Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = liquid Eversa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3610 KB  
Article
Performance of Eversa Transform 2.0 Lipase in Ester Production Using Babassu Oil (Orbignya sp.) and Tucuman Oil (Astrocaryum vulgar): A Comparative Study between Liquid and Immobilized Forms in Fe3O4 Nanoparticles
by João Brandão Júnior, Jean Gleison Andrade do Nascimento, Michael Pablo França Silva, Eliane de Aquino Lima Brandão, Viviane de Castro Bizerra, Kaiany Moreira dos Santos, Juliana de França Serpa, José Cleiton Sousa dos Santos, Aluísio Marques da Fonseca, Diego Lomonaco Vasconcelos de Oliveira and Maria Cristiane Martins de Souza
Catalysts 2023, 13(3), 571; https://doi.org/10.3390/catal13030571 - 11 Mar 2023
Cited by 21 | Viewed by 4594
Abstract
In this study, biodiesel was produced through the enzymatic esterification of vegetable oils from two common Brazilian palm trees: babassu and tucuman. The oils were hydrolyzed by a chemical route and their free fatty acids esterified with ethanol and methanol using the lipase [...] Read more.
In this study, biodiesel was produced through the enzymatic esterification of vegetable oils from two common Brazilian palm trees: babassu and tucuman. The oils were hydrolyzed by a chemical route and their free fatty acids esterified with ethanol and methanol using the lipase enzyme Eversa® Transform 2.0 in free forms and supported in iron magnetic nanoparticles (Fe3O4) (enzymatic load: 80 UpNPBg−1). These enzymatic reactions were performed at an oil–alcohol molar ratio of 1:1, reaction temperature of 37 °C, agitation at 150 rpm, and reaction times of 2, 4, 6 and 8 h for the reactions catalyzed by the soluble enzyme and 8 h for the reactions using the biocatalyst. The conversions of fatty acids in ethyl and methyl esters obtained were monitored by gas chromatography (CG). The results obtained from ester synthesis using enzyme catalysts in free form were better: babassu 52.6% (methanol) and 57.5% (ethanol), and for tucuman 96.7% (methanol) and 93.4% (ethanol). In the case of immobilized enzymes, the results obtained ranged from 68.7% to 82.2% for babassu and from 32.5% to 86.0% for tucuman, with three cycles of reuse and without significant catalyst loss. Molecular coupling studies revealed the structures of lipase and that linoleic acid bonded near the active site of the enzyme with the best free energy of −6.5 Kcal/mol. Full article
(This article belongs to the Special Issue Immobilized Biocatalysts II)
Show Figures

Figure 1

15 pages, 3028 KB  
Article
Enzymatic Synthesis of Fatty Acid Isoamyl Monoesters from Soybean Oil Deodorizer Distillate: A Renewable and Ecofriendly Base Stock for Lubricant Industries
by Rafael de Araujo-Silva, Ana Carolina Vieira, Roberto de Campos Giordano, Roberto Fernandez-Lafuente and Paulo Waldir Tardioli
Molecules 2022, 27(9), 2692; https://doi.org/10.3390/molecules27092692 - 22 Apr 2022
Cited by 28 | Viewed by 3096
Abstract
In this study, soybean oil deodorizer distillate (SODD), a mixture of free fatty acids and acylglycerides, and isoamyl alcohol were evaluated as substrates in the synthesis of fatty acid isoamyl monoesters catalyzed by Eversa (a liquid formulation of Thermomyces lanuginosus lipase). SODD and [...] Read more.
In this study, soybean oil deodorizer distillate (SODD), a mixture of free fatty acids and acylglycerides, and isoamyl alcohol were evaluated as substrates in the synthesis of fatty acid isoamyl monoesters catalyzed by Eversa (a liquid formulation of Thermomyces lanuginosus lipase). SODD and the products were characterized by the chemical and physical properties of lubricant base stocks. The optimal conditions to produce isoamyl fatty acid esters were determined by response surface methodology (RSM) using rotational central composite design (RCCD, 23 factorial + 6 axial points + 5 replications at the central point); they were 1 mol of fatty acids (based on the SODD saponifiable index) to 2.5 mol isoamyl alcohol, 45 °C, and 6 wt.% enzymes (enzyme mass/SODD mass). The effect of the water content of the reactional medium was also studied, with two conditions of molecular sieve ratio (molecular sieve mass/SODD mass) selected as 39 wt.% (almost anhydrous reaction medium) and 9 wt.%. Ester yields of around 50 wt.% and 70 wt.% were reached after 50 h reaction, respectively. The reaction products containing 43.7 wt.% and 55.2 wt.% FAIE exhibited viscosity indices of 175 and 163.8, pour points of −6 °C and −9 °C, flash points of 178 and 104 °C, and low oxidative stability, respectively. Their properties (mainly very high viscosity indices) make them suitable to be used as base stocks in lubricant formulation industries. Full article
Show Figures

