Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,192)

Search Parameters:
Keywords = load-carrying mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4353 KB  
Article
Adaptive Gradient Loading Mechanism of Ball–Column Composite Bearings Considering Collar Deformation
by Guanjie Li, Yongcun Cui, Hedong Wei, Zhiwen Yang and Yanguang Ni
Machines 2025, 13(9), 785; https://doi.org/10.3390/machines13090785 (registering DOI) - 1 Sep 2025
Abstract
To address the issue of uneven load and premature failure in ball–column composite bearings caused by ring deformation, this study develops a mechanical analysis model, considering ring deformation based on flexible ring theory and rolling bearing design. It systematically examines radial deflection of [...] Read more.
To address the issue of uneven load and premature failure in ball–column composite bearings caused by ring deformation, this study develops a mechanical analysis model, considering ring deformation based on flexible ring theory and rolling bearing design. It systematically examines radial deflection of the ring and how key parameters affect load distribution and stress. The results demonstrate that the elastic deformation of the collar redistributes the load, reduces the roller column’s load-carrying efficiency, and disrupts the optimal load distribution mode. Increasing the number of loaded rolling elements significantly improves the load uniformity, reduces the peak contact stress, and enhances the overall load-carrying performance. By optimizing the clearance matching across three bearings rows, a load-adaptive gradient bearing mechanism is realized by dynamically transferring, 70–90% of the heavy-load optimal distribution. These findings address the domestic research gaps and offer theoretical support for the performance prediction and optimal design of integrated ball–column composite bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

23 pages, 10802 KB  
Article
A Multiaxial Fatigue Life Prediction Approach Accounting for Additional Strengthening Effect Based on Energy-Critical Plane Model
by Bo Wang, Jianxiong Gao, Yiping Yuan, Jianxing Zhou, Qin Cheng and Rui Pan
Materials 2025, 18(17), 4089; https://doi.org/10.3390/ma18174089 (registering DOI) - 1 Sep 2025
Abstract
Accurate estimation of multiaxial fatigue life plays a critical role in maintaining the structural integrity and operational reliability of mechanical components subjected to complex loading conditions. Under non-proportional loading, fatigue life tends to decrease significantly due to the emergence of additional damage mechanisms, [...] Read more.
Accurate estimation of multiaxial fatigue life plays a critical role in maintaining the structural integrity and operational reliability of mechanical components subjected to complex loading conditions. Under non-proportional loading, fatigue life tends to decrease significantly due to the emergence of additional damage mechanisms, such as dislocation accumulation, cyclic hardening, and accelerated propagation of micro-cracks. This study conducts a systematic investigation into the primary factors that influence fatigue behavior under non-proportional loading conditions. A novel damage factor is proposed, which quantifies the additional strengthening effects caused by complex stress and strain interactions. Based on this factor, a new prediction model is developed through the combination of critical plane theory and an energy-based framework. This model captures the influence of non-proportional strengthening on fatigue strength with improved accuracy. Experimental validation is carried out using En8, TC4, and Al7050-T7451 materials under tension and torsion loading conditions. Comparative analysis with three conventional models shows that the proposed method improves the accuracy of predictions and offers a dependable approach for practical engineering applications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

21 pages, 5332 KB  
Article
Experimental and Numerical Simulation Study on Shear Performance of RC Corbel Under Synergistic Change in Inclination Angle
by Hao Huang, Chengfeng Xue and Zhangdong Wang
Buildings 2025, 15(17), 3098; https://doi.org/10.3390/buildings15173098 - 28 Aug 2025
Viewed by 101
Abstract
The purpose of this paper is to study the shear performance of reinforced concrete corbels under a synergistic change in the main stirrup inclination angle to explore the synergistic mechanism of the main reinforcement and the stirrup inclination angle, and to evaluate the [...] Read more.
The purpose of this paper is to study the shear performance of reinforced concrete corbels under a synergistic change in the main stirrup inclination angle to explore the synergistic mechanism of the main reinforcement and the stirrup inclination angle, and to evaluate the applicability of existing design specifications. The shear performance test was carried out by designing RC corbel specimens with an inclination angle of the main reinforcement and stirrup. The test results show that a 15° inclination scheme significantly improves the shear performance: the yield load is increased by 28.3%, the ultimate load is increased by 23.6%, the strain of the main reinforcement of the 15° specimen is reduced by 51.3%, the stirrup shows a delayed yield (the yield load is increased by 11.6%) and lower strain level (250 kN is reduced by 23.7%), and the oblique reinforcement optimizes the internal force transfer path and delays the reinforcement yield. A CDP finite element model was established for verification, and the failure mode and crack propagation process of the corbel were accurately reproduced. The prediction error of ultimate load was less than 2.27%. Based on the test data, the existing standard method is tested and a modified formula of the triangular truss model based on the horizontal inclination angle of the tie rod is proposed. The prediction ratio of the bearing capacity is highly consistent with the test value. A function correlation model between the inclination angle of the steel bar and the bearing capacity is constructed, which provides a quantitative theoretical tool for the optimal design of RC corbel inclination parameters. Full article
Show Figures

