Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (403)

Search Parameters:
Keywords = litter decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3412 KB  
Article
Influence of Eucalyptus Plantation on Soil Microbial Characteristics in Severely Degraded Land of Leizhou Peninsula
by Jundi Zhong, Hanyuan Xu, Zina Chen, Kaiyan Yang, Shenghong Xiao and Xunzhi Ouyang
Forests 2025, 16(10), 1602; https://doi.org/10.3390/f16101602 - 18 Oct 2025
Viewed by 169
Abstract
Soil microorganisms are important decomposers in soil, and they play important roles in litter degradation, nutrient cycle and balance, soil physicochemical property improvement, and soil fertility maintenance. To understand the influence of Eucalyptus plantations on the growth, reproduction, and activity of soil microorganisms [...] Read more.
Soil microorganisms are important decomposers in soil, and they play important roles in litter degradation, nutrient cycle and balance, soil physicochemical property improvement, and soil fertility maintenance. To understand the influence of Eucalyptus plantations on the growth, reproduction, and activity of soil microorganisms in severely degraded land, the Leizhou Peninsula in tropical China was selected as the research area. The vegetation restoration types of Eucalyptus urophylla × grandis planted in its severely degraded red soil areas (ES: Eucalyptus–shrub, EG: Eucalyptus–grass, and ED: EucalyptusDicranopteris pedata (Houtt.) Nakaike) were studied, and the nearby natural vegetation types (S: shrub, G: grass, and D: Dicranopteris pedata) served as control groups. The microbial characteristics of different vegetation restoration types were compared, and the influence of Eucalyptus plantations on the growth, reproduction, and activity of soil microorganisms in severely degraded red soil areas was discussed by setting up sample plots for investigation, sample determination, and statistical analysis. The structure of soil microorganisms differed significantly between Eucalyptus vegetation restoration (ER) and natural vegetation restoration without Eucalyptus (NER). Key organic decomposers, including bacterial genera such as Candidatus Solibacter (ER: 1.2 ± 0.4% vs. NER: 0.9 ± 0.1%), Candidatus Koribacter (ER: 1.0 ± 0.4% vs. NER: 0.7 ± 0.1%), and Edaphobacter (ER: 0.9 ± 0.1% vs. NER: 0.4 ± 0.1%), as well as fungal genera such as Rhizophagus (ER: 0.1 ± 0.0% vs. NER: 0.0 ± 0.0%), Paxillus (ER: 0.1 ± 0.0% vs. NER: 0.0 ± 0.0%), and Pisolithus (ER: 0.1 ± 0.0% vs. NER: 0.0 ± 0.0%), exhibited a significantly higher relative richness and a broader distribution in ER compared to NER (p < 0.05). Soil microbial biomass carbon, nitrogen and phosphorus (MBC, MBN, MBP), community structure (keystone taxa and symbiosis network complexity), and functional genes (for growth, reproduction, and decomposition) in ER, especially in ES, were significantly higher than in NER. This study illustrated that Eucalyptus plantations, especially ES types, can promote the growth and reproduction of soil organic decomposers, improve microbial metabolic and biological activities, and increase functional diversity and interactions among microorganisms, thus accelerating the cycle of soil carbon, nitrogen, and phosphorus nutrients, improving soil quality and fertility, and accelerating the recovery of degraded soil fertility. In areas with serious soil degradation and where natural vegetation restoration is difficult, planting Eucalyptus, especially while guiding the understory vegetation to develop into the shrub vegetation type, is an effective vegetation restoration model. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

