Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (545)

Search Parameters:
Keywords = linear matrix inequality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 854 KB  
Article
An Event-Triggered Observer-Based Control Approach for Enhancing Resilience of Cyber–Physical Systems Under Markovian Cyberattacks
by Eya Hassine, Assem Thabet, Noussaiba Gasmi and Ghazi Bel Haj Frej
Actuators 2025, 14(8), 412; https://doi.org/10.3390/act14080412 - 21 Aug 2025
Viewed by 120
Abstract
This paper presents a resilient observer-based and event-triggered control scheme for discrete-time Cyber–Physical Systems (CPS) under Markovian Cyber-Attacks (MCA). The proposed framework integrates a Luenberger observer for cyberattack detection with a state-feedback controller designed to preserve system stability in the presence of Denial-of-Service [...] Read more.
This paper presents a resilient observer-based and event-triggered control scheme for discrete-time Cyber–Physical Systems (CPS) under Markovian Cyber-Attacks (MCA). The proposed framework integrates a Luenberger observer for cyberattack detection with a state-feedback controller designed to preserve system stability in the presence of Denial-of-Service (DoS) and False Data Injection (FDI) attacks. Attack detection is achieved through residual signal generation combined with Markovian modeling of the attack dynamics. System stability is guaranteed by formulating relaxed Linear Matrix Inequality (LMI) conditions that incorporate relaxation variables, a diagonal Lyapunov function, the S-procedure, and congruence transformations. Moreover, the Event-Triggered Mechanism (ETM) efficiently reduces communication load without degrading control performance. Numerical simulations conducted on a three-tank system benchmark confirm enhanced detection accuracy, faster recovery, and strong robustness against uncertainties. Full article
Show Figures

Figure 1

28 pages, 5564 KB  
Article
Virtual Model Development and Control for an EV3 BallBot Robotic System
by Gerardo Escandon-Esparza and Francisco Jurado
Processes 2025, 13(8), 2616; https://doi.org/10.3390/pr13082616 - 18 Aug 2025
Viewed by 495
Abstract
In this paper, the virtual model development and control for a BallBot Robotic System (BRS) are addressed. A virtual three-dimensional (3-D) EV3 BRS (EV3BRS) model is here developed through the Simscape Multibody environment from a BRS designed using the kit LEGO [...] Read more.
In this paper, the virtual model development and control for a BallBot Robotic System (BRS) are addressed. A virtual three-dimensional (3-D) EV3 BRS (EV3BRS) model is here developed through the Simscape Multibody environment from a BRS designed using the kit LEGO® MINDSTORMS® EV3. The mathematical model from the BRS is obtained through the Euler–Lagrange approach and used as the foundation to develop the EV3BRS Simscape model. The electrical model for the motors is derived through Kirchhoff’s laws. To verify the dynamics of the EV3BRS Simscape model, a Takagi–Sugeno Fuzzy Controller (TSFC) is designed using the Parallel Distributed Compensation (PDC) technique. Control gains are computed via Linear Matrix Inequalities (LMIs). To test the EV3BRS Simscape model under disturbances, an input voltage anomaly is considered. So, adding an H attenuation to the TSFC ensures that the EV3BRS Simscape model faces these kind of anomalies. Simulation results confirm that the TSFC with H attenuation improves the performance under anomalies at the input in contrast with the nominal TSFC, although this latter can maintain the body of the system near the upright position also. The dynamics from the EV3BRS Simscape model here developed allow us to realize how the real system will behave. Full article
(This article belongs to the Special Issue Modeling and Simulation of Robot Intelligent Control System)
Show Figures