Figure 1

16 pages, 9956 KB  
Article
Fabrication of Novel Porous Thin Plates by Rolling and Vacuum Sintering for Aerostatic Bearings
by Chaozhong Li and Zhaoyao Zhou
Lubricants 2025, 13(9), 385; https://doi.org/10.3390/lubricants13090385 - 28 Aug 2025
Viewed by 175
Abstract
To develop a new porous metal for aerostatic bearing, herein, novel porous thin plates (PTPs) with micron-scale porous structures are fabricated. The pore size distribution and air permeability of PTPs are measured. A tensile test is carried out and the fractography is observed. [...] Read more.
To develop a new porous metal for aerostatic bearing, herein, novel porous thin plates (PTPs) with micron-scale porous structures are fabricated. The pore size distribution and air permeability of PTPs are measured. A tensile test is carried out and the fractography is observed. The load capacity and stiffness of aerostatic bearings utilizing PTPs as porous restrictors are tested. The results show that the phenomenon of the uneven distribution of powders can be significantly improved by decreasing the roller speed. Fine powder porous thin plates (FPTPs) effectively balance permeability and mechanical properties, achieving an ultimate tensile strength of 157 MPa while maintaining favorable permeability, significantly exceeding existing porous restrictors. Aerostatic bearings employing PTPs as restrictors demonstrate substantial load capacity and stiffness. Notably, aerostatic bearings utilizing coarse powder porous thin plates (CPTPs) as restrictors deliver 511 N load capacity and 22 N/μm stiffness with a considerably smaller porous restrictor area. It is worth noting that the novel PTPs not only exhibit a straightforward and environmentally friendly manufacturing process but also preserve the micron-scale porous structure while meeting the practical requirements of aerostatic bearings, holding significant promise for gas lubrication applications. Full article
(This article belongs to the Special Issue Gas Lubrication and Dry Gas Seal, 2nd Edition)
Show Figures

Figure 1

26 pages, 10183 KB  
Article
Macro-Microscopic Characterization and Long-Term Performance Prediction of Polyvinyl Chloride Under Hydrothermal Aging Based on Creep Behavior Analysis
by Hui Li, Xiaoxiao Su, Guan Gong, Aoxin Shao and Yanan Zheng
Polymers 2025, 17(17), 2320; https://doi.org/10.3390/polym17172320 - 27 Aug 2025
Viewed by 197
Abstract
The creep behavior of rigid polyvinyl chloride (PVC) in hydrothermal environments can compromise its long-term stability and load-bearing capacity, potentially leading to deformation or structural failure. Understanding this degradation is critical for ensuring the durability and safety of PVC in engineering applications such [...] Read more.
The creep behavior of rigid polyvinyl chloride (PVC) in hydrothermal environments can compromise its long-term stability and load-bearing capacity, potentially leading to deformation or structural failure. Understanding this degradation is critical for ensuring the durability and safety of PVC in engineering applications such as pipelines and building materials. In this study, accelerated hydrothermal aging tests were carried out on PVC under controlled conditions of 60 °C and 90% relative humidity (RH). Short-term tensile creep tests at four different stress levels were conducted both before and after aging. Microstructural changes associated with the PVC’s creep behavior were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and other microscopic characterization techniques. These analyses provided a detailed microscopic interpretation of how hydrothermal exposure and applied loads influenced the macroscopic creep performance of the PVC, thereby elucidating the correlation between its macroscopic mechanical behavior and microstructural evolution. By applying the time–stress equivalence principle and the time–aging equivalence principle, the short-term creep behavior was characterized to predict long-term performance. The accelerated characterization curve can effectively predict the creep behavior of PVC under a stress level of 16 MPa over approximately 6.5 years in an environment of 60 °C and 90% RH. At the same time, the master creep modulus curve of PVC under any aging duration and stress level can be established under the specified environmental conditions of 60 °C and 90% RH. Long-term creep curves were fitted using a locally structured derivative Kelvin model, demonstrating that this model can effectively simulate the long-term creep behavior of PVC under hydrothermal conditions. The results indicate that at a stress level of 16 MPa, PVC is expected to undergo creep damage and failure after approximately 15 years in such an environment. These findings provide a critical reference for assessing the long-term performance of PVC in hydrothermal environments. Full article
(This article belongs to the Special Issue Aging Behavior and Durability of Polymer Materials, 2nd Edition)
Show Figures

