Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,213)

Search Parameters:
Keywords = living soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6416 KiB  
Article
Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity
by Massimo Rippa, Ernesto Lahoz, Pasquale Mormile, Maria Cristina Sorrentino, Erica Errico, Mariateresa Frattolillo, Milena Petriccione, Federica Maione, Elvira Ferrara and Valerio Battaglia
Agronomy 2025, 15(6), 1391; https://doi.org/10.3390/agronomy15061391 - 5 Jun 2025
Abstract
Recently, a new solarization method gained a great deal of attention thanks to various advantages in comparison with both the traditional one and soil fumigation (alternative soil treatment based on the use of chemical agents). This method implements traditional solarization by spraying a [...] Read more.
Recently, a new solarization method gained a great deal of attention thanks to various advantages in comparison with both the traditional one and soil fumigation (alternative soil treatment based on the use of chemical agents). This method implements traditional solarization by spraying a biodegradable black liquid over the soil surface before the application of a thermic film. This creates a thin black film that acts like a “black body”, significantly increasing soil temperatures at various depths. Thanks to higher temperatures, it is possible to eliminate most of the pathogens in shorter times compared to traditional solarization. In the present paper, the results of different trials carried out on green beans, Romanesco broccoli, and lettuce were reported. The aims of this work were to demonstrate the efficacy on soil borne pathogens, its lower impact on living soil fungal biodiversity and the agronomical performance of the new solarization method. All crops tested showed a significant yield increase when grown in soil treated with the innovative solarization method. Romanesco broccoli also exhibited improved inflorescence quality. Solarization had a positive impact on overall crop productivity: green beans showed a maximum yield increase of 165.3%, lettuce yields rose by 47.5%, and Romanesco broccoli yields were 111.5% higher compared to the non-solarized control. These results confirm that the new solarization method is more effective, as well as environmentally, economically, and socially sustainable compared to traditional methods. Full article
(This article belongs to the Special Issue Sustainable Agriculture: Plant Protection and Crop Production)
Show Figures

Figure 1

24 pages, 757 KiB  
Review
Citizen Science for Soil Monitoring and Protection in Europe: Insights from the PREPSOIL Project Under the European Soil Mission
by Karel Charvát, Jaroslav Šmejkal, Petr Horák, Markéta Kollerová, Šárka Horáková and Pierre Renault
Sustainability 2025, 17(11), 5042; https://doi.org/10.3390/su17115042 - 30 May 2025
Viewed by 372
Abstract
Citizen science (CS) is increasingly recognized as a complementary approach for addressing soil health challenges—including erosion, pollution, nutrient imbalances, and biodiversity loss—by harnessing public participation to broaden spatial and temporal data collection. This review synthesizes findings from the following: (i) a systematic analysis [...] Read more.
Citizen science (CS) is increasingly recognized as a complementary approach for addressing soil health challenges—including erosion, pollution, nutrient imbalances, and biodiversity loss—by harnessing public participation to broaden spatial and temporal data collection. This review synthesizes findings from the following: (i) a systematic analysis of peer-reviewed literature and grey sources, (ii) a database of 96 CS initiatives compiled by the European PREPSOIL project, and (iii) questionnaire surveys and workshops conducted in five Living Labs across Europe. Our analysis indicates that volunteer-driven monitoring can enhance the volume and granularity of soil data, providing critical insights into parameters such as organic carbon content, nutrient levels, and pollutant concentrations. However, persistent challenges remain, including inconsistencies in data validation, volunteer attrition, and concerns regarding digital literacy and data privacy. Despite these challenges, ongoing efforts to standardize protocols, integrate remote sensing and sensor-based validation methods, and employ feedback mechanisms improve data reliability and participant engagement. We conclude that sustained capacity-building, transparent data governance, and stakeholder collaboration, from local communities to governmental bodies, are essential for fully realizing the potential of citizen science in soil conservation. This work is framed within the context of the European Soil Mission, and CS is demonstrated to meaningfully support sustainable land management and evidence-based policymaking by aligning public-generated observations with established scientific frameworks. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