Figure 1

14 pages, 653 KB  
Article
Bipartite Synchronization of Cooperation–Competition Neural Networks Using Asynchronous Sampling Scheme
by Shuxian Fan, Yongjie Shi and Zhongliang Wei
Axioms 2025, 14(8), 625; https://doi.org/10.3390/axioms14080625 - 11 Aug 2025
Viewed by 206
Abstract
This paper investigates the bipartite synchronization problem for cooperation–competition neural networks (CCNNs) under asynchronous sampling control. First, using signed graph theory to characterize the interrelationships between cooperation and competition, a mathematical model for cooperative–competitive neural networks is established. To formulate the error systems [...] Read more.
This paper investigates the bipartite synchronization problem for cooperation–competition neural networks (CCNNs) under asynchronous sampling control. First, using signed graph theory to characterize the interrelationships between cooperation and competition, a mathematical model for cooperative–competitive neural networks is established. To formulate the error systems of such networks, a Laplacian matrix with zero row sum is derived through coordinate transformation techniques. Considering network complexity and deception attack impacts, an asynchronous sampling-based secure control scheme is designed while preserving performance guarantees. By relaxing positive definiteness constraints, a class of looped functionals is introduced. State norm estimations are utilized to derive criteria for achieving bipartite synchronization. The feedback gain matrices of the asynchronous sampling controller are obtained by solving linear matrix inequalities. Finally, numerical simulations validate the effectiveness of the proposed method. Full article
(This article belongs to the Section Mathematical Analysis)
Show Figures

Figure 1

11 pages, 324 KB  
Article
Controller Design for Continuous-Time Linear Control Systems with Time-Varying Delay
by Hongli Yang, Lijuan Yang and Ivan Ganchev Ivanov
Mathematics 2025, 13(15), 2519; https://doi.org/10.3390/math13152519 - 5 Aug 2025
Viewed by 293
Abstract
This paper addresses the controller design problem for linear systems with time-varying delays. By constructing a novel Lyapunov–Krasovskii functional incorporating delay-partitioning techniques, we establish delay-dependent stability criteria for the solvability of the robust stabilization problem. The derived conditions are formulated as linear matrix [...] Read more.
This paper addresses the controller design problem for linear systems with time-varying delays. By constructing a novel Lyapunov–Krasovskii functional incorporating delay-partitioning techniques, we establish delay-dependent stability criteria for the solvability of the robust stabilization problem. The derived conditions are formulated as linear matrix inequalities (LMIs) that become affine upon fixing a single scalar parameter, thereby facilitating efficient numerical computation. Furthermore, these criteria guarantee that the reachable set of the closed-loop system remains bounded within a prescribed ellipsoid under zero initial conditions. The effectiveness and superiority of the proposed approach are demonstrated through two comparative numerical examples, including a benchmark problem with varying delay. Full article
(This article belongs to the Special Issue Control Theory and Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 861 KB  
Article
Observer-Based Exponential Stability Control of T-S Fuzzy Networked Systems with Varying Communication Delays
by Hejun Yao and Fangzheng Gao
Mathematics 2025, 13(15), 2513; https://doi.org/10.3390/math13152513 - 5 Aug 2025
Viewed by 194
Abstract
This paper is concerned with the problem of dynamic output feedback exponential stability control of T-S fuzzy networked control systems (NCSs) with varying communication delays. First, with consideration of varying communication delays, a new model of the networked systems is established by using [...] Read more.
This paper is concerned with the problem of dynamic output feedback exponential stability control of T-S fuzzy networked control systems (NCSs) with varying communication delays. First, with consideration of varying communication delays, a new model of the networked systems is established by using the T-S fuzzy method, and a state observer is designed to estimate the unknown control disturbance. Then, a delay-dependent exponential stability criterion of closed-loop systems is derived by means of iterative technique and multiple augmented Lyapnov functionals and the linear matrix inequality (LMI) method. Furthermore, an observer-based controller is explicitly constructed to realize exponential stability control for this class of NCSs. An iterative algorithm is developed to compute the controller’s matrix by means of the Cone Complementarity Linearization Method (CCLM). Lastly, the validity and feasibility of the proposed exponential stability criterion are confirmed via a numerical simulation example. Full article
Show Figures