Figure 1

24 pages, 1303 KB  
Article
Event-Sampled Adaptive Neural Automatic Berthing Control for Underactuated Ships Under FDI Attacks
by Peng Zhang, Fangliang Xiao, Chun Li and Guibing Zhu
J. Mar. Sci. Eng. 2025, 13(9), 1636; https://doi.org/10.3390/jmse13091636 - 27 Aug 2025
Viewed by 146
Abstract
This work addresses the automatic berthing control problem of underactuated ships under false data injection (FDI) attack, and an event-sampled automatic berthing control scheme is proposed. To avoid the FDI attack signals from entering the closed-loop system through the sensor–controller channel and worsening [...] Read more.
This work addresses the automatic berthing control problem of underactuated ships under false data injection (FDI) attack, and an event-sampled automatic berthing control scheme is proposed. To avoid the FDI attack signals from entering the closed-loop system through the sensor–controller channel and worsening the berthing control performance as much as possible, a novel event-sampled adaptive neural network state observer is developed, which is independent of the controller. To solve the control design problem of berthing caused by underactuated features, an equivalent motion model of underactuated ships under FDI attack is established by differential homeomorphic transformation. Furthermore, under the backstepping design framework, using the state observer and adaptive neural network technology, a single-parameter learning-based automatic berthing control solution is developed. Meanwhile, to further reduce the network resource consumption and load caused by the transmission of control signals, an event-triggered mechanism for the controller–actuator channel is established. The theoretical analysis by Lyapunov indicates that the constructed closed-loop system for automatic berthing control is stable, and all the signals are bounded. Simulation and comparison are carried out to verify the effectiveness and superiority of proposed control scheme, and the results verify the conclusions and theoretical feasibility of this work. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

14 pages, 5050 KB  
Article
Comparative Analysis of Microstructure and Properties of Wear-Resistant Structural Steels
by Helena Lukšić, Tomislav Rodinger, Vera Rede, Zrinka Švagelj and Danko Ćorić
Materials 2025, 18(17), 4002; https://doi.org/10.3390/ma18174002 - 27 Aug 2025
Viewed by 281
Abstract
This paper presents the results of wear tests of two types of commercial low-carbon, low-alloy martensitic abrasion-resistant steels, Hardox 450 and XAR 450, which belong to the hardness class 450 HBW. These steels, due to their increased resistance to the abrasive wear mechanism, [...] Read more.
This paper presents the results of wear tests of two types of commercial low-carbon, low-alloy martensitic abrasion-resistant steels, Hardox 450 and XAR 450, which belong to the hardness class 450 HBW. These steels, due to their increased resistance to the abrasive wear mechanism, are used for machine parts for applications in intensive abrasion environments such as construction, mining, and agriculture. The scope of work included microstructure analysis on an optical microscope, chemical composition analysis, Vickers hardness measurements at different loads (HV0.2, HV1 and HV2), and wear testing. Wear tests were carried out by the standard method “dry sand—rubber wheel”, and tests on the Taber abrader device. Microstructure analysis revealed that both steels have a similar non-oriented, homogenous, fine-grained martensitic microstructure. The results of HV2 hardness measurements showed a similar trend for both steels in all examined sections of the plates. For both tested steels, the hardness values of HV0.2 and HV1 are slightly higher than HV2, but the scattering of the results is also greater. Abrasion resistance testing using the standard “dry sand—rubber wheel” method showed that Hardox 450 steel has a lower volume loss of about 8%, but a greater scattering of the results compared to XAR 450 steel. The results of the abrasion resistance test on the Taber abrader device confirmed approximately the same behavior. For both steels, a prediction model was established for a reliable assessment of the wear intensity concerning the grain size. Although examined steels belong to the same hardness class, Hardox steel seems to be a more appropriate choice for the manufacture of machine components exposed to abrasive wear. Full article
Show Figures

