Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = liquid lead–bismuth eutectic alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3008 KB  
Article
Structural, Thermophysical, and Radiation Shielding Properties of Lead–Bismuth Eutectic (LBE) Synthesized by Induction Melting
by Radu Cristian Gavrea, Emanoil Surducan, Răzvan Hirian, Mioara Zagrai and Vasile Rednic
Crystals 2025, 15(6), 581; https://doi.org/10.3390/cryst15060581 - 19 Jun 2025
Viewed by 434
Abstract
Lead–bismuth eutectic alloy (LBE, Pb44.5Bi55.5) has emerged as a promising candidate for use in advanced nuclear and solar energy systems due to its favorable thermophysical characteristics and radiation shielding capabilities. The aim of this research is to assess the [...] Read more.
Lead–bismuth eutectic alloy (LBE, Pb44.5Bi55.5) has emerged as a promising candidate for use in advanced nuclear and solar energy systems due to its favorable thermophysical characteristics and radiation shielding capabilities. The aim of this research is to assess the applicability of the induction melting technique to synthesize LBE. This paper presents a comprehensive evaluation of the structural, thermophysical, and radiation shielding properties of the obtained LBE sample. Various techniques were employed to investigate the solid-to-liquid eutectic transformation, phase composition, morphology, and homogeneity of the obtained material. Experimental and theoretical determinations on density, void, molar volume, thermal conductivity, heat capacity, thermal diffusivity, and electrical conductivity were performed. Radiation shielding performance over photon energies ranging from 0.015 to 15 MeV was simulated using the Phy-X/PSD program. The results revealed the eutectic structure comprising Pb7Bi3 and Bi phases with near-ideal stoichiometry and a melting point of 127.6 °C. The alloy demonstrated a small void that corresponds to a high degree of sample compaction, high specific heat capacity, moderate thermal conductivity, low thermal diffusivity, and effective radiation shielding. These findings confirm that LBE obtained by the induction melting technique possesses the necessary structural stability and functional properties for integration into nuclear reactor and solar thermal technologies. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