Graphical abstract

17 pages, 2824 KB  
Article
Performance of Liquid Eversa on Fatty Acid Ethyl Esters Production by Simultaneous Esterification/Transesterification of Low-to-High Acidity Feedstocks
by Ana Carolina Vieira, Ana Bárbara Moulin Cansian, José Renato Guimarães, Angelica Marquettotti Salcedo Vieira, Roberto Fernandez-Lafuente and Paulo Waldir Tardioli
Catalysts 2021, 11(12), 1486; https://doi.org/10.3390/catal11121486 - 3 Dec 2021
Cited by 18 | Viewed by 3809
Abstract
Liquid Eversa was evaluated in hydrolysis of acylglycerols from soybean oil deodorizer distillate (SODD), as well as simultaneous esterification/transesterification of SODD with low-to-high free fatty acids (FFAs) content using ethanol as acyl acceptor. Hydrolysis of SODD at mild temperature (37 °C) and without [...] Read more.
Liquid Eversa was evaluated in hydrolysis of acylglycerols from soybean oil deodorizer distillate (SODD), as well as simultaneous esterification/transesterification of SODD with low-to-high free fatty acids (FFAs) content using ethanol as acyl acceptor. Hydrolysis of SODD at mild temperature (37 °C) and without pH control (water:SODD mass ratio of 4:1) increased its FFAs content from 17.2 wt.% to 72.5 wt.% after 48 h reaction. A cold saponification of SODD allowed a saponification phase (SODD-SP) to be recovered with 93 wt.% saponification index and 2.25 wt.% FFAs content, which was used to find the experimental conditions for simultaneous esterification/transesterification reactions by experimental design. Temperature of 35 °C, enzyme concentration of 8.36 wt.%, and molar ratio of 3.64:1 (ethanol:SODD-SP) were found as the best conditions for fatty acid ethyl esters (FAEEs) production from SODD-SP (86.56 wt.% ester yield after 23 h reaction). Under the same reaction conditions, crude SODD (17.2 wt.% FFAs) and hydrolyzed SODD (72.5 wt.% FFAs) yielded products containing around 80 wt.% FAEEs. Caustic treatment could increase the ester content to around 90 wt.% and reduce the FFAs content to less than 1 wt.%. Our results show the good performance of liquid Eversa in aqueous (hydrolysis reactions) and organic (esterification/transesterification reactions) media. Full article
Show Figures

Graphical abstract

14 pages, 1864 KB  
Article
Immobilization of Eversa® Transform via CLEA Technology Converts It in a Suitable Biocatalyst for Biolubricant Production Using Waste Cooking Oil
by José Renato Guimarães, Letícia Passos Miranda, Roberto Fernandez-Lafuente and Paulo Waldir Tardioli
Molecules 2021, 26(1), 193; https://doi.org/10.3390/molecules26010193 - 2 Jan 2021
Cited by 49 | Viewed by 3948
Abstract
The performance of the previously optimized magnetic cross-linked enzyme aggregate of Eversa (Eversa-mCLEA) in the enzymatic synthesis of biolubricants by transesterification of waste cooking oil (WCO) with different alcohols has been evaluated. Eversa-mCLEA showed good activities using these alcohols, reaching a transesterification activity [...] Read more.
The performance of the previously optimized magnetic cross-linked enzyme aggregate of Eversa (Eversa-mCLEA) in the enzymatic synthesis of biolubricants by transesterification of waste cooking oil (WCO) with different alcohols has been evaluated. Eversa-mCLEA showed good activities using these alcohols, reaching a transesterification activity with isoamyl alcohol around 10-fold higher than with methanol. Yields of isoamyl fatty acid ester synthesis were similar using WCO or refined oil, confirming that this biocatalyst could be utilized to transform this residue into a valuable product. The effects of WCO/isoamyl alcohol molar ratio and enzyme load on the synthesis of biolubricant were also investigated. A maximum yield of around 90 wt.% was reached after 72 h of reaction using an enzyme load of 12 esterification units/g oil and a WCO/alcohol molar ratio of 1:6 in a solvent-free system. At the same conditions, the liquid Eversa yielded a maximum ester yield of only 34%. This study demonstrated the great changes in the enzyme properties that can be derived from a proper immobilization system. Moreover, it also shows the potential of WCO as a feedstock for the production of isoamyl fatty acid esters, which are potential candidates as biolubricants. Full article
(This article belongs to the Special Issue Enzyme Immobilization Ⅳ)
Show Figures