Figure 1

22 pages, 2449 KB  
Article
Tracking Consensus for Nonlinear Multi-Agent Systems Under Asynchronous Switching and Undirected Topology
by Shanyan Hu and Mengling Wang
Sensors 2025, 25(15), 4760; https://doi.org/10.3390/s25154760 - 1 Aug 2025
Viewed by 451
Abstract
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to [...] Read more.
This paper investigates the tracking consensus of nonlinear multi-agent systems under undirected topology, considering asynchronous switching caused by delays between communication topology switching and controller switching. First, by using the properties of undirected topology graphs, the controller design process is simplified. Then, to address asynchronous delays during topology switching, the system operation is divided into synchronized and delayed modes based on the status of the controller and topology. Every operating mode has a corresponding control strategy. To alleviate the burden of communication and computation, an event-triggered mechanism (ETM) is introduced to reduce the number of controller updates. By constructing an augmented Lyapunov function that incorporates both matching and mismatching periods, sufficient conditions ensuring system stability are established. The required controller based on the dynamic ETM is obtained by solving Linear Matrix Inequalities (LMIs). Finally, a simulation example is conducted to verify its effectiveness. Full article
Show Figures

Figure 1

20 pages, 484 KB  
Article
Design of Extended Dissipative Approach via Memory Sampled-Data Control for Stabilization and Its Application to Mixed Traffic System
by Wimonnat Sukpol, Vadivel Rajarathinam, Porpattama Hammachukiattikul and Putsadee Pornphol
Mathematics 2025, 13(15), 2449; https://doi.org/10.3390/math13152449 - 29 Jul 2025
Viewed by 259
Abstract
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity [...] Read more.
This study examines the extended dissipativity analysis for newly designed mixed traffic systems (MTSs) utilizing the coupling memory sampled-data control (CMSDC) approach. The traffic flow creates a platoon, and the behavior of human-driven vehicles (HDVs) is presumed to adhere to the optimal velocity model, with the acceleration of a single-linked automated vehicle regulated directly by a suggested CMSDC. The ultimate objective of this work is to present a CMSDC approach for optimizing traffic flow amidst disruptions. The primary emphasis is on the proper design of the CMSDC to ensure that the closed-loop MTS is extended dissipative and quadratically stable. A more generalized CMSDC methodology incorporating a time delay effect is created using a Bernoulli-distributed sequence. The existing Lyapunov–Krasovskii functional (LKF) and enhanced integral inequality methods offer sufficient conditions for the suggested system to achieve an extended dissipative performance index. The suggested criteria provide a comprehensive dissipative study, evaluating L2L, H, passivity, and dissipativity performance. A simulation example illustrates the accuracy and superiority of the proposed controller architecture for the MTS. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization for Transportation Systems)
Show Figures

Figure 1

20 pages, 873 KB  
Article
A Mixed Finite Volume Element Method for Nonlinear Time Fractional Fourth-Order Reaction–Diffusion Models
by Jie Zhao, Min Cao and Zhichao Fang
Fractal Fract. 2025, 9(8), 481; https://doi.org/10.3390/fractalfract9080481 - 23 Jul 2025
Viewed by 258
Abstract
In this paper, a linearized mixed finite volume element (MFVE) scheme is proposed to solve the nonlinear time fractional fourth-order reaction–diffusion models with the Riemann–Liouville time fractional derivative. By introducing an auxiliary variable σ=Δu, the original fourth-order model is [...] Read more.
In this paper, a linearized mixed finite volume element (MFVE) scheme is proposed to solve the nonlinear time fractional fourth-order reaction–diffusion models with the Riemann–Liouville time fractional derivative. By introducing an auxiliary variable σ=Δu, the original fourth-order model is reformulated into a lower-order coupled system. The first-order time derivative and the time fractional derivative are discretized by using the BDF2 formula and the weighted and shifted Grünwald difference (WSGD) formula, respectively. Then, a fully discrete MFVE scheme is constructed by using the primal and dual grids. The existence and uniqueness of a solution for the MFVE scheme are proven based on the matrix theories. The scheme’s unconditional stability is rigorously derived by using the Gronwall inequality in detail. Moreover, the optimal error estimates for u in the discrete L(L2(Ω)) and L2(H1(Ω)) norms and for σ in the discrete L2(L2(Ω)) norm are obtained. Finally, three numerical examples are given to confirm its feasibility and effectiveness. Full article
Show Figures