16 pages, 11780 KB  
Article
The Effect of Aging on the Microstructure and Mechanical Properties of Solidified Lead-Bismuth Eutectic Alloy
by Hailuo Zhong, Sijuan Chen, Weibing Liao, Jiawei Zhang, Xuan Xiao and Xi Huang
Materials 2025, 18(9), 2001; https://doi.org/10.3390/ma18092001 - 28 Apr 2025
Viewed by 386
Abstract
Lead-bismuth eutectic (LBE) is a eutectic alloy of lead (44.5 at%) and bismuth (55.5 at%) that can be used as the coolant for the fast nuclear reactors. In the event of specific conditions or even accidents of the reactors, the temperature of liquid [...] Read more.
Lead-bismuth eutectic (LBE) is a eutectic alloy of lead (44.5 at%) and bismuth (55.5 at%) that can be used as the coolant for the fast nuclear reactors. In the event of specific conditions or even accidents of the reactors, the temperature of liquid LBE decreases, and it may undergo solidification and volume expansion during the aging process after solidification, which can easily cause damage to the reactor’s internal structure as well as the reactor vessels. In this study, the microstructure and mechanical properties of solidified LBE obtained at different cooling rates are systematically investigated after different aging times. It was found that the internal structure of LBE after aging remained a eutectic microstructure, consisting of the γ-phase (Bi-rich phase) and β-phase (Pb7Bi3). After a long period of static aging, the white γ-phase precipitated into the black β-phase, which further confirms the phase transition mechanism. Meanwhile, the acceleration of the cooling rate can aggravate volume expansion. As the aging time increases, there is no significant difference in the compressive yield strength σ of the LBE samples with the same cooling rate and only a certain degree of fluctuation. The elastic modulus E also shows similar results, indicating that aging time has a minor effect on the compressive yield strength σ and elastic modulus E of the LBE. With the increase in cooling rate, the compressive yield strength σ shows an upward trend, while the elastic modulus E is not significantly affected, with a small amplitude of fluctuation. Meanwhile, the hardness of LBE samples after long-term aging treatment is enhanced. After long-term aging, the overall density of the LBE samples shows a decreasing trend, the density fluctuation range of the fast cooling rates (5 K/min and 10 K/min) are significantly larger than that of the slow cooling rates. The decrease in density leads to volume expansion of the LBE during the aging process after solidification. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 14284 KB  
Article
Development and Performance Analysis of an Electromagnetic Pump for a Thermal Hydraulic Experimental Loop of a Lead-Cooled Fast Reactor
by Zi’ang Li, Lanfei Yuan, Chenglong Wang, Suizheng Qiu and Ying Li
Energies 2025, 18(3), 750; https://doi.org/10.3390/en18030750 - 6 Feb 2025
Viewed by 1027
Abstract
With the advancement of lead–bismuth fast reactors, there has been increasing attention directed towards the design of and manufacturing technology for electromagnetic pumps employed to drive liquid lead–bismuth eutectic (LBE). These electromagnetic pumps are characterized by a simple structure, effective sealing, and ease [...] Read more.
With the advancement of lead–bismuth fast reactors, there has been increasing attention directed towards the design of and manufacturing technology for electromagnetic pumps employed to drive liquid lead–bismuth eutectic (LBE). These electromagnetic pumps are characterized by a simple structure, effective sealing, and ease of flow control. They exploit the excellent electrical conductivity of liquid metals, allowing the liquid metal to be propelled by Lorentz forces generated by the traveling magnetic field within the pump. To better understand the performance characteristics of electromagnetic pumps and master the techniques for integrated manufacturing and performance optimization, this study conducted fundamental research, development of key components, and the assembly of the complete pump. Consequently, an annular linear induction pump (ALIP) suitable for liquid lead–bismuth eutectic was developed. Additionally, within the lead–bismuth thermal experimental loop, startup and preheating experiments, performance tests, and flow-head experiments were conducted on this electromagnetic pump. The experimental results demonstrated that the output flow of the electromagnetic pump increased linearly with the input current. When the input current reached 99 A, the loop achieved a maximum flow rate of 8 m3/h. The efficiency of the electromagnetic pump also increased with the input current, with a maximum efficiency of 5.96% during the experiments. Finally, by analyzing the relationship between the flow rate and the pressure difference of the electromagnetic pump, a flow-head model specifically applicable to lead–bismuth electromagnetic pumps was established. Full article
(This article belongs to the Special Issue Thermal Hydraulics and Safety Research for Nuclear Reactors)
Show Figures

Figure 1

12 pages, 6127 KB  
Article
Protection of 316L Steel Against LBE Corrosion by a CaO-MgO-Al2O3-SiO2 Glass–Ceramic Coating
by Zunqi Xiao, Zhizhong Jiang, Lin Luo, Yi Wan, Aixue Liu, Bin Zhang, Bing Ren and Jing Liu
Coatings 2024, 14(11), 1371; https://doi.org/10.3390/coatings14111371 - 28 Oct 2024
Cited by 1 | Viewed by 1223
Abstract
A CaO-MgO-Al2O3-SiO2 glass–ceramic coating was prepared by the slurry method and subsequent sintering to improve the corrosion resistance of 316L steel in liquid lead–bismuth eutectic alloy at high temperatures. The glass–ceramic coating, sintered at 884 °C, was dense [...] Read more.
A CaO-MgO-Al2O3-SiO2 glass–ceramic coating was prepared by the slurry method and subsequent sintering to improve the corrosion resistance of 316L steel in liquid lead–bismuth eutectic alloy at high temperatures. The glass–ceramic coating, sintered at 884 °C, was dense and demonstrated strong adhesion to the substrate. It was composed of the crystalline phases diopside (CaMgSi2O6) and anorthite (CaAl2Si2O8) and had an average Vickers hardness of 595 HV, which was over three times that of 316L steel. After corrosion in an oxygen-saturated, static lead–bismuth eutectic alloy at 500 °C for 1000 h, the uncoated 316L experienced significant mass gain (0.04 g) due to severe oxidative corrosion, resulting in the formation of Fe3O4 and Pb2O on its surface. In contrast, the glass–ceramic-coated specimens showed a very small mass gain (0.0012 g) after corrosion. The coating maintained good thermal stability; its crystalline phase composition remained largely unchanged after the corrosion test. The glass–ceramic coating still exhibited dense microstructure and tightly adhered to the substrate after corrosion. There was no evident penetration of lead–bismuth into the coating, and no dissolution of the coating’s elements into the lead–bismuth alloy was detected. These observations confirm that the glass–ceramic coating possessed superior corrosion resistance in liquid lead–bismuth eutectic environments. Full article
(This article belongs to the Special Issue Novel Coatings for Corrosion Protection)
Show Figures