14 pages, 1966 KiB  
Article
Evaluation of Water Security in a Water Source Area from the Perspective of Nonpoint Source Pollution
by Jun Yang, Ruijun Su, Yanbo Wang and Yongzhong Feng
Sustainability 2025, 17(11), 4998; https://doi.org/10.3390/su17114998 - 29 May 2025
Viewed by 241
Abstract
Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource [...] Read more.
Water security is a basic requirement of a region’s residents and also an important point of discussion worldwide. The middle route of the south-to-north water diversion project (MR-SNWDP) represents the most extensive inter-basin water allocation scheme globally. It is the major water resource for the Beijing–Tianjin–Hebei region, and its security is of great significance. In this study, 28 indicators including society, nature, and economy were selected from the water sources of the MR-SNWDP from 2000 to 2017. According to the Drivers-Pressures-States-Impact-Response (DPSIR) framework principle, the entropy weight method was used for weight calculation, and the comprehensive evaluation method was used for evaluating the water security of the water sources of the MR-SNWDP. This study showed that the total loss of nonpoint source pollution (NPSP) in the water source showed a trend of slow growth, except in 2007. Over the past 18 years, the proportion of pollution from three NPSP sources, livestock, and poultry (LP) breeding industry, planting industry, and living sources, were 44.56%, 40.33%, and 15.11%, respectively. The main driving force of water security in all the areas of the water source was the total net income per capita of farmers. The main pressure was the amount of LP breeding and the amount of fertilizer application. The largest impact indicators were NPSP gray water footprint and soil erosion area, and water conservancy investment was the most effective response measure. Overall, the state of the water source safety was relatively stable, showing an overall upward trend, and it had remained at Grade III except for in 2005, 2006, and 2011. The state of water safety in all areas except Shiyan City was relatively stable, where the state of water safety had fluctuated greatly. Based on the assessment findings, implications for policy and decision-making suggestions for sustainable management of the water sources of the MR-SNWDP resources are put forward. Agricultural cultivation in water source areas should reduce the application of chemical fertilizers and accelerate the promotion of agricultural intensification. Water source areas should minimize retail livestock and poultry farming and promote ecological agriculture. The government should increase investment in water conservancy and return farmland to forests and grasslands, and at the same time strengthen the education of farmers’ awareness of environmental protection. The evaluation system of this study combined indicators such as the impact of agricultural nonpoint source pollution on water bodies, which is innovative and provides a reference for the water safety evaluation system. Full article
(This article belongs to the Special Issue Hydrosystems Engineering and Water Resource Management)
Show Figures

Figure 1

16 pages, 1294 KiB  
Article
Impact of Fluxapyroxad and Mefentrifluconazole on Microbial Succession and Metabolic Regulation in Rice Under Field Conditions
by Changpeng Zhang, Nan Fang, Chizhou Liang, Xiangyun Wang, Yanjie Li, Hongmei He, Xueping Zhao, Yuqin Luo and Jinhua Jiang
Foods 2025, 14(11), 1904; https://doi.org/10.3390/foods14111904 - 27 May 2025
Viewed by 146
Abstract
This study systematically evaluated the residual behavior of fluxapyroxad (FXP) and mefentrifluconazole (MFZ) in rice–soil systems, alongside their soil and metabolic impacts. Analytical methods validated via linear regression (0.0001–0.05 mg/L) complied with EU guidelines, demonstrating recoveries of 71.97–114.96%, RSDs ≤ 12.12%, and effective [...] Read more.
This study systematically evaluated the residual behavior of fluxapyroxad (FXP) and mefentrifluconazole (MFZ) in rice–soil systems, alongside their soil and metabolic impacts. Analytical methods validated via linear regression (0.0001–0.05 mg/L) complied with EU guidelines, demonstrating recoveries of 71.97–114.96%, RSDs ≤ 12.12%, and effective mitigation of matrix effects (−85.08% to −76.97%) using matrix-matched calibration. Residual dissipation followed first-order kinetics, with half-lives (T1/2) spanning 10.83–21.00 d (FXP) and 23.10–57.76 d (MFZ). Notably, MFZ exhibited prolonged persistence in brown rice (T1/2 = 57.76 d), though final residues (0.031 ± 0.001 μg/g FXP; 0.011 ± 0.0003 μg/g MFZ) remained below regulatory limits (China: 1 mg/kg; CAC: 5 mg/kg). Microbial analysis revealed transient diversity loss in rhizosphere communities (Chao1 index, p < 0.05), recovering by 21 d, while endophytes displayed resilience linked to plant metabolites. Enrichment of degraders (e.g., Sphingomonas) contrasted with suppression of nitrogen-fixing Bradyrhizobium, indicating functional trade-offs. Metabolomic profiling identified 3512 metabolites, with 332 and 173 differentially expressed metabolites at 7 d (S) and 21 d (T), dominated by lipids, benzenoids, and phenylpropanoids. Key metabolic shifts included a 2.11-fold increase in coumarin and elevated L-aspartic acid, highlighting adaptive responses via phenylalanine and TCA cycle pathways. Correlation analyses linked stress-tolerant endophytes (Azorhizobium) to defense-related metabolites (e.g., coumarin), suggesting microbial modulation of plant resilience. These findings emphasize the need for integrated strategies combining residue monitoring, microbial management, and metabolic insights to mitigate agrochemical risks in sustainable agriculture. Full article
(This article belongs to the Special Issue Mycotoxins and Heavy Metals in Food)
Show Figures