Figure 1

13 pages, 2661 KB  
Article
Tribological Assessment of Bio-Lubricants Influenced by Cylinder Liners and Piston Rings
by Omar Qasim Al-Hadeethi, A. Engin Özçelik and Mehmet Turan Demirci
Appl. Sci. 2025, 15(17), 9366; https://doi.org/10.3390/app15179366 - 26 Aug 2025
Viewed by 312
Abstract
This study presents a comprehensive evaluation of the tribological behavior of cylinder liners and piston rings—key components in internal combustion engines (ICEs). Experiments were conducted using a pin-on-disc wear tester under varying loads (50–100 N) and speeds (175–350 rpm) to determine the coefficient [...] Read more.
This study presents a comprehensive evaluation of the tribological behavior of cylinder liners and piston rings—key components in internal combustion engines (ICEs). Experiments were conducted using a pin-on-disc wear tester under varying loads (50–100 N) and speeds (175–350 rpm) to determine the coefficient of friction (μ) and wear rate. The selected pin and disc materials represent real engine components to ensure realistic operating conditions. Before and after each experiment, the cylinder liner-piston ring pair was cleaned with acetone to ensure accurate measurement of mass loss. Surface roughness (Ra, Rq, Rz, µm) was assessed using a Mahr M-1 profilometer, and Brinell hardness tests were carried out using a digital optical Brinell hardness testing machine to determine the mechanical properties of the contact surfaces. The results revealed that safflower oil achieved the lowest coefficient of friction at higher speeds, with an 18% reduction compared with conventional 20W-50 engine oil. Camelina oil, camelina biodiesel and safflower biodiesel each exhibited a reduction of approximately 12.5% in friction, highlighting their potential as viable alternatives to petroleum-based lubricants. Full article
Show Figures