Figure 1

24 pages, 12742 KB  
Article
Numerical Modeling of Water Jet Plunging in Molten Heavy Metal Pool
by Sergey E. Yakush, Nikita S. Sivakov, Oleg I. Melikhov and Vladimir I. Melikhov
Mathematics 2024, 12(1), 12; https://doi.org/10.3390/math12010012 - 20 Dec 2023
Cited by 6 | Viewed by 1908
Abstract
The hydrodynamic and thermal interaction of water with the high-temperature melt of a heavy metal was studied via the Volume-of-Fluid (VOF) method formulated for three immiscible phases (liquid melt, water, and water vapor), with account for phase changes. The VOF method relies on [...] Read more.
The hydrodynamic and thermal interaction of water with the high-temperature melt of a heavy metal was studied via the Volume-of-Fluid (VOF) method formulated for three immiscible phases (liquid melt, water, and water vapor), with account for phase changes. The VOF method relies on a first-principle description of phase interactions, including drag, heat transfer, and water evaporation, in contrast to multifluid models relying on empirical correlations. The verification of the VOF model implemented in OpenFOAM software was performed by solving one- and two-dimensional reference problems. Water jet penetration into a melt pool was first calculated in two-dimensional problem formulation, and the results were compared with analytical models and empirical correlations available, with emphasis on the effects of jet velocity and diameter. Three-dimensional simulations were performed in geometry, corresponding to known experiments performed in a narrow planar vessel with a semi-circular bottom. The VOF results obtained for water jet impact on molten heavy metal (lead–bismuth eutectic alloy at the temperature 820 K) are here presented for a water temperature of 298 K, jet diameter 6 mm, and jet velocity 6.2 m/s. Development of a cavity filled with a three-phase melt–water–vapor mixture is revealed, including its propagation down to the vessel bottom, with lateral displacement of melt, and subsequent detachment from the bottom due to gravitational settling of melt. The best agreement of predicted cavity depth, velocity, and aspect ratio with experiments (within 10%) was achieved at the stage of downward cavity propagation; at the later stages, the differences increased to about 30%. Adequacy of the numerical mesh containing about 5.6 million cells was demonstrated by comparing the penetration dynamics obtained on a sequence of meshes with the cell size ranging from 180 to 350 µm. Full article
Show Figures

Figure 1

16 pages, 2972 KB  
Review
A Review of Corrosion Behavior of Structural Steel in Liquid Lead–Bismuth Eutectic
by Wentao Wang, Congxin Yang, Yuhang You and Huawei Yin
Crystals 2023, 13(6), 968; https://doi.org/10.3390/cryst13060968 - 19 Jun 2023
Cited by 16 | Viewed by 5216
Abstract
Liquid lead–bismuth eutectic alloy is one of the candidate coolants for fourth-generation nuclear power systems because of its good physical and chemical properties, neutron economic performance, and safety. However, the compatibility between the coolant and structural steel is still the main factor restricting [...] Read more.
Liquid lead–bismuth eutectic alloy is one of the candidate coolants for fourth-generation nuclear power systems because of its good physical and chemical properties, neutron economic performance, and safety. However, the compatibility between the coolant and structural steel is still the main factor restricting its large-scale industrial application in the nuclear energy field. Structural steel in a liquid lead–bismuth eutectic alloy for a long time would cause severe corrosion. The erosion of structural steel by high-flow-rate liquid lead–bismuth alloy will lead to a more complex corrosion process. This paper mainly reviews the corrosion characteristics of liquid lead–bismuth and the corrosion behavior of structural steel in liquid lead-bismuth eutectic. The main methods of inhibiting liquid lead–bismuth corrosion are summarized, and future research directions are suggested. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