14 pages, 1332 KB  
Article
Understory Dwarf Bamboo Modulates Leaf Litter Decomposition via Interception-Induced Litter Redistribution and Space-Dependent Decomposition Dynamics: A Case Study from Jinfo Mountain, China
by Hai-Yan Song, Feng Qian, Chun-Yan Xia, Hong Xia, Jin-Chun Liu, Wei-Xue Luo and Jian-Ping Tao
Plants 2025, 14(20), 3135; https://doi.org/10.3390/plants14203135 - 11 Oct 2025
Viewed by 293
Abstract
Understory vegetation, particularly dwarf bamboo, plays a crucial role in regulating forest nutrient cycles by intercepting litter and altering decomposition processes, yet its overall impacts remain understudied and insufficiently quantified. This study employs a combination of field surveys and decomposition bag experiments to [...] Read more.
Understory vegetation, particularly dwarf bamboo, plays a crucial role in regulating forest nutrient cycles by intercepting litter and altering decomposition processes, yet its overall impacts remain understudied and insufficiently quantified. This study employs a combination of field surveys and decomposition bag experiments to investigate how understory dwarf bamboo (Fargesia decurvata) alters the spatial–temporal patterns of leaf litter production and decomposition. We found that the dwarf bamboo intercepted more than 25% of canopy litterfall, altering its spatial distribution and reducing decomposition efficiency in the bamboo crown (BC). Leaf trait-decomposition relationships differed strongly across habitats, being positive for saturated fresh weight (SFW), leaf thickness (LFT), and leaf area (LA) and dry weight (DW) in bamboo habitats but weaker in the bamboo-free habitat (NB). Potassium release was significantly higher in the BC treatment, whereas carbon release showed the opposite trend. In contrast, nitrogen and phosphorus exhibited net enrichment across all treatments, with phosphorus enrichment being slower in BC than in bamboo-covered ground surface (BG) and NB. Our results demonstrate that the understory dwarf bamboo reshapes the spatial distribution of litter and nutrient release dynamics during decomposition, resulting in element-specific nutrient release patterns. These findings provide mechanistic insights into how understory dwarf bamboo mediates nutrient cycling dynamics in forest communities. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

27 pages, 3267 KB  
Article
Regulatory Mechanisms of Tannins on the Decomposition Rate of Mixed Leaf Litter in Submerged Environments
by Lisha Li, Jiahao Tan, Gairen Yang, Yu Huang, Yusong Deng, Yuhan Huang, Mingxia Yang, Jizhao Cao and Huili Wang
Plants 2025, 14(19), 3064; https://doi.org/10.3390/plants14193064 - 3 Oct 2025
Viewed by 541
Abstract
Terrestrial cross-boundary inputs of leaf litter serve as a critical foundation for secondary productivity in freshwater ecosystems. The regulatory mechanisms of tannins in leaf litter on degradation rates under submerged conditions remain unclear. This study employed leaf litter from low-tannin plants Osmanthus fragrans [...] Read more.
Terrestrial cross-boundary inputs of leaf litter serve as a critical foundation for secondary productivity in freshwater ecosystems. The regulatory mechanisms of tannins in leaf litter on degradation rates under submerged conditions remain unclear. This study employed leaf litter from low-tannin plants Osmanthus fragrans (A) and Canna glauca (B) as decomposition substrates, with the high-tannin species Myriophyllum verticillatum (C) incorporated to adjust tannin levels. A 140-day hydroponic degradation experiment was conducted under controlled temperature and dark conditions, which included four mixed litter treatments with a gradient of tannin additions (AB as the control, 0 g; ABC1: 0.5 g; ABC2: 2.5 g; ABC3: 4.5 g) along with two single-species treatments (A and B). The following results were found: (1) Low tannin levels (ABC1) promoted degradation rates of A and B (increased by 1.33–12.70%), whereas high tannin (ABC3) inhibited decomposition (decreased by 6.21–6.82%). (2) Tannin–protein complexes reduce nitrogen bioavailability and inhibit nitrification, thereby disrupting the nitrogen cycle in aquatic systems. In ABC3, total nitrogen content in A and B litter increased by 17.69–26.46% compared to AB, with concurrent 59.29% elevation in water NH4+-N concentration. (3) High tannin induced dominance of oligotrophic stress-resistant bacterial communities (e.g., Treponema) through nutrient limitation and toxicity stress; however, their low metabolic efficiency reduced overall decomposition efficiency. Research reveals that the ecological benefits of plant secondary metabolites outweigh their nutritional quality attributes. Full article
Show Figures