Figure 1

19 pages, 3090 KiB  
Article
Effect of Forest Species Canopy on the Accumulation of Toxic Metals in the Soil Within and Around Macedonia Airport, Northern Greece
by Ioannis Mousios, Marianthi Tsakaldimi, Evangelia Gkini, Theocharis Chatzistathis and Petros Ganatsas
Urban Sci. 2025, 9(6), 191; https://doi.org/10.3390/urbansci9060191 - 27 May 2025
Viewed by 212
Abstract
Soil pollution at airports is a critical environmental issue that affects not only the local ecology but also the health of people living near these infrastructures. The main causes of pollution include the use of chemical products such as de-icing agents, fuels, and [...] Read more.
Soil pollution at airports is a critical environmental issue that affects not only the local ecology but also the health of people living near these infrastructures. The main causes of pollution include the use of chemical products such as de-icing agents, fuels, and lubricants, as well as waste from aircraft and ground vehicles. These substances often seep into the soil, leading to the accumulation of toxic elements. However, due to security reasons, there is a great scarcity of real data on the impact of airport operations on ecosystems and the role trees could play in pollutant limitation. Thus, the aim of this study was to determine whether airport operations have toxic effects on soils within and around Macedonia Airport, Thessaloniki, Northern Greece, by determining the concentrations of potentially toxic elements (Cu, Ni, Pb, Mn, Fe, Co, Cr, Cd, and Zn) in soil samples taken within the airport and near the airport. Furthermore, this study aimed to investigate the effect of the canopies of forest species on the accumulation of toxic metals in the soil inside the airport and in the peripheral zone. The results show that, overall, no important pollution was detected in the soil of the Thessaloniki Airport, Northern Greece, both inside and outside the airport area. Some differences were observed in the content of toxic metals studied between the samples taken inside and outside the airport, and some effects of tree canopy were noted. However, all values were lower than the defined permissible limits according to international standards (except for iron). It is important, however, to perform regular re-checking of soil quality with new samples in order to prevent soil contamination and mitigate any contamination found. Full article
Show Figures