11 pages, 23271 KB  
Article
Enhanced Corrosion−Resistance of AlTiCrFeMoSi High−Entropy Alloy Coating by Magnetron Sputtering
by Li Zhang, Yunzhu Shi, Qilu Ye and Bin Yang
Coatings 2023, 13(2), 332; https://doi.org/10.3390/coatings13020332 - 1 Feb 2023
Cited by 10 | Viewed by 2182
Abstract
The amorphous AlTiCrFeMoSi high entropy alloy (HEA) coating with high hardness (11.88 GPa) is successfully deposited on T91 substrate by the magnetron sputtering method. Both T91 steel and as−deposited AlTiCrFeMoSi coating samples are exposed to a static liquid lead−bismuth eutectic (LBE) at 550 [...] Read more.
The amorphous AlTiCrFeMoSi high entropy alloy (HEA) coating with high hardness (11.88 GPa) is successfully deposited on T91 substrate by the magnetron sputtering method. Both T91 steel and as−deposited AlTiCrFeMoSi coating samples are exposed to a static liquid lead−bismuth eutectic (LBE) at 550 °C for up to 2000 h. The coating exhibits excellent corrosion resistance against lead−bismuth eutectic (LBE) compared with the uncoated T91 steel. The results show that the AlTiCrFeMoSi HEA coating has great potential in LBE−cooled fast reactor application. Full article
(This article belongs to the Special Issue Advanced High-Entropy Materials and Coatings)
Show Figures

Figure 1

19 pages, 9591 KB  
Article
Numerical Study of Liquid Metal Turbulent Heat Transfer in Cross-Flow Tube Banks
by Alessandro Tassone, Jasper Meeusen, Andrea Serafini and Gianfranco Caruso
Energies 2023, 16(1), 387; https://doi.org/10.3390/en16010387 - 29 Dec 2022
Cited by 1 | Viewed by 2562
Abstract
Heavy liquid metals (HLM) are attractive coolants for nuclear fission and fusion applications due to their excellent thermal properties. In these reactors, a high coolant flow rate must be processed in compact heat exchangers, and as such, it may be convenient to have [...] Read more.
Heavy liquid metals (HLM) are attractive coolants for nuclear fission and fusion applications due to their excellent thermal properties. In these reactors, a high coolant flow rate must be processed in compact heat exchangers, and as such, it may be convenient to have the HLM flowing on the shell side of a helical coil steam generator. Technical knowledge about HLM turbulent heat transfer in cross-flow tube bundles is rather limited, and this paper aims to investigate the suitability of Reynolds Average Navier–Stokes (RANS) models for the simulation of this problem. Staggered and in-line finite tube bundles are considered for compact (a=1.25), medium (a=1.45), and wide (a=1.65) pitch ratios. The lead bismuth eutectic alloy with Pr=2.21×102 is considered as the working fluid. A 2D computational domain is used relying on the kω Shear Stress Transport (SST) for the turbulent momentum flux and the Prt concept for the turbulent heat flux prediction. The effect of uniform and spatially varying Prt assumptions has been investigated. For the in-line bundle, unsteady kω SST/Prt=0.85 has been found to significantly underpredict the integral heat transfer with regard to theory, featuring a good to acceptable agreement for wide bundles and Pe1150. For the staggered tube bank, steady kω SST and a spatially varying Prt has been the best modeling strategy featuring a good to excellent agreement for medium and wide bundles. A poor agreement for compact bundles has been observed for all the models considered. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