Figure 1

18 pages, 451 KB  
Article
Distinctive LMI Formulations for Admissibility and Stabilization Algorithms of Singular Fractional-Order Systems with Order Less than One
by Xinhai Wang, Xuefeng Zhang, Qing-Guo Wang and Driss Boutat
Fractal Fract. 2025, 9(7), 470; https://doi.org/10.3390/fractalfract9070470 - 19 Jul 2025
Viewed by 291
Abstract
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full [...] Read more.
This paper presents three novel sufficient and necessary conditions for the admissibility of singular fractional-order systems (FOSs), a stabilization criterion, and a solution algorithm. The strict linear matrix inequality (LMI) stability criterion for integer-order systems is generalized to singular FOSs by using column-full rank matrices. This admissibility criterion does not involve complex variables and is different from all previous results, filling a gap in this area. Based on the LMIs in the generalized condition, the improved criterion utilizes a variable substitution technique to reduce the number of matrix variables to be solved from one pair to one, reflecting the admissibility more essentially. This improved result simplifies the programming process compared to the traditional approach that requires two matrix variables. To complete the state feedback controller design, the system matrices in the generalized admissibility criterion are decoupled, but bilinear constraints still occur in the stabilization criterion. For this case, where a feasible solution cannot be found using the MATLAB LMI toolbox, a branch-and-bound algorithm (BBA) is designed to solve it. Finally, the validity of these criteria and the BBA is verified by three examples, including a real circuit model. Full article
Show Figures

Figure 1

21 pages, 4336 KB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 458
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

14 pages, 380 KB  
Article
Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations
by Marina Bershadsky and Leonid Shaikhet
Mathematics 2025, 13(14), 2265; https://doi.org/10.3390/math13142265 - 14 Jul 2025
Viewed by 270
Abstract
A well-known model of infectious diseases, described by a nonlinear system of delay differential equations, is investigated under the influence of stochastic perturbations. Using the general method of Lyapunov functional construction combined with the linear matrix inequality (LMI) approach, we derive sufficient conditions [...] Read more.
A well-known model of infectious diseases, described by a nonlinear system of delay differential equations, is investigated under the influence of stochastic perturbations. Using the general method of Lyapunov functional construction combined with the linear matrix inequality (LMI) approach, we derive sufficient conditions for the stability of the equilibria of the considered system. Numerical simulations illustrating the system’s behavior under stochastic perturbations are provided to support the thoretical findings. The proposed method for stability analysis is broadly applicable to other systems of nonlinear stochastic differential equations across various fields. Full article
Show Figures

Figure 1

20 pages, 2198 KB  
Article
Ellipsoidal-Set Design of Robust and Secure Control Against Denial-of-Service Cyber Attacks in Electric-Vehicle Induction Motor Drives
by Ehab H. E. Bayoumi, Hisham M. Soliman and Sangkeum Lee
Technologies 2025, 13(7), 289; https://doi.org/10.3390/technologies13070289 - 7 Jul 2025
Viewed by 302
Abstract
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This [...] Read more.
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This flow could be broken by a DoS attack, which could result in unstable motor operation or complete drive system failure. To address this, we propose a novel ellipsoidal-set-based state feedback controller with integral action, formulated via linear matrix inequalities (LMIs). This controller improves disturbance rejection, maintains system stability under DoS-induced input disruptions, and enhances security by constraining the system response within a bounded invariant set. The proposed tracker has a faster dynamic reaction and better disturbance attenuation capabilities than the traditional H control method. The effectiveness of the proposed controller is validated through a series of diverse testing scenarios. Full article
(This article belongs to the Special Issue Smart Transportation and Driving)
Show Figures

