ratio of 2:1, exhibited the highest activity for FeCo/SiO2Al2O3, with up to 80% CO conversion. Long-term stability was evaluated by monitoring the catalyst performance for 30 h on stream at 320 °C under identical reaction conditions. The catalyst was initially active for the methanation reaction for up to 15 h, after which the selectivity for CH4 declined. Correspondingly, the C4+ selectivity increased after 15 h of time-on-stream, indicating a shift in the product distribution toward longer-chain hydrocarbons. This trend suggests that the catalyst undergoes gradual activation or restructuring under reaction conditions, which enhances chain growth over time. The increase in C4+ products may be attributed to the stabilization of the active sites and suppression of methane or light hydrocarbon formation. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

31 pages, 4081 KB  
Review
Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design
by Bingqing Chang, Xin Liu, Xianghai Song, Yangyang Yang, Jisheng Zhang, Weiqiang Zhou and Pengwei Huo
Catalysts 2025, 15(8), 782; https://doi.org/10.3390/catal15080782 - 16 Aug 2025
Cited by 1 | Viewed by 1112
Abstract
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly [...] Read more.
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly convert CO2 into high-value-added hydrocarbon fuels and to use solar energy, a clean energy source, to drive the reaction. However, traditional semiconductor catalysts generally suffer from insufficient activity and poor product selectivity in the actual reaction, which cannot meet the requirements of practical applications. In recent years, sulfur vacancy, as an effective material modulation strategy, has demonstrated a remarkable role in enhancing photocatalytic performance. This paper reviews a series of research reports on sulfur vacancies in recent years, introduces the methods of preparing sulfur vacancies, and summarizes the commonly used characterization methods of sulfur vacancies. Finally, the mechanism of introducing sulfur vacancies to promote CO2 reduction is discussed, which improves the photocatalytic activity and selectivity by enhancing light absorption, facilitating carrier separation, improving CO2 adsorption and activation, and promoting the stability of reaction intermediates. This review aims to provide theoretical support for an in-depth understanding of the role of sulfur vacancies in photocatalytic systems and to provide a view on the future direction and potential challenges of sulfur vacancies. Full article
(This article belongs to the Special Issue Catalytic Carbon Emission Reduction and Conversion in the Environment)
Show Figures

Graphical abstract

19 pages, 1610 KB  
Article
Utilization of Iron Foam as Structured Catalyst for Fischer–Tropsch Synthesis
by Yira Victoria Hurtado, Ghazal Azadi, Eduardo Lins de Barros Neto and Jean-Michel Lavoie
Fuels 2025, 6(3), 60; https://doi.org/10.3390/fuels6030060 - 14 Aug 2025
Viewed by 713
Abstract
This work focuses on the fabrication, characterization, and performance of a structured iron catalyst to produce hydrocarbons by the Fischer–Tropsch synthesis (FTS). The structured catalyst enhances the heat and mass transfer and provides a larger surface area and lower pressure drop. Iron-based structured [...] Read more.
This work focuses on the fabrication, characterization, and performance of a structured iron catalyst to produce hydrocarbons by the Fischer–Tropsch synthesis (FTS). The structured catalyst enhances the heat and mass transfer and provides a larger surface area and lower pressure drop. Iron-based structured catalysts indicate more activity in lower H2/CO ratios and improve carbon conversion as compared to other metals. These catalysts were manufactured using the sponge replication method (powder metallurgy). The performance of the structured iron catalyst was assessed in a fixed-bed reactor under industrially relevant conditions (250 °C and 20 bar). The feed gas was a synthetic syngas with a H2/CO ratio of 1.2, simulating a bio-syngas derived from lignocellulosic biomass gasification. Notably, the best result was reached under these conditions, obtaining a CO conversion of 84.8% and a CH4 selectivity of 10.4%, where the catalyst exhibited a superior catalytic activity and selectivity toward desired hydrocarbon products, including light olefins and long-chain paraffins. The resulting structured catalyst reached a one-pass CO conversion of 84.8% with a 10.4% selectivity to CH4 compared to a traditionally produced catalyst, for which the conversion was 18% and the selectivity was 19%, respectively. The results indicate that the developed structured iron catalyst holds considerable potential for efficient and sustainable hydrocarbon production, mainly C10–C20 (diesel-range hydrocarbons), via Fischer–Tropsch synthesis. The catalyst’s excellent performance and improved stability and selectivity offer promising prospects for its application in commercial-scale hydrocarbon synthesis processes. Full article
Show Figures

Figure 1

23 pages, 4165 KB  
Article
Structural and Functional Effects of the Interaction Between an Antimicrobial Peptide and Its Analogs with Model Bacterial and Erythrocyte Membranes
by Michele Lika Furuya, Gustavo Penteado Carretero, Marcelo Porto Bemquerer, Sumika Kiyota, Magali Aparecida Rodrigues, Tarcillo José de Nardi Gaziri, Norma Lucia Buritica Zuluaga, Danilo Kiyoshi Matsubara, Marcio Nardelli Wandermuren, Karin A. Riske, Hernan Chaimovich, Shirley Schreier and Iolanda Midea Cuccovia
Biomolecules 2025, 15(8), 1143; https://doi.org/10.3390/biom15081143 - 7 Aug 2025
Viewed by 655
Abstract
Antimicrobial peptides (AMPs) are a primary defense against pathogens. Here, we examined the interaction of two BP100 analogs, R2R5-BP100 (where Arg substitutes Lys 2 and 5) and R2R5-BP100-A-NH-C16 (where an Ala and a C [...] Read more.
Antimicrobial peptides (AMPs) are a primary defense against pathogens. Here, we examined the interaction of two BP100 analogs, R2R5-BP100 (where Arg substitutes Lys 2 and 5) and R2R5-BP100-A-NH-C16 (where an Ala and a C16 hydrocarbon chain are added to the R2R5-BP100 C-terminus), with membrane models. Large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs) were prepared with the major lipids in Gram-positive (GP) and Gram-negative (GN) bacteria, as well as red blood cells (RBCs). Fluorescence data, dynamic light scattering (DLS), and zeta potential measurements revealed that upon achieving electroneutrality through peptide binding, vesicle aggregation occurred. Circular dichroism (CD) spectra corroborated these observations, and upon vesicle binding, the peptides acquired α-helical conformation. The peptide concentration, producing a 50% release of carboxyfluorescein (C50) from LUVs, was similar for GP-LUVs. With GN and RBC-LUVs, C50 decreased in the following order: BP100 > R2R5-BP100 > R2R5BP100-A-NH-C16. Optical microscopy of GP-, GN-, and RBC-GUVs revealed the rupture or bursting of the two former membranes, consistent with a carpet mechanism of action. Using GUVs, we confirmed RBC aggregation by BP100 and R2R5-BP100. We determined the minimal inhibitory concentrations (MICs) of peptides for a GN bacterium (Escherichia coli (E. coli)) and two GP bacteria (two strains of Staphylococcus aureus (S. aureus) and one strain of Bacillus subtilis (B. subtilis)). The MICs for S. aureus were strain-dependent. These results demonstrate that Lys/Arg replacement can improve the parent peptide’s antimicrobial activity while increasing hydrophobicity renders the peptide less effective and more hemolytic. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Graphical abstract

20 pages, 4663 KB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 413
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

23 pages, 3243 KB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 780
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

Back to TopTop