Figure 1

26 pages, 2752 KB  
Article
Response Mechanism of Litter to Soil Water Conservation Functions Under the Density Gradient of Robinia pseudoacacia L. Forests in the Loess Plateau of the Western Shanxi Province
by Yunchen Zhang, Jianying Yang, Jianjun Zhang and Ben Zhang
Plants 2025, 14(19), 3042; https://doi.org/10.3390/plants14193042 - 1 Oct 2025
Viewed by 437
Abstract
In the ecologically fragile western Shanxi Loess region, stand density regulation of artificial Robinia pseudoacacia L. forests plays a crucial role in sustaining the water regulation functions of the litter-soil system, yet multi-scale mechanistic analyses remain scarce. To address this gap, we established [...] Read more.
In the ecologically fragile western Shanxi Loess region, stand density regulation of artificial Robinia pseudoacacia L. forests plays a crucial role in sustaining the water regulation functions of the litter-soil system, yet multi-scale mechanistic analyses remain scarce. To address this gap, we established six stand density classes (ranging from 1200 to 3200 stems/ha) and quantified litter water-holding traits and soil physicochemical properties. We then applied principal component analysis (PCA) and structural equation modeling (SEM) to examine density-litter-soil relationships. Low-density stands (≤2000 stems/ha) exhibited significantly higher litter accumulation (6.08–6.37 t/ha) and greater litter water-holding capacity (maximum 20.58 t/ha) than the high-density stands (p < 0.05). Soil capillary water-holding capacity decreased with increasing density (4702.63–4863.28 t/ha overall), while non-capillary porosity (5.26–6.21%) and soil organic carbon (~12.5 g/kg) were higher in high-density stands (≥2800 stems/ha), reflecting a structural-carbon optimization trade-off. PCA revealed a primary hydrological function axis with low-density stands clustering in the positive quadrant, while high-density stands shifted toward nutrient-conservation traits. SEM confirmed that stand density affected soil capillary water-holding capacity indirectly through litter accumulation (significant indirect path; non-significant direct path), highlighting the central role of litter quantity. When density exceeded ~2400 stems/ha, litter decomposition rate decreased by ~56%, coinciding with capillary porosity falling below ~47%, a threshold linked to impaired balance between water storage and infiltration. These findings identify 1200–1600 stems/ha as the optimal density range; in this range, soil capillary water-holding capacity reached 4788–4863 t/ha, and available phosphorus remained ≥2.1 mg/kg, providing a density-centered, near-natural management paradigm for constructing “water-conservation vegetation” on the Loess Plateau. Full article
Show Figures

Figure 1

11 pages, 5563 KB  
Article
Estimation of Litter Yield and Decomposition Rate in Dahurian Larch Forests of the Greater Khingan Mountains
by Zhiyong Cai, Long Sun, Jiabao Sun and Haiqing Hu
Forests 2025, 16(10), 1516; https://doi.org/10.3390/f16101516 - 25 Sep 2025
Viewed by 271
Abstract
The aim of this paper is to investigate forest litter yield and decomposition rate estimation methods to provide a basic theory for litter production and decomposition studies and a scientific foundation for forest management practices. The Greater Khingan Dahurian larch (Larix gmelinii [...] Read more.
The aim of this paper is to investigate forest litter yield and decomposition rate estimation methods to provide a basic theory for litter production and decomposition studies and a scientific foundation for forest management practices. The Greater Khingan Dahurian larch (Larix gmelinii) forest in China was taken as the study subject. Forest litter was defined as the cumulative product of annual litterfall. The Olson exponential decay model, which is widely recognized in ecological studies, was employed to develop a system of equations representing the dynamic equilibrium among litter production, decomposition, and accumulation. Litter yield and decomposition rate estimation models were formulated based on this system. Model parameters were analyzed using multiple linear regression techniques. The proposed estimation methods were verified through field survey data and one-sample t-tests. The relative error for litter production estimation ranged from 0.01 to 0.25, with an average of 0.13, and the t-test yielded a p-value of 0.108. The relative error of the decomposition rate estimation was 0.00–0.35, with an average of 0.12, and the corresponding t-test yielded a p-value of 0.151. A litter yield and decomposition rate model with easily obtained predictor variables was constructed in this study. The model can rapidly estimate the litter yield and decomposition rate of survey sites and has important application value for litter yield- and decomposition-related studies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 2836 KB  
Article
Effect of Slope Gradient and Litter on Soil Moisture Content in Temperate Deciduous Broadleaf Forest
by Minyoung Lee, Dongmin Seo, Jeong Soo Park and Jaeseok Lee
Forests 2025, 16(9), 1495; https://doi.org/10.3390/f16091495 - 21 Sep 2025
Viewed by 466
Abstract
Although rainfall is a major determinant of soil moisture content (SMC), various factors affect SMC. The effects of these environmental factors contribute to spatial heterogeneity in SMC, which influences diverse ecological processes. To better understand the dynamics in SMC, litter and slope gradient [...] Read more.
Although rainfall is a major determinant of soil moisture content (SMC), various factors affect SMC. The effects of these environmental factors contribute to spatial heterogeneity in SMC, which influences diverse ecological processes. To better understand the dynamics in SMC, litter and slope gradient should be considered. To this end, we analyzed the impacts of litter and slope gradient on SMC from 2020 to 2021 on Mt. Jeombong, located in a temperate deciduous broadleaf forest. We classified the study period into foliage (with a developed canopy) and non-foliage (after leaf fall) seasons. Our results indicated that SMC was affected by slope gradient and litter layer. Rainfall absorption occurred more at gentle slope, leading to higher SMC. Additionally, rainfall absorption was interpreted as being intercepted by the litter layer. Consequently, the correlation coefficient between SMC increment and rainfall was lower in the non-foliage season (R2 = 0.37–0.56) than in the foliage season (R2 = 0.72–0.84). With temporal progression, however, SMC response to rainfall increased where the litter was thickly accumulated, suggesting that litter interception was gradually diminished by decomposition. In this study, spatial heterogeneity in the litter layer and slope gradient substantially influenced the supply of soil moisture from rainfall. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