Figure 1

25 pages, 7861 KB  
Article
Research on Flexural Performance of Low-Strength Foamed Concrete Cold-Formed Steel Framing Composite Enclosure Wall Panels
by Xinliang Liu, Kunpeng Wang, Quanbin Zhao and Chenyuan Luo
Buildings 2025, 15(17), 3018; https://doi.org/10.3390/buildings15173018 - 25 Aug 2025
Viewed by 285
Abstract
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance [...] Read more.
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance tests on five specimens were employed to examine crack propagation and failure modes of wall panels under wind load, investigating the influence mechanisms of foamed concrete strength, CFS framing wall thickness, CFS framing section height, and concrete cover thickness on the flexural performance of wall panels. The experimental results demonstrate that increasing the steel thickness from 1.8 mm to 2.5 mm enhances the ultimate load-carrying capacity by 46.15%, while enlarging the section height from 80 mm to 100 mm improves capacity by 26.67%. When the foamed concrete strength increased from 0.5 MPa to 1.0 MPa, the wall panel cracking load increased by 50%, while the ultimate load capacity changed by less than 5%. Increasing the concrete cover thickness from 25 mm to 35 mm enhanced the ultimate capacity by 7%, indicating that both parameters exert limited influence on the composite wall panel’s flexural capacity. Finite element simulations demonstrate excellent agreement with experimental results, confirming effective composite action between foamed concrete and CFS framing under service conditions. This validation establishes that the simplified analytical model neglecting interface slip provides better accuracy for engineering design, offering theoretical foundations and practical references for optimizing prefabricated building envelope systems. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 9186 KB  
Article
Al2O3/PTFE Composites for Marine Self-Lubricating Bearings: Modulation Mechanism of Alumina Particle Size on Material Mechanical Properties and Tribological Behavior
by Guofeng Zhao and Shifan Zhu
Lubricants 2025, 13(9), 377; https://doi.org/10.3390/lubricants13090377 - 23 Aug 2025
Viewed by 333
Abstract
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear [...] Read more.
Polytetrafluoroethylene (PTFE) is one of the alternative materials suitable for seawater-lubricated bearings, favored for its excellent corrosion resistance and good self-lubricating properties. As marine equipment develops towards higher load, higher reliability, and longer service life, more stringent requirements are imposed on the wear resistance of bearing materials. However, traditional PTFE materials struggle to meet the performance requirements for long-term stable operation in modern marine environments. To improve the wear resistance of PTFE, this study used alumina (Al2O3) particles with three different particle sizes (50 nm, 3 μm, and 80 μm) as fillers and prepared Al2O3/PTFE composites via the cold pressing and sintering process. Tribological performance tests were conducted using a ball-on-disk reciprocating friction and wear tester, with Cr12 steel balls as counterparts, under an artificial seawater lubrication environment, applying a normal load of 10 N for 40 min. The microstructure and wear scar morphology were characterized by scanning electron microscopy (SEM), and mechanical properties were measured using a Shore hardness tester. A systematic study was carried out on the microstructure, mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The results show that the particle size of Al2O3 particles significantly affects the mechanical properties, friction coefficient, wear rate, and limiting PV value of the composites. The 50 nm Al2O3/PTFE formed a uniformly spread friction film and transfer film during the friction process, which has better friction and wear reduction performance and load bearing capacity. The 80 μm Al2O3 group exhibited poor friction properties despite higher hardness. The nanoscale Al2O3 filler was superior in improving the wear resistance, stabilizing the coefficient of friction, and prolonging the service life of the material, and demonstrated good seawater lubrication bearing suitability. This study provides theoretical support and an experimental basis for the design optimization and engineering application of PTFE-based composites in harsh marine environments. Full article
Show Figures

Figure 1

40 pages, 7084 KB  
Article
Cascading Failure Modeling and Resilience Analysis of Coupled Centralized Supply Chain Networks Under Hybrid Loads
by Ziqiang Zeng, Ning Wang, Dongyu Xu and Rui Chen
Systems 2025, 13(9), 729; https://doi.org/10.3390/systems13090729 - 22 Aug 2025
Viewed by 319
Abstract
As manufacturing and logistics-oriented supply chains continue to expand in scale and complexity, and the coupling between their physical execution layers and information–decision layers deepens, the resulting high interdependence within the system significantly increases overall fragility. Driven by key technological barriers, economies of [...] Read more.
As manufacturing and logistics-oriented supply chains continue to expand in scale and complexity, and the coupling between their physical execution layers and information–decision layers deepens, the resulting high interdependence within the system significantly increases overall fragility. Driven by key technological barriers, economies of scale, and the trend toward resource centralization, supply chains have increasingly evolved into centralized structures, with critical functions such as decision-making highly concentrated in a few focal firms. While this configuration may enhance coordination under normal conditions, it also significantly increases dependency on focal nodes. Once a focal node is disrupted, the intense task, information, and risk loads it carries cannot be effectively dispersed across the network, thereby amplifying load spillovers, coordination imbalances, and information delays, and ultimately triggering large-scale cascading failures. To capture this phenomenon, this study develops a coupled network model comprising a Physical Network and an Information and Decision Risk Network. The Physical Network incorporates a tri-load coordination mechanism that distinguishes among theoretical operational load (capacity), actual production load (production output), and actual delivery load (order fulfillment), using a load sensitivity coefficient to describe the asymmetric propagation among them. The Information and Decision Risk Network is further divided into a communication subnetwork, which represents transmission efficiency and delay, and a decision risk subnetwork, which reflects the diffusion of uncertainty and risk contagion caused by information delays. A discrete-event simulation approach is employed to evaluate system resilience under various failure modes and parametric conditions. The results reveal the following: (1) under a centralized structure, poorly allocated redundancy can worsen local imbalances and amplify disruptions; (2) the failure of a focal firm is more likely to cause a full network collapse; and (3) node failures in the Communication System Network have a greater destabilizing effect than those in the Physical Network. Full article
(This article belongs to the Section Complex Systems and Cybernetics)
Show Figures