Figure 1

15 pages, 1239 KB  
Article
Extremum Seeking for the First Derivative of Nonlinear Maps with Constant Delays via a Time-Delay Approach
by Jianzhong Li, Hongye Su and Yang Zhu
Mathematics 2025, 13(13), 2196; https://doi.org/10.3390/math13132196 - 4 Jul 2025
Viewed by 220
Abstract
This paper introduces an extremum seeking (ES) scheme for the unknown map’s first derivative by tailoring a demodulation signal in which the closed-loop system is subject to constant transmission delays. Unlike most publications that manage delays using predictor-based methods, we are concerned with [...] Read more.
This paper introduces an extremum seeking (ES) scheme for the unknown map’s first derivative by tailoring a demodulation signal in which the closed-loop system is subject to constant transmission delays. Unlike most publications that manage delays using predictor-based methods, we are concerned with the delay-robustness of the introduced ES system via the newly developed time-delay approach. The original ES system is transformed to a nonlinear retarded-type plant with disturbances and the stability condition in the form of linear matrix inequalities is achieved. When the related bounds of the nonlinear map are not known, a rigorous practical stability proof is provided. Second, and more importantly, under the availability of prior knowledge about the nonlinear map, we are able to provide a quantitative calculation on the maximum allowable delay, the upper bound of the dither period, and the ultimate seeking error. Numerical examples are offered to exemplify the effectiveness of the proposed method. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

16 pages, 1648 KB  
Article
Robust Control and Energy Management in Wind Energy Systems Using LMI-Based Fuzzy H∞ Design and Neural Network Delay Compensation
by Kaoutar Lahmadi, Oumaima Lahmadi, Soufiane Jounaidi and Ismail Boumhidi
Processes 2025, 13(7), 2097; https://doi.org/10.3390/pr13072097 - 2 Jul 2025
Viewed by 384
Abstract
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach [...] Read more.
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach with a neural network-based delay compensation mechanism. A fuzzy observer-based H∞ tracking controller is developed to enhance robustness and minimize the impact of disturbances. The stability conditions are rigorously derived using a quadratic Lyapunov function, H∞ performance criteria, and Young’s inequality and are expressed as Linear Matrix Inequalities (LMIs) for computational efficiency. In parallel, a neural network-based controller is employed to compensate for the input delays introduced by online learning processes. Furthermore, an energy management layer is incorporated to regulate the power flow and optimize energy utilization under varying operating conditions. The proposed framework effectively combines control and energy coordination to improve the systems’ performance. The simulation results confirm the effectiveness of the proposed strategies, demonstrating enhanced stability, robustness, delay tolerance, and energy efficiency in wind energy systems. Full article
Show Figures

Figure 1

18 pages, 2714 KB  
Article
Quasi-LPV Approach for the Stabilization of an Innovative Quadrotor
by Said Chaabani and Naoufel Azouz
Modelling 2025, 6(3), 60; https://doi.org/10.3390/modelling6030060 - 1 Jul 2025
Viewed by 405
Abstract
In recent decades, the deployment of quadcopters has significantly expanded, particularly in outdoor applications such as parcel delivery. These missions require highly stable aerial platforms capable of maintaining balance under diverse environmental conditions, ensuring the safe operation of both the drone and its [...] Read more.
In recent decades, the deployment of quadcopters has significantly expanded, particularly in outdoor applications such as parcel delivery. These missions require highly stable aerial platforms capable of maintaining balance under diverse environmental conditions, ensuring the safe operation of both the drone and its payload. This paper focuses on the stabilization of a quadcopter designed for outdoor use. A detailed dynamic model of a compact vertical takeoff and landing (VTOL) drone forms the basis for a non-linear control strategy targeting stability during the critical takeoff phase. The control law is designed using a quasi-linear parameter-varying (quasi-LPV) model that captures the system’s non-linear dynamics. Lyapunov theory and linear matrix inequalities (LMIs) are employed to validate the stability and design the controller. Numerical simulations demonstrate the controller’s effectiveness, and a comparative study is conducted to benchmark its performance against a reference quadrotor model. Full article
Show Figures

Figure 1

Back to TopTop