30 pages, 3492 KB  
Article
Carbon Sequestration as a Driver of Pine Forest Succession on Sandy Alluvium: Quantitative Assessment and Process Modeling
by Andrey Smagin, Nadezhda Sadovnikova, Elena Belyaeva, Anvar Kacimov and Marina Smagina
Forests 2025, 16(9), 1482; https://doi.org/10.3390/f16091482 - 18 Sep 2025
Viewed by 257
Abstract
The biogenic organization of widespread valley pine ecosystems on sandy alluvium leads to an increase in soil fertility, productivity, and biodiversity through autogenic successions. Using our own stationary observations and literary data on the productivity of pine forests in Russia, Belarus, and Ukraine, [...] Read more.
The biogenic organization of widespread valley pine ecosystems on sandy alluvium leads to an increase in soil fertility, productivity, and biodiversity through autogenic successions. Using our own stationary observations and literary data on the productivity of pine forests in Russia, Belarus, and Ukraine, we quantified the mechanism of autogenic forest successions associated with carbon sequestration and the influence of organic matter dynamics on the fertility and water retention of sandy soils. The low rate of organic matter turnover in primary succession leads to the intensive accumulation of thick (6–8 cm) forest litter and the formation of small humus-eluvial horizons with total carbon storage up to 50 Mg/ha. This soil structure retains 2–6 times more water and biophilic elements than in the original sandy alluvium. It is suitable for the settlement of more demanding broadleaf species and nemoral herbs with higher rates of litterfall, its decomposition and humification. As a result, simple pine forests on Arenosols and primitive Sod-podzolic soils are replaced by complex, more productive linden–oak–pine ecosystems on developed Cambisols with thick (up to 30 cm) humus horizons, carbon storage of 80–100 Mg/ha and higher (2–7 times compared to the previous soils) fertility and water-holding capacity. This mechanism is adequately described by a nonlinear process model with a trigger reaction of plant productivity to the storage and quality of soil organic matter, suitable for predicting long-term carbon sequestration during the succession of valley pine forests and the effectiveness of artificial afforestation. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