Figure 1

21 pages, 8401 KB  
Article
Computational Study of Stress Distribution in Polyethylene Elements Due to Metal Components of Knee and Hip Implants Made from Different Metal Alloys
by Michał Sobociński and Marcin Nabrdalik
Materials 2025, 18(16), 3924; https://doi.org/10.3390/ma18163924 - 21 Aug 2025
Viewed by 443
Abstract
The complexity of the processes occurring in both natural and artificial joints necessitates carrying out the analysis on a 3D model based on already existing mathematical models. All the presented numerical calculations define qualitative conclusions about the influence of certain parameters of endoprostheses [...] Read more.
The complexity of the processes occurring in both natural and artificial joints necessitates carrying out the analysis on a 3D model based on already existing mathematical models. All the presented numerical calculations define qualitative conclusions about the influence of certain parameters of endoprostheses on the values of stresses and strains arising in polyethylene parts of hip and knee endoprostheses. The obtained results make it possible to reveal “weak points” in the studied models and thus counteract the later effects resulting from premature wear of the endoprosthesis components. The study included a numerical analysis of the stress and strain distribution of polyethylene components of hip and knee endoprostheses working with the most commonly used material associations in this type of solution. The most common are metal alloys and ceramics. The analyses were carried out using ADINA and Autodesk Simulation Mechanical software. Geometric models were designed based on current solutions used by leading endoprosthesis manufacturers. The load models adopted are based on models commonly used in musculoskeletal biomechanics. Particular attention was paid to modeling the resistance due to friction at the hip endoprosthesis node. To build the hip endoprosthesis model, eight-node 3D solid elements were used. Due to the axisymmetric geometry of the model, the resulting discrete model consisted of 10,000 cubic elements described by 10,292 nodes. In the case of the knee endoprosthesis, a finite element mesh was adopted for the calculations, which was built with 3600 3D solid cubic elements and 4312 nodes. The accuracy of the adopted numerical model did not differ from the generally used solutions in this field. Full article
Show Figures

Figure 1

23 pages, 2990 KB  
Article
Self-Healing Asphalt Mixtures Meso-Modelling: Impact of Capsule Content on Stiffness and Tensile Strength
by Gustavo Câmara, Nuno Monteiro Azevedo and Rui Micaelo
Sustainability 2025, 17(16), 7502; https://doi.org/10.3390/su17167502 - 19 Aug 2025
Viewed by 378
Abstract
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the [...] Read more.
Capsule-based self-healing technologies offer a promising solution to extend pavement service life without requiring external activation. The effect of the capsule content on the mechanical behaviour of self-healing asphalt mixtures still needs to be understood. This study presents a numerical evaluation of the isolated effect of incorporating capsules containing encapsulated rejuvenators, at different volume contents, on the stiffness and strength of asphalt mixtures through a three-dimensional discrete-based programme (VirtualPM3DLab), which has been shown to predict well the experimental behaviour of asphalt mixtures. Uniaxial tension–compression cyclic and monotonic tensile tests on notched specimens are carried out for three capsule contents commonly adopted in experimental investigations (0.30, 0.75, and 1.25 wt.%). The results show that the effect on the stiffness modulus progressively increases as the capsule content grows in the asphalt mixture, with a reduction ranging from 4.3% to 12.3%. At the same time, the phase angle is marginally affected. The capsule continuum equivalent Young’s modulus has minimum influence on the overall rheological response, suggesting that the most critical parameter affecting asphalt mixture stiffness is the capsule content. Finally, while the peak tensile strength shows a maximum reduction of 12.4% at the highest capsule content, the stress–strain behaviour and damage evolution of the specimens remain largely unaffected. Most damaged contacts, which mainly include aggregate–mastic and mastic–mastic contacts, are highly localised around the notch tips. Contacts involving capsules remained intact during early and intermediate loading stages and only fractured during the final damage stage, suggesting a delayed activation consistent with the design of healing systems. The findings suggest that capsules within the studied contents may have a moderate impact on the mechanical properties of asphalt mixtures, especially for high-volume contents. For this reason, contents higher than 0.75 wt.% should be applied with caution. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