12 pages, 1814 KB  
Article
Thermodynamic Assessment and Solubility of Ni in LBE Coolants
by Pradeep Samui and Renu Agarwal
Thermo 2022, 2(4), 371-382; https://doi.org/10.3390/thermo2040025 - 20 Oct 2022
Cited by 4 | Viewed by 3131
Abstract
Lead–Bismuth Eutectic (LBE) is a heavy metal liquid alloy used as a coolant for compact high temperature reactors (CHTRs), fast breeder reactor (FBRs) and as a spallation target for ADS. In spite of many advantages due to its thermophysical properties, corrosion towards structural [...] Read more.
Lead–Bismuth Eutectic (LBE) is a heavy metal liquid alloy used as a coolant for compact high temperature reactors (CHTRs), fast breeder reactor (FBRs) and as a spallation target for ADS. In spite of many advantages due to its thermophysical properties, corrosion towards structural materials remains one of the major issues of LBE. In absence of any oxygen impurity, corrosion in LBE is driven by dissolution processes and the solubility of the main elements of the structural material alloys. Using the CALPHAD method, Thermo-Calc software, a thermodynamic database was developed to assess the interaction between Ni and LBE coolant. The solubilities of Ni in LBE, Bi and Pb liquids have been calculated at different temperatures. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2022)
Show Figures

Figure 1

29 pages, 5193 KB  
Article
Corrosion Enhancement for FGM Coolant Pipes Subjected to High-Temperature and Hydrostatic Pressure
by Kai-Chien Lo and Hsin-Yi Lai
Coatings 2022, 12(5), 666; https://doi.org/10.3390/coatings12050666 - 13 May 2022
Cited by 6 | Viewed by 2410
Abstract
The objective of this paper is to enhance the corrosion resistance of coolant pipes in high temperature and lateral hydrostatic pressure in critical engineering environment, especially for circular coolant pipes under hydrostatic pressure of LBE (lead-bismuth eutectic) applications in nuclear power plants. The [...] Read more.
The objective of this paper is to enhance the corrosion resistance of coolant pipes in high temperature and lateral hydrostatic pressure in critical engineering environment, especially for circular coolant pipes under hydrostatic pressure of LBE (lead-bismuth eutectic) applications in nuclear power plants. The resistance against corrosion caused by LBE liquid is mainly formed by Fe-12Cr-2Si solid solutions coatings on the pipe. The silicon concentration in Fe-12Cr-2Si can interact with LBE as an effective oxidized compound such as SiO2 and Fe2SiO4 when the silicon concentration is higher than 1.25 wt.%. The oxide film formed on the coating can resist the LBE corroding in the Fe-12Cr-2Si structure. The primary material of a constructing coolant pipe is T91 ferritic-martensitic alloys, and the surface anti-corrosion coating is Fe-12Cr-2Si solid solution. With a high strength structure, FGC (functionally graded composite material), ensures that the pipe resists the corrosion from LBE liquid. In this study, both the steady-state stress values and silicon concentration are evaluated at 700, 1000, and 1200 °C to know the fatigue problems. The research result indicates the FGM (functionally graded material) structure performs better in promoting the margin of safety on stress distribution and reserving the silicon concentration on the inner surface higher than 1.25 wt.% over 60 years as compared to the FGC structure with 34 μm thickness of Fe-12Cr-2Si coating in a high temperature environment. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Figure 1

16 pages, 7262 KB  
Article
Application of Machine Learning Methods to Neutron Transmission Spectroscopic Imaging for Solid–Liquid Phase Fraction Analysis
by Takashi Kamiyama, Kazuma Hirano, Hirotaka Sato, Kanta Ono, Yuta Suzuki, Daisuke Ito and Yasushi Saito
Appl. Sci. 2021, 11(13), 5988; https://doi.org/10.3390/app11135988 - 27 Jun 2021
Cited by 4 | Viewed by 3227
Abstract
In neutron transmission spectroscopic imaging, the transmission spectrum of each pixel on a two-dimensional detector is analyzed and the real-space distribution of microscopic information in an object is visualized with a wide field of view by mapping the obtained parameters. In the analysis [...] Read more.
In neutron transmission spectroscopic imaging, the transmission spectrum of each pixel on a two-dimensional detector is analyzed and the real-space distribution of microscopic information in an object is visualized with a wide field of view by mapping the obtained parameters. In the analysis of the transmission spectrum, since the spectrum can be classified with certain characteristics, it is possible for machine learning methods to be applied. In this study, we selected the subject of solid–liquid phase fraction imaging as the simplest application of the machine learning method. Firstly, liquid and solid transmission spectra have characteristic shapes, so spectrum classification according to their fraction can be carried out. Unsupervised and supervised machine learning analysis methods were tested and evaluated with simulated datasets of solid–liquid spectrum combinations. Then, the established methods were used to perform an analysis with actual measured spectrum datasets. As a result, the solid–liquid interface zone was specified from the solid–liquid phase fraction imaging using machine learning analysis. Full article
(This article belongs to the Special Issue Advances in Neutron Imaging)
Show Figures