24 pages, 6096 KB  
Article
Impacts of Lead and Nanoplastic Co-Exposure on Decomposition, Microbial Diversity, and Community Assembly Mechanisms in Karst Riverine Miscanthus Litter
by Peijian Chen, Tianjiao Mei, Xingbing He, Yonghui Lin, Zaihua He and Xiangshi Kong
Microorganisms 2025, 13(9), 2172; https://doi.org/10.3390/microorganisms13092172 - 17 Sep 2025
Viewed by 437
Abstract
Karst rivers are increasingly contaminated by both heavy metals and nanoplastics, yet their combined impact on riparian litter decomposition remains unresolved. We conducted a 90-day microcosm experiment using Miscanthus floridulus leaf litter collected from the Donghe River, Jishou, China, and exposed it to [...] Read more.
Karst rivers are increasingly contaminated by both heavy metals and nanoplastics, yet their combined impact on riparian litter decomposition remains unresolved. We conducted a 90-day microcosm experiment using Miscanthus floridulus leaf litter collected from the Donghe River, Jishou, China, and exposed it to Pb (1 mg L−1), polystyrene nanoplastics (10 and 100 µg L−1), and their combinations. Pb alone modestly inhibited mass loss (61.0%) and respiration, while NP10 significantly accelerated decomposition (67.0%), and NP100 suppressed it (60.4%); co-exposure produced non-monotonic, concentration-dependent effects. Enzyme stoichiometry revealed that all treatments intensified nitrogen limitation but alleviated carbon limitation through reduced microbial activity. Bacterial communities, dominated by Pseudomonadota, exhibited remarkably stable phylum-level composition, high network complexity, and identical keystone taxa across all treatments, indicating strong functional redundancy and resilience. In contrast, fungal communities suffered severe declines in Basidiomycota abundance, collapsed network stability, and a single keystone taxon, underscoring their vulnerability. βNTI–RCbray analyses demonstrated that stochastic processes (>50%) overwhelmingly governed both bacterial and fungal assembly, with only marginal deterministic shifts. Collectively, our findings highlight that bacteria—not fungi—serve as the primary decomposers under Pb–NP co-stress and that stochastic assembly, coupled with bacterial redundancy, buffers ecosystem function against emerging mixed pollutants in subtropical riverine systems. Full article
(This article belongs to the Collection Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