Figure 1

15 pages, 570 KiB  
Article
Levels of Mineral Elements in Different Organs of Dogs from the Ionian-Etnean Volcanic Area
by Fabio Bruno, Anthea Miller, Giuseppe Bruschetta, Vincenzo Nava, Claudia Rifici, Sebastiano Zappalà and Patrizia Licata
Animals 2025, 15(11), 1545; https://doi.org/10.3390/ani15111545 - 25 May 2025
Viewed by 194
Abstract
Mineral elements can either be pollutants or essential dietary components. Monitoring their levels in the environment and living organisms is crucial because excessive amounts can become toxic. Dogs, due to their proximity to humans, shared habitats, and similar organ structures, can be effective [...] Read more.
Mineral elements can either be pollutants or essential dietary components. Monitoring their levels in the environment and living organisms is crucial because excessive amounts can become toxic. Dogs, due to their proximity to humans, shared habitats, and similar organ structures, can be effective indicators of environmental pollution by toxic elements. This study aimed to assess the levels of 11 mineral elements in 80 dog carcasses (49 males and 31 females), aged between 2 and 16 years, from the Ionian-Etnean volcanic region of the province of Catania, where the dogs had died under unknown circumstances. A direct mercury analyzer (DMA-80) was used to measure Hg, and an inductively coupled plasma mass spectrometer (ICP-MS) was used for the other elements. A one-way ANOVA, followed by Bonferroni’s multiple comparison for post hoc analysis, was conducted to evaluate significant differences between the organ samples and different minerals and between the weight and metal levels. The statistical significance was set at p < 0.05. The study indicates that high concentrations of metals like cadmium, mercury, lead, and chromium are present in the liver, kidneys, and other organs. These elevated concentrations suggest that the local volcanic emissions contribute to soil, water, and atmospheric contamination. The data showed differences in the metal concentrations between the sexes, which could be attributed to biological and environmental factors. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

20 pages, 4240 KiB  
Article
Influence of Plant Organs and Functional Traits on the Structure of Bacterial and Fungal Communities in Three Acer Species
by Jiaxing Guo, Lei Wang, Guangze Jin and Zhili Liu
Forests 2025, 16(6), 875; https://doi.org/10.3390/f16060875 - 22 May 2025
Viewed by 248
Abstract
Plants and the microorganisms living on their surfaces are an inseparable community that interacts with plant functional traits and influences plant growth, but the differences in microorganisms between plant organs and their relationship with plant functional traits have not been deeply explored. In [...] Read more.
Plants and the microorganisms living on their surfaces are an inseparable community that interacts with plant functional traits and influences plant growth, but the differences in microorganisms between plant organs and their relationship with plant functional traits have not been deeply explored. In this study, we used high-throughput sequencing to investigate the variation of microorganisms across different plant organs (leaves, twigs, trunks, and roots) of three species (Acer pictum subsp. mono, Acer tegmentosum, and Acer ukurunduense) in the Xiaoxing’an Mountains in Northeastern China and explored the relationship between microorganisms and plant functional traits. The results indicate that rhizosphere microorganisms have a high diversity. Plant organs explained 52.1% and 32.3% of the variations in bacterial and fungal community structures, respectively. The core microbiome consists of the phyla Proteobacteria and Actinobacteria in bacteria and the phyla Ascomycota and Basidiomycota in fungi. Plant functional traits such as specific leaf area and non-structural carbohydrates, as well as soil total carbon and total phosphorus content, were significantly correlated with microbial community composition. The results highlight that host plant organ characteristics are key drivers of variation in plant-associated microbial communities. By elucidating the regulatory role of host traits in microbiome assembly, our findings provide new mechanistic insights into plant–microbe interactions and ecological coexistence strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 4375 KiB  
Article
Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado
by Michael Remke, Katie Schneider and Julie Korb
Forests 2025, 16(6), 872; https://doi.org/10.3390/f16060872 - 22 May 2025
Viewed by 274
Abstract
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like [...] Read more.
Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like the southern Rocky Mountains. We assessed forest recovery in montane conifer forests, ranging from ponderosa pine to spruce-fir, following a large mixed-severity fire using field-based forest stand data and remotely sensed Leaf Area Index (LAI) measurements. Our objectives were to determine whether LAI is a meaningful proxy for post-fire vegetative recovery and how recovery patterns vary by forest type, burn severity, and abiotic factors. Stand characteristics predicted crown burn severity inconsistently and did not predict soil burn severity. LAI correlated strongly with live overstory tree density and shrub cover (R2 = 0.70). Recovery trajectories varied by forest type, with lower-severity burns generally recovering four years post-fire, while high-severity burns showed delayed recovery. Regeneration patterns were strongly influenced by climate, with higher seedling densities occurring at wetter sites. Our findings highlight the utility of LAI as a proxy for vegetative recovery and underscore the importance of forest type, fire severity, and climatic factors when assessing post-fire resilience. Full article
Show Figures