Figure 1

9 pages, 2223 KB  
Article
Phase Transformation by 100 keV Electron Irradiation in Partially Stabilized Zirconia
by Yasuki Okuno and Nariaki Okubo
Quantum Beam Sci. 2021, 5(3), 20; https://doi.org/10.3390/qubs5030020 - 25 Jun 2021
Cited by 4 | Viewed by 3374
Abstract
Partially stabilized zirconia (PSZ) is considered for use as an oxygen-sensor material in liquid lead-bismuth eutectic (LBE) alloys in the radiation environment of an acceleration-driven system (ADS). To predict its lifetime for operating in an ADS, the effects of radiation on the PSZ [...] Read more.
Partially stabilized zirconia (PSZ) is considered for use as an oxygen-sensor material in liquid lead-bismuth eutectic (LBE) alloys in the radiation environment of an acceleration-driven system (ADS). To predict its lifetime for operating in an ADS, the effects of radiation on the PSZ were clarified in this study. A tetragonal PSZ was irradiated with 100 keV electrons and analyzed by X-ray diffraction (XRD). The results indicate that the phase transition in the PSZ, from the tetragonal to the monoclinic phase, was caused after the irradiation. The deposition energy of the lattice and the deposition energy for the displacement damage of a 100 keV electron in the PSZ are estimated using the particle and heavy ion transport code system and the non-ionizing energy loss, respectively. The results suggest that conventional radiation effects, such as stopping power, are not the main mechanism behind the phase transition. The phase transition is known to be caused by the low-temperature degradation of the PSZ and is attributed to the shift of oxygen ions to oxygen sites. When the electron beam is incident to the material, the kinetic energy deposition and excitation-related processes are caused, and it is suggested to be a factor of the phase transition. Full article
Show Figures

Figure 1

18 pages, 5566 KB  
Review
Corrosion Behavior and Surface Treatment of Cladding Materials Used in High-Temperature Lead-Bismuth Eutectic Alloy: A Review
by Hao Wang, Jun Xiao, Hui Wang, Yong Chen, Xing Yin and Ning Guo
Coatings 2021, 11(3), 364; https://doi.org/10.3390/coatings11030364 - 23 Mar 2021
Cited by 51 | Viewed by 6627
Abstract
Liquid metal fast reactors were considered to be the most promising solution to meet the enormous energy demand in the future. However, corrosion phenomenon caused by the liquid metal, especially in high-temperature lead-bismuth coolant, has greatly hindered the commercialization of the advanced Generation-IV [...] Read more.
Liquid metal fast reactors were considered to be the most promising solution to meet the enormous energy demand in the future. However, corrosion phenomenon caused by the liquid metal, especially in high-temperature lead-bismuth coolant, has greatly hindered the commercialization of the advanced Generation-IV nuclear system. This review discussed current research on the corrosion resistance of structural materials (such as EP823, T91, ODS, and authentic steels) in high-temperature liquid metal served as reactor coolants. The current corrosion resistance evaluation has proved that even for the excellent performance of EP823, the structural material selected in pressurized water reactor is not the ideal material for operation in the high-temperature lead-bismuth eutectic (LBE). Furthermore, the latest coating technologies that are expected to be applied to cladding materials for coolant system were extensively discussed, including Al-containing coatings, ceramic coatings, oxide coatings, amorphous coatings and high-entropy alloy coatings. The detailed comparison summarized the corrosion morphology and corrosion products of various coatings in LBE. This review not only provided a systematic understanding of the corrosion phenomena, but also demonstrated that coating technology is an effective method to solve the corrosion issues of the advanced next-generation reactors. Full article
(This article belongs to the Special Issue Surface Modification and Functionalization of High-Temperature Alloys)
Show Figures