20 pages, 1929 KB  
Article
Microbial Community Responses to Nitrogen Addition in Poplar Leaf and Branch Litter: Shifts in Taxonomic and Phylogeny
by Yuan Gao, Yiying Wang, Haodong Zheng, Rongkang Wang, Zimei Miao and Zhiwei Ge
Forests 2025, 16(9), 1446; https://doi.org/10.3390/f16091446 - 11 Sep 2025
Viewed by 385
Abstract
Poplar (Populus L. species), a fast-growing temperate species, forms plantations with high productivity and biomass, with its litter sustaining key functions in nutrient cycling, microbial diversity, and carbon storage. Litter microbial communities drive decomposition, particularly in early stages, this initial phase is [...] Read more.
Poplar (Populus L. species), a fast-growing temperate species, forms plantations with high productivity and biomass, with its litter sustaining key functions in nutrient cycling, microbial diversity, and carbon storage. Litter microbial communities drive decomposition, particularly in early stages, this initial phase is characterized by the leaching of water-soluble carbon and nutrients from the litter, which creates a readily available resource pulse that facilitates rapid microbial colonization and activation. This process is followed by the activation of microbial enzymes and the immobilization of nutrients, collectively initiating the breakdown of more recalcitrant litter materials. Under rising global nitrogen deposition, we conducted a field randomized block experiment in 13-year-old pure poplar (Populus deltoides L. ‘35’) stands, with three nitrogen addition treatments: N0 (0 g N·m−2·yr−1), N2 (10 g N·m−2·yr−1), and N4 (30 g N·m−2·yr−1). In the initial phase of litter decomposition, we measured the soil properties and litter traits, the litter microbial community composition, and its taxonomic and phylogenetic diversity indices. The results indicate that nitrogen addition altered microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), soil NO3-N, and accelerated litter decomposition rates. The microbial community in leaf litter responded to nitrogen addition with increased phylogenetic clustering (higher OTU richness and NRI), which suggests that environmental filtering exerted a homogenizing selective pressure linked to both soil and litter properties, whereas the microbial community in branch litter responded to nitrogen addition with increased taxonomic diversity (higher OTU richness, Shannon, ACE, and Chao1), a pattern associated with litter properties that likely alleviated nitrogen limitation and created opportunities for more taxa to coexist. The observed differences in response stem from distinct substrate properties of the litter. This study elucidates microbial taxonomic and phylogenetic diversity responses to nitrogen addition during litter decomposition, offering a scientific foundation for precise microbial community regulation and sustainable litter management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 5382 KB  
Article
Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems
by Yangyang Jia, Rong Yang, Wan Duan, Hui Wang, Zhanquan Ji, Qianqian Dong, Wenhao Qin, Wenli Cao, Wenshuo Li and Niannian Wu
Plants 2025, 14(17), 2741; https://doi.org/10.3390/plants14172741 - 2 Sep 2025
Viewed by 489
Abstract
Temperature and precipitation are the primary factors restricting litter decomposition in desert ecosystems. The desert ecosystems in Central Asia are ecologically fragile regions, and the climate shows a trend of “warm and wet” due to the regional climate change. However, the influencing mechanisms [...] Read more.
Temperature and precipitation are the primary factors restricting litter decomposition in desert ecosystems. The desert ecosystems in Central Asia are ecologically fragile regions, and the climate shows a trend of “warm and wet” due to the regional climate change. However, the influencing mechanisms of warming and winter snow changes on litter decomposition are still poorly understood in desert ecosystems. Furthermore, the litter decomposition rate cannot be directly compared due to the large variations in litter quality across different ecosystems. Here, we simulated warming and altered winter snow changes in the field, continuously monitored litter decomposition rates of standard litter bags (i.e., red tea and green tea) and a dominant plant species (i.e., Erodium oxyrrhynchum) during a snow-cover and non-snow-cover period over five months. We found that warming and increased snow cover increased the litter decomposition rate of red tea, green tea, and Erodium oxyrhinchum, and had significant synergistic effects on litter decomposition. The effects of warming and winter snow changes on litter decomposition were more pronounced in April, when the hydrothermal conditions were the best. The decomposition rates of all three litter types belowground were higher than those on the soil surface, highlighting the important roles of soil microbes in accelerating litter decomposition. Furthermore, we found that warming and winter snow changes altered litter decomposition by influencing soil enzyme activities related to soil carbon cycling during the snow-cover period, while influencing soil enzyme activities related to soil phosphorus cycling during the non-snow-cover period. And, notably, decreased snow cover promoted soil enzyme activities during the snow-cover period. More interestingly, our results indicated that the decomposition rate (k) was the lowest, but the stability factor (S) was the highest in the Gurbantünggüt Desert based on the cross-ecosystem comparison using the “Tea Bag Index” method. Overall, our results highlighted the critical roles of warming and winter snow changes on litter decomposition. In future research, the consideration of relationships between litter decomposition and soil carbon sequestration will advance our understanding of soil carbon cycling under climate change in desert ecosystems. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 3633 KB  
Article
Precipitation as the Key Regulator of Acid Rain Inhibition on Forest Soil Organic Carbon Decomposition: A Global Meta-Analysis for Sustainable Ecosystem Management
by Xing Yang, Fen Li, Zaihua He, Yonghui Lin, Xingbing He and Xiangshi Kong
Sustainability 2025, 17(17), 7714; https://doi.org/10.3390/su17177714 - 27 Aug 2025
Viewed by 924
Abstract
Acid rain poses a significant threat to forest ecosystems globally, with substantial impacts on soil organic carbon decomposition. This study employs a meta-analysis of 361 datasets from 63 published studies to investigate the response of SOC decomposition in forest ecosystems to acid rain. [...] Read more.
Acid rain poses a significant threat to forest ecosystems globally, with substantial impacts on soil organic carbon decomposition. This study employs a meta-analysis of 361 datasets from 63 published studies to investigate the response of SOC decomposition in forest ecosystems to acid rain. Our analysis reveals that acid rain has a significant inhibitory effect on SOC decomposition. Precipitation emerges as a crucial large-scale environmental factor that differentially modulates this effect; it alleviates acid rain’s suppressive impact on litter decomposition by diluting H+ ions but intensifies the inhibition of soil decomposition due to the soil’s strong adsorption capacity. Furthermore, our results indicate that acid rain exerts a more pronounced inhibitory effect on soil organic carbon decomposition than on litter decomposition. Compared to small-scale factors, precipitation plays a more significant role in regulating the inhibitory effects of acid rain on organic carbon decomposition. These findings underscore the need to integrate precipitation into carbon-cycle models and tailor management strategies to specific climates for sustainable forest carbon management. It also provides a theoretical foundation for predicting the response of forest carbon decomposition to environmental change and for balancing ecological protection with sustainable development in acid rain-impacted regions. Full article
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Salinity Mediates Tamarix chinensis Litter Decomposition to Enhance Soil Enzyme Activity in Coastal Saline–Alkali Soils
by Yue Lu, Lingtai Kong, Shihui Li, Pan Lun, Fanglei Gao, Qiqi Cao and Jiangbao Xia
Plants 2025, 14(17), 2674; https://doi.org/10.3390/plants14172674 - 27 Aug 2025
Viewed by 428
Abstract
The aim of this study was to explore the decomposition characteristics of Tamarix chinensis litter and its soil-improving capacity under different salinities. Four treatments were designed: a control (CK) treatment without saline water injection and three treatments encompassing slightly (SS, 0.4% soil salinity), [...] Read more.
The aim of this study was to explore the decomposition characteristics of Tamarix chinensis litter and its soil-improving capacity under different salinities. Four treatments were designed: a control (CK) treatment without saline water injection and three treatments encompassing slightly (SS, 0.4% soil salinity), moderately (SM, 0.8%), and highly saline (SH, 1.2%) conditions. T. chinensis litter at three degrees of decomposition (undecomposed, semidecomposed, and already decomposed) was studied. After 180 days, the litter substrate quality, 0–10 cm soil physicochemical properties, and enzyme activities were measured. Correlation analysis and structural equation modeling were employed to elucidate the interactions and response patterns among soil salinity, the decomposition characteristics of T. chinensis litter, and the physicochemical properties and enzyme activities of surface soil. The results revealed the following: (1) With increasing soil salinity, the contents of litter lignin, cellulose, total carbon and nitrogen residues first decreased but then increased, reaching minima under SM, whereas the content of hemicellulose residue exhibited the opposite trend. With increasing degree of litter decomposition, the contents of lignin and cellulose residues decreased, whereas the contents of hemicellulose, total nitrogen and phosphorus residues increased. (2) With increasing soil salinity, the soil water content, organic matter content, total nitrogen content, and activity of several enzymes increased, peaking under SH. The pH performance followed the order of SS > SM > CK > SH. The total carbon and phosphorus contents first increased but then decreased, with a maximum under SS. The activity of N-acetylamino glucosidase first decreased but then increased and was greatest at moderate and high salinities. (3) The soil water content and level of enzyme activity were significantly correlated with the litter substrate quality. Salinity negatively affected litter substrate residues but positively affected soil physicochemical properties. Litter decomposition under different soil salinities indirectly influenced soil enzymes by affecting soil properties, whereas salinity modulated soil properties directly or through litter decomposition. T. chinensis litter decomposition notably increased enzyme activity in moderate- to high-salinity alkali coastal soils, offering insights for low-efficiency T. chinensis forest management and saline–alkali soil remediation in the Yellow River Delta. Full article
Show Figures