Figure 1

15 pages, 842 KiB  
Communication
Association Between Soil Patterns and Mortality with Distinct Types of Cancers and CVD Across the USA
by Bingjie Qu, Qiaochu Xu, Linxi Yuan and Ying Chen
Life 2025, 15(6), 832; https://doi.org/10.3390/life15060832 - 22 May 2025
Viewed by 268
Abstract
Mineral elements are essential for human health. Our previous study identified distinct clusters of health-related mineral elements in surface soil among different regions and demonstrated an association between these clusters and health profiles in the USA. The present study further explores the relationship [...] Read more.
Mineral elements are essential for human health. Our previous study identified distinct clusters of health-related mineral elements in surface soil among different regions and demonstrated an association between these clusters and health profiles in the USA. The present study further explores the relationship between these mineral clusters and mortality from detailed specific types of cancers and cardiovascular diseases by using county-level data from 3080 counties across the USA. Utilizing multivariate regression models with adjustment for socio-demographic and geographical factors, our analysis of county-level data revealed that residents in the regions of ‘infertile’ cluster have higher mortality rates for most types of cancers (18/29) and cardiovascular conditions (4/10) compared with people who live elsewhere. Notably, this relationship is pronounced for several specific leading causes of death such as tracheal, bronchus, lung cancer (regression coefficient (99.5% CIs), 6.29 (4.46, 8.13)), prostate cancer (1.06 (0.53, 1.6)), cerebrovascular disease (3.15 (1.74, 4.55)), and hypertensive heart disease (1.23 (0.23, 2.23)). Our findings highlight the critical role of soil minerals in human health and underscore the need for integrating geochemical data in public health strategies and environmental management policies. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

28 pages, 1724 KiB  
Review
Managing Arsenic Pollution from Soil–Plant Systems: Insights into the Role of Biochar
by Qitao Su, Zhixuan Du, Xinyi Huang, Muhammad Umair Hassan and Faizah Amer Altihani
Plants 2025, 14(10), 1553; https://doi.org/10.3390/plants14101553 - 21 May 2025
Viewed by 216
Abstract
Soil contamination with arsenic (As) is becoming a serious concern for living organisms. Arsenic is a nonessential metalloid for plants, humans, and other living organisms. Biochar (BC) is a very effective amendment to remediate polluted soils and it received great attention owing to [...] Read more.
Soil contamination with arsenic (As) is becoming a serious concern for living organisms. Arsenic is a nonessential metalloid for plants, humans, and other living organisms. Biochar (BC) is a very effective amendment to remediate polluted soils and it received great attention owing to its appreciable results. Arsenic toxicity negatively affects plant morph-physiological and biochemical functioning and upsurges the generation of reactive oxygen species (ROS), which negatively affect cellular structures. Arsenic toxicity also reduces seed germination and impedes plant growth by decreasing nutrient uptake, causing oxidative damage and disrupting the photosynthetic efficiency. Plants use different strategies like antioxidant defense and increased osmolyte synthesis to counteract As toxicity; nevertheless, this is not enough to counter the toxic impacts of As. Thus, applying BC has shown tremendous potential to counteract the As toxicity. Biochar application to As-polluted soils improves water uptake, maintains membrane stability and nutrient homeostasis, and increases osmolyte synthesis, gene expression, and antioxidant activities, leading to better plant performance. Additionally, BC modulates soil pH, increases nutrient availability, causes As immobilization, decreases its uptake and accumulation in plant tissues, and ensures safer production. The present review describes the sources, toxic impacts of As, and ways to lower As in the environment to decrease its toxic impacts on humans, the ecosystem, and the food chain. It concentrates on different mechanisms mediated by BC to alleviate As toxicity and remediate As-polluted soils and different research gaps that must be fulfilled in the future. Therefore, the current review will help to develop innovative strategies to minimize As uptake and accumulation and remediate As-polluted soils to reduce their impacts on humans and the environment. Full article
Show Figures