Figure 1

16 pages, 5278 KB  
Article
Lead-Bismuth Eutectic: Atomic and Micro-Scale Melt Evolution
by Roberto Montanari, Alessandra Varone, Luca Gregoratti, Saulius Kaciulis and Alessio Mezzi
Materials 2019, 12(19), 3158; https://doi.org/10.3390/ma12193158 - 27 Sep 2019
Cited by 5 | Viewed by 3018
Abstract
Element clustering and structural features of liquid lead-bismuth eutectic (LBE) alloy have been investigated up to 720 °C by means of high temperature X-ray diffraction (HT-XRD), X-ray Photoemission Spectroscopy (XPS) and Scanning Photoemission Microscopy (SPEM) at the Elettra synchrotron in Trieste. The short-range [...] Read more.
Element clustering and structural features of liquid lead-bismuth eutectic (LBE) alloy have been investigated up to 720 °C by means of high temperature X-ray diffraction (HT-XRD), X-ray Photoemission Spectroscopy (XPS) and Scanning Photoemission Microscopy (SPEM) at the Elettra synchrotron in Trieste. The short-range order in liquid metal after melting corresponds to the cuboctahedral atomic arrangement and progressively evolves towards the icosahedral one as temperature increases. Such process, that involve a negative expansion of the alloy, is mainly connected to the reduction of atom distance in Pb–Pb pairs which takes place from 350 °C to 520 °C. On an atomic scale, it is observed a change of the relative number of Bi–Bi, Pb–Pb, and Pb–Bi pairs. The Pb–Bi pairs are detected only at a temperature above ~350 °C, and its fraction progressively increases, giving rise to a more homogeneous distribution of the elements. SPEM results showed evidence that the process of chemical homogenization on an atomic scale is preceded and accompanied by homogenization on micro-scale. Clusters rich of Bi and Pb, which are observed after melting, progressively dissolve as temperature increases: Only a few residuals remain at 350 °C, and no more clusters are detected a 520 °C. Full article
Show Figures

Figure 1

11 pages, 10175 KB  
Article
Influence of LBE Temperatures on the Microstructure and Properties of Crystalline and Amorphous Multiphase Ceramic Coatings
by Yong Chen, Liangbin Hu, Changjun Qiu, Bin He, Lihua Zhou, Jing Zhao and Yanxi Li
Coatings 2019, 9(9), 543; https://doi.org/10.3390/coatings9090543 - 24 Aug 2019
Cited by 27 | Viewed by 3543
Abstract
An Al2O3–TiO2 amorphous composite coating with a thickness of 100–120 μm was fabricated on China low activation martensitic steel (CLAM steel) by oxygen acetylene flame spraying technology and the laser in-situ reaction method. We investigated the microstructures and [...] Read more.
An Al2O3–TiO2 amorphous composite coating with a thickness of 100–120 μm was fabricated on China low activation martensitic steel (CLAM steel) by oxygen acetylene flame spraying technology and the laser in-situ reaction method. We investigated the microstructures and mechanical properties of the coating after liquid lead-bismuth eutectic (LBE) alloy corrosion under different temperatures for 300 h and found that the corrosion temperature of the LBE had no observable effect on the microstructure and chemical phase of the Al2O3–TiO2 amorphous composite coatings. However, the mechanical properties (micro-hardness and shear strength) of the Al2O3–TiO2 multiphase coating deteriorated slightly with the increase in the immersion temperature of the LBE. As a result of oxygen acetylene flame spraying and laser in-situ reaction technology, it was found that the Al2O3–TiO2 amorphous composite coating exhibits an excellent LBE corrosion resistance, which is a candidate structural material for the accelerator-driven subcritical system (ADS) to handle nuclear waste under extreme conditions. Full article
(This article belongs to the Special Issue Corrosion Science and Surface Engineering)
Show Figures

Figure 1

Back to TopTop