Figure 1

18 pages, 5372 KB  
Article
An IoT-Based System for Measuring Diurnal Gas Emissions of Laying Hens in Smart Poultry Farms
by Sejal Bhattad, Ahmed Abdelmoamen Ahmed, Ahmed A. A. Abdel-Wareth and Jayant Lohakare
AgriEngineering 2025, 7(8), 267; https://doi.org/10.3390/agriengineering7080267 - 21 Aug 2025
Viewed by 1013
Abstract
It is critical to provide proper environmental conditions in poultry houses to maintain birds’ health, boost productivity, and improve the overall economic viability of the poultry industry. Among the myriad of environmental elements, indoor air quality has been a determining factor that directly [...] Read more.
It is critical to provide proper environmental conditions in poultry houses to maintain birds’ health, boost productivity, and improve the overall economic viability of the poultry industry. Among the myriad of environmental elements, indoor air quality has been a determining factor that directly affects poultry well-being. Elevated concentrations of harmful gases—in particular Carbon Dioxide (CO2), Methane (CH4), and Ammonia (NH3)—decomposition products of poultry litter, feed wastage, and biological processes have draconian effects on bird health, feed efficiency, the growth rate, reproduction efficiency, and mortality rate. Despite their importance, traditional air quality monitoring systems are often operated manually, labor intensive, and cannot detect sudden environmental changes due to the lack of real-time sensing. To overcome these limitations, this paper presents an interdisciplinary approach combining cloud computing, Artificial Intelligence (AI), and Internet of Things (IoT) technologies to measure real-time poultry gas concentrations. Real-time sensor feeds are transmitted to a cloud-based platform, which stores, displays, and processes the data. Furthermore, a machine learning (ML) model was trained using historical sensory data to predict the next-day gas emission levels. A web-based platform has been developed to enable convenient user interaction and display the gas sensory readings on an interactive dashboard. Also, the developed system triggers automatic alerts when gas levels cross safe environmental thresholds. Experimental results of CO2 concentrations showed a significant diurnal trend, peaking in the afternoon, followed by the evening, and reaching their lowest levels in the morning. In particular, CO2 concentrations peaked at approximately 570 ppm during the afternoon, a value that was significantly elevated (p < 0.001) compared to those recorded in the evening (~560 ppm) and morning (~555 ppm). This finding indicates a distinct diurnal pattern in CO2 accumulation, with peak concentrations occurring during the warmer afternoon hours. Full article
Show Figures