Figure 1

49 pages, 3785 KiB  
Review
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
by Silvana Alfei and Guendalina Zuccari
J. Xenobiot. 2025, 15(3), 76; https://doi.org/10.3390/jox15030076 - 21 May 2025
Viewed by 233
Abstract
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, [...] Read more.
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, groundwater and industrial waste are continually explored. Carbon-based nanomaterials (CNMs), including quantum dots, nanotubes, fullerenes and graphene, have displayed outstanding effectiveness in the decontamination of the environment by several processes. Carbon nanotubes (CNTs), due to their nonpareil characteristics and architecture, when included in absorbents, filter membranes, gas sensors, etc., have significantly improved the efficiency of these technologies in detecting and/or removing inorganic, organic and gaseous xenobiotics and pathogens from air, soil and aqueous matrices. Moreover, CNT-based membranes have displayed significant potential for efficient, fast and low-energy water desalination. However, despite CNTs serving as very potent instruments for environmental detoxification, their extensive utilization could, paradoxically, be highly noxious to the environment and, therefore, humans, due to their toxicity. The functionalization of CNTs (F-CNTs), in addition to further enhancing their absorption capacity and selectivity, has increased their hydrophilicity, thus minimizing their toxicity and carcinogenic effects. In this scenario, this review aims to provide evidence of both the enormous potential of CNTs in sustainable environmental remediation and the concerning hazards to the environment and living organisms that could derive from their extensive and uncontrolled utilization. To this end, an introduction to CNTs, including their eco-friendly production from biomass, is first reported. Several literature reports on CNTs’ possible utilization for environmental remediation, their potential toxicity due to environmental accumulation and the challenges of their regeneration are provided using several reader-friendly tools, to better capture readers’ attention and make reading easier. Full article
Show Figures

Graphical abstract

25 pages, 2622 KiB  
Article
Relative Influence of Salinity in the Flow and Accumulation of Organic Carbon in Open-Water Karstic Mangroves
by Angélica Paola Quintero Alvarado, Jairo Humberto Medina Calderón and José Ernesto Mancera-Pineda
Diversity 2025, 17(5), 360; https://doi.org/10.3390/d17050360 - 19 May 2025
Viewed by 326
Abstract
Carbonat—open-water mangroves have high organic carbon (OC) content, apparently due to sediments’ biophysical characteristics. However, the role of key regulators such as salinity and hydroperiod, which modulate the forest structure and, therefore, carbon dynamics, has been little explored. This study evaluates the influence [...] Read more.
Carbonat—open-water mangroves have high organic carbon (OC) content, apparently due to sediments’ biophysical characteristics. However, the role of key regulators such as salinity and hydroperiod, which modulate the forest structure and, therefore, carbon dynamics, has been little explored. This study evaluates the influence of salinity on the accumulation of aerial and underground OC (production of litter and roots), in open—water karstic forests. To this end, an experimental design was implemented on San Andrés Island, where an edaphic salinity gradient exists due to the water regime. Three physiographic types of mangroves, characterized by different saline regimes, were selected for the study. Two inland forests were selected, both of which exhibited a mesohaline regime (9.63 ± 6.26 and 11.54 ± 7.46 PSU), while a third site corresponded to a euhaline fringe forest (37.47 ± 5.76 PSU). The final location was characterized by a hyperhaline regime basin forest (62.36 ± 10.54 PSU). The fundamental hypothesis posited an inverse relationship between salinity and litter production, and a direct relationship between salinity and root production. To assess root production, the growth core implantation technique (108 soil cores) was employed, with live roots selected based on diameter (<2, 2–5, and 5–20 mm). The mean (±SD) OC content in dry litter (Mg C ha1y1) was 8.96 ± 0.28; 5.57 ± 0.15; 6.31 ± 0.27; and 4.54 ± 0.8; while The production of dry roots was 0.41 ± 0.08; 1.19 ± 0.46; 1.30 ± 0.5; and 0.24 ± 0.20, for the mesohaline forests, the euhaline forest, and the hyperhaline forest, respectively. The proposed hypotheses were confirmed when considering only the extreme salinity ranges. Upon incorporating all salinity ranges from the four forests into the analysis, it was observed that litter production exhibited a tendency to decrease with increasing salinity, while root production demonstrated a tendency to increase. However, this trend did not attain statistical significance, thereby suggesting that, in addition to salinity, other factors may also regulate production processes. These findings serve to affirm the high productivity of carbonate environments and the contribution of autochthonous production. Full article
Show Figures