Figure 1

19 pages, 3422 KB  
Article
Immobilized Biocatalysts of Eversa® Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production
by Javier A. Martínez-Sanchez, Sara Arana-Peña, Diego Carballares, Malcom Yates, Cristina Otero and Roberto Fernandez-Lafuente
Catalysts 2020, 10(7), 738; https://doi.org/10.3390/catal10070738 - 3 Jul 2020
Cited by 33 | Viewed by 5210
Abstract
Eversa® Transform (ET), and the lipase from Thermomyces lanuginosus (TLL), liquid commercial lipases formulations, have been immobilized on octyl agarose beads and their stabilities were compared. Immobilized and free ET forms were more thermostable than TLL formulations at pH 5.0, 7.0, and [...] Read more.
Eversa® Transform (ET), and the lipase from Thermomyces lanuginosus (TLL), liquid commercial lipases formulations, have been immobilized on octyl agarose beads and their stabilities were compared. Immobilized and free ET forms were more thermostable than TLL formulations at pH 5.0, 7.0, and 9.0, and the ET immobilized form was more stable in the presence of 90% methanol or dioxane at 25 °C and pH 7. Specific activity versus p-nitrophenyl butyrate was higher for ET than for TLL. However, after immobilization the differences almost disappeared because TLL was very hyperactivated (2.5-fold) and ET increased the activity only by 1.6 times. The enzymes were also immobilized in octadecyl methacrylate beads. In both cases, the loading was around 20 mg/g. In this instance, activity was similar for immobilized TLL and ET using triacetin, while the activity of immobilized ET was lower using (S)-methyl mandelate. When the immobilized enzymes were used to produce biodiesel from sunflower oil and methanol in tert-butanol medium, their performance was fairly similar. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

12 pages, 2917 KB  
Article
Liquid Lipase-Catalyzed Esterification of Oleic Acid with Methanol for Biodiesel Production in the Presence of Superabsorbent Polymer: Optimization by Using Response Surface Methodology
by Hoang Chinh Nguyen, Dinh Thi My Huong, Horng-Yi Juan, Chia-Hung Su and Chien-Chung Chien
Energies 2018, 11(5), 1085; https://doi.org/10.3390/en11051085 - 28 Apr 2018
Cited by 30 | Viewed by 5482
Abstract
Liquid lipase-catalyzed esterification of fatty acids with methanol is a promising process for biodiesel production. However, water by-product from this process favors the reverse reaction, thus reducing the reaction yield. To address this, superabsorbent polymer (SAP) was used as a water-removal agent in [...] Read more.
Liquid lipase-catalyzed esterification of fatty acids with methanol is a promising process for biodiesel production. However, water by-product from this process favors the reverse reaction, thus reducing the reaction yield. To address this, superabsorbent polymer (SAP) was used as a water-removal agent in the esterification in this study. SAP significantly enhanced the conversion yield compared with the reaction without SAP. The lipase-catalyzed esterification in the presence of SAP was then optimized by response surface methodology to maximize the reaction conversion. A maximum conversion of 96.73% was obtained at a temperature of 35.25 °C, methanol to oleic acid molar ratio of 3.44:1, SAP loading of 10.55%, and enzyme loading of 11.98%. Under these conditions, the Eversa Transform lipase could only be reused once. This study suggests that the liquid lipase-catalyzed esterification of fatty acids using SAP as a water-removal agent is an efficient process for producing biodiesel. Full article
(This article belongs to the Special Issue Biofuel and Bioenergy Technology)
Show Figures

Figure 1

Back to TopTop