Figure 1

15 pages, 1674 KB  
Article
Characterization of Litter and Topsoil Under Different Vegetation Cover by Using a Chemometric Approach
by Fulvia Tambone, Anna Masseroli, Paolo Beccarelli, Luca Breno, Marco Zuccolo, Gigliola Borgonovo, Stefania Mazzini, Alex Golinelli and Barbara Scaglia
Forests 2025, 16(8), 1349; https://doi.org/10.3390/f16081349 - 19 Aug 2025
Cited by 1 | Viewed by 608
Abstract
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics [...] Read more.
Leaf litter conservation practices in forests can contribute to increasing CO2 storage in natural soils as organic matter; however, this process depends on the type of vegetation cover. This study, using different approaches, aimed to assess this process starting from the characteristics of three different types of litters and topsoil (0–5 cm depth) originating from chestnut, beech, and pine in various forest locations within the territory of Edolo (Camonica Valley, Central Italian Alps). Both labile (DOM) and recalcitrant (ROM) organic matter fractions were considered. Microbial degradation activity was strongly influenced by DOM (DOM vs. Respiration mg CO2 g−1 dry matter: r = 0.96), and NMR spectroscopy showed that aromatic C and polymethylene C in long-chain aliphatic structures (e.g., lipids, cutin) became more evident from litters to topsoils due to a concentration effect. Finally, chemometric elaboration of quantitative and qualitative data identified two principal component (PC) profiles, explaining 88% of the total variance, in which litter and the topsoil samples were spatially separated, indicating that significant changes occurred during the decomposition process. An Evolution Index (EI) calculated highlighted greater changes for chestnut (0.90) followed by pine (0.60) and beech (0.48), in agreement with chemical (degradation rates of 14.21%, 49.11%, and 48% for beech, chestnut, and pine litter, respectively) and spectroscopic data. Beech litter appears to be more efficient at conserving organic carbon. These findings underscore the importance of understanding litter characteristics for forest management, suggesting which species are most effective in promoting soil carbon storage. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 1270 KB  
Article
Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi
by Haley M. Burrill, Ellen B. Ralston, Heather A. Dawson and Bitty A. Roy
Microorganisms 2025, 13(8), 1834; https://doi.org/10.3390/microorganisms13081834 - 6 Aug 2025
Viewed by 667
Abstract
Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive [...] Read more.
Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive fungi, pyrophilous fungi may continue providing ecosystem functions. Using litter bags, we measured the litter decomposition at three prairies with unburned and burned sections, and we used Illumina sequencing to examine litter communities. We hypothesized that (H1) decomposition would be higher at unburned sites than burned, (H2) increased decomposition at unburned sites would be correlated with higher overall saprotroph diversity, with a lower diversity in autoclaved samples, and (H3) pyrophilous fungal diversity would be higher at burned sites and overall higher in autoclaved samples. H1 was not supported; decomposition was unaffected by burn treatments. H2 and H3 were somewhat supported; saprotroph diversity was lowest in autoclaved litter at burned sites, but pyrophilous fungal diversity was the highest. Pyrophilous fungal diversity significantly contributed to litter decomposition rates, while saprotroph diversity did not. Our findings indicate that fire-adapted prairies host a suite of pyrophilous saprotrophic fungi, and that these fungi play a primary role in litter decomposition post-fire when other fire-sensitive fungal saprotrophs are less abundant. Full article
(This article belongs to the Special Issue Fungal Ecology on a Changing Planet)
Show Figures

Figure 1

Back to TopTop