Figure 1

14 pages, 2074 KiB  
Article
Environmental and Social Factors Associated with the Occurrence of Severe Tungiasis and Scabies in the State of Ceará, Brazil: An Ecological Study
by Nathiel Silva, Carlos Henrique Alencar and Jorg Heukelbach
Trop. Med. Infect. Dis. 2025, 10(5), 135; https://doi.org/10.3390/tropicalmed10050135 - 16 May 2025
Viewed by 200
Abstract
Scabies and tungiasis are skin-related neglected tropical diseases (NTDs) associated with poverty and poor living conditions. We performed an ecological study covering a state in northeast Brazil to identify socio-economic and environmental factors associated with the occurrence of severe scabies and severe tungiasis, [...] Read more.
Scabies and tungiasis are skin-related neglected tropical diseases (NTDs) associated with poverty and poor living conditions. We performed an ecological study covering a state in northeast Brazil to identify socio-economic and environmental factors associated with the occurrence of severe scabies and severe tungiasis, respectively. Data on disease occurrence on the municipality level were derived from a previous study based on online questionnaires. A total of 47 (26.0%) of the 181 state’s municipalities reported severe tungiasis, and 113 (62.4%) severe scabies. Municipalities with occurrence of severe tungiasis were characterized by higher annual rainfalls (median = 883 mm vs. 741 mm; p = 0.037), higher minimum temperatures (median = 23.4 °C vs. 22.7 °C; p = 0.002), higher aridity indices indicating more humid climates (median = 45.1 vs. 50.6; p = 0.019), lower altitudes (median = 88.8 m vs. 201 m; p < 0.001), higher mean air humidity (66.5% vs. 63%; p = 0.018), and better socioeconomic indices (Municipal Human Development Index [MHDI]—median = 0.616 vs. 0.611; p = 0.048/MHDI Longevity—mean = 0.769 vs. 0.759; p = 0.007/Municipal Development Index [MDI]—median = 27.5 vs. 21.8; p < 0.001). Municipalities with predominant luvisol soil characteristics had a lower risk for severe tungiasis (RR = 0.46; 95% CI = 0.27–0.79; p = 0.003), whereas municipalities with predominant gleysols had a significantly higher risk (RR = 2.44; 95% CI = 1.43–4.15; p = 0.010). Municipalities with occurrence of severe scabies were characterized by significantly higher annual rainfalls (median = 804 mm vs. 708 mm; p = 0.001), higher minimum temperatures (23.1 °C vs. 22.3 °C; p < 0.001), higher aridity index (median = 48.2 vs. 41.9; p = 0.014), higher air humidity (65.9% vs. 61%; p = 0.001), lower altitudes (median = 153 m vs. 246 m; p = 0.003), and better socio-economic indicators (MHDI—median = 0.616 vs. 608; p= 0.012/MHDI Education—mean = 0.559 vs. 0.541; p = 0.014/MDI—median = 24.3 vs. 21.1; p = 0.005). In multivariate regression analysis, MDI remained significantly associated with the presence of severe tungiasis in the final model (RR = 1.04; 95% CI: 1.02–1.05; p < 0.001) and the presence of severe scabies with minimum temperature (RR = 1.13; 95% CI: 1.04–1.24; p = 0.003) and aridity index (RR = 1.01; 95% CI: 1.00–1.01; p = 0.004). Our study underscores the importance of environmental and socioeconomic factors for the occurrence of severe scabies and tungiasis in a semi-arid climatic context, offering a perspective for identification of high-risk areas, and providing evidence for the control of skin NTDs withina One Health approach. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

17 pages, 2126 KiB  
Communication
The Nitro-Oxidative Response Is Induced in the Leaves of Barley Plants Exposed to Barium
by Justyna Fidler, Marta Gietler, Jakub Graska, Małgorzata Nykiel, Julia Michalska, Julia Niziuk, Emilia Pełszyk, Zuzanna Ewa Perkowska and Mateusz Labudda
Int. J. Mol. Sci. 2025, 26(10), 4661; https://doi.org/10.3390/ijms26104661 - 13 May 2025
Viewed by 283
Abstract
Barium (Ba) is classified as a non-essential element, meaning that it does not play a requisite role in the physiological processes of living organisms, but it poses a significant health risk to them. Plants that grow in Ba-rich soils, particularly near barite outcrops [...] Read more.
Barium (Ba) is classified as a non-essential element, meaning that it does not play a requisite role in the physiological processes of living organisms, but it poses a significant health risk to them. Plants that grow in Ba-rich soils, particularly near barite outcrops or mining waste, often accumulate high levels of Ba. Excess Ba in plant cells can lead to the overproduction of reactive oxygen species (ROS), which contributes to oxidative stress. Typically, nitric oxide (NO) can help alleviate heavy metal stress; however, under certain conditions, elevated levels of superoxide and nitric oxide may result in nitrosative and nitrative stress. This study investigated whether exposing barley plants to barium acetate (300 μM and 600 μM) triggers a nitro-oxidative response in spring barley plants. The molecular and biochemical analyses revealed fluctuations in the gene expression and activity of antioxidant enzymes and a steady rise in hydrogen peroxide (H2O2) in the leaves. Lower Ba concentrations and shorter exposures increased NO levels, while higher concentrations and more prolonged exposure reduced them, affecting nitrogen metabolism. These findings highlight the toxicological risks posed by Ba, especially for cultivated plants, and underscore the need for further research on its impact on plant physiology and the potential risks to human health. Full article
Show Figures

Figure 1

17 pages, 2126 KiB  
Article
Aerated Compost Tea Did Not Promote Cu Downward Transfer but Increased Cu Phytoavailability in a Vineyard Soil
by Pierre Eon, Frédéric Candaudap, Thierry Robert, Laurence Denaix and Jean-Yves Cornu
Sustainability 2025, 17(10), 4414; https://doi.org/10.3390/su17104414 - 13 May 2025
Viewed by 212
Abstract
Vineyard soils are frequently contaminated with copper due to the use of Cu fungicides to prevent downy mildew. This study investigated the effects of an aerated compost tea (ACT) made from grape pomace and animal manure on the downward transfer of Cu and [...] Read more.
Vineyard soils are frequently contaminated with copper due to the use of Cu fungicides to prevent downy mildew. This study investigated the effects of an aerated compost tea (ACT) made from grape pomace and animal manure on the downward transfer of Cu and on the accumulation of Cu in plants in a sandy loam vineyard soil. Crimson clover and pot marigold were grown in a 40 cm soil column with Cu supplied to the surface at loadings representative of those applied in European vineyards, plus additions of ACT. A source of Cu enriched in the stable isotope 65Cu was used to distinguish freshly added Cu (fresh Cu) from Cu already present in the soil (aged Cu). ACT increased the concentration of soluble humic substances (SHS) in pore water in the top 7.5 cm of the column, and increased the concentration of Cu, Al, and Fe in pore water in proportion to the concentration of SHS. The transfer of fresh Cu to deeper soil was limited to the top 5 cm, even after the addition of ACT, although fresh Cu reacted slightly more to ACT than aged Cu. ACT had no effect on Cu phytoextraction but increased the concentration of Cu in roots by almost twofold. Relatively more fresh Cu was transferred to plants than aged Cu, primarily due to its preferential accumulation on the surface. The risk associated with the use of ACT on vineyard soils is not that of promoting the downward transfer of Cu, but rather of increasing Cu availability to plants and likely to other living organisms in the topsoil. Full article
Show Figures

Figure 1

Back to TopTop