16 pages, 2417 KB  
Article
Phosphorus Mobilization from Lake Sediments Driven by Silver Carp Fecal Inputs: A Microcosm Study
by Shenghong Lu, Xin Chen, Huaqiang Cheng, Jia Jia, Xin Li, Shenghua Hu, Xiaofei Chen and Chenxi Wu
Sustainability 2025, 17(16), 7468; https://doi.org/10.3390/su17167468 - 18 Aug 2025
Viewed by 491
Abstract
Harmful cyanobacterial blooms pose significant threats to lake ecosystems, and the stocking of filter-feeding fish has often been used for their control. However, filter-feeding fish like silver carp excrete feces that not only retain viable cyanobacterial cells but also increase nutrient loading to [...] Read more.
Harmful cyanobacterial blooms pose significant threats to lake ecosystems, and the stocking of filter-feeding fish has often been used for their control. However, filter-feeding fish like silver carp excrete feces that not only retain viable cyanobacterial cells but also increase nutrient loading to the sediment. Furthermore, the quantity and frequency of fecal input vary depending on the biomass of algae and fish and the stocking strategy. In this study, a two-by-two factorial microcosm experiment was carried out to investigate the effects of silver carp feces on P release in shallow lakes. Results showed that fecal input quantity was the key determinant of P release. The peak flux reached 8.82 mg m−2 d−1 in high input treatments, compared to 1.01 mg m−2 d−1 in low input treatments. Phased-input exacerbated these effects compared to single-input. The dominant mechanisms of sediment P release varied with input levels. Microbial reduction was strongly associated with P release at low fecal input, while high-input scenarios showed concurrent hypoxia, an increase in sediment pH (from 7.28 to 7.46), and competition for adsorption sites by dissolved organic matter (DOM up to 38.57 mg L−1). These results indicate that stocking of filter-feeding fish for cyanobacterial bloom control substantially altered P flux dynamics, with high input treatments exhibiting fluxes from −6.02 to 8.82 mg m−2 d−1 compared to −0.007 to 0.33 mg m−2 d−1 in controls, depending on the patterns of fecal input. For the prevention and control of cyanobacterial blooms and to ensure the sustainability of lakes, the stocking of filter-feeding fish should be carried out before the outbreak of blooms to avoid the impact of large amounts of fish feces input on P release and water quality during the blooms. Full article
Show Figures

Figure 1

29 pages, 14203 KB  
Article
Inter Laminar Shear Strength of Flax-Glass Hybrid Polymer Composites for Automotive Frame: Numerical Modelling and Experimental Analysis
by Tegginamath Akshat, Michal Petru and Rajesh Kumar Mishra
Materials 2025, 18(16), 3852; https://doi.org/10.3390/ma18163852 - 17 Aug 2025
Viewed by 465
Abstract
This study deals with the mechanical performance in the case of hybrid polymer composites developed from sandwiched reinforcements using natural fibre and glass fibre-based fabrics. The composites developed by using different combinations and arrangements of the glass and flax fabrics were tested for [...] Read more.
This study deals with the mechanical performance in the case of hybrid polymer composites developed from sandwiched reinforcements using natural fibre and glass fibre-based fabrics. The composites developed by using different combinations and arrangements of the glass and flax fabrics were tested for the interlaminar shear strength (ILSS). Finite element analysis based on ANSYS was used to determine the ILSS for the hybrid composites. Further, experimental testing of the ILSS was carried out in order to validate the predicted performance. The comparison of simulated values with the tested values showed percentage error values ranging from 0.106% to 6.25%. The minor error between the tested and simulated values can be due to the presence of very small imperfections in the composite, like the presence of voids, which could potentially be introduced in the composite while manufacturing the samples. Microscopic analysis confirmed the fracture in between the layers and interfacial debonding between the fibre and the matrix. It was found that the flax fibre tends to break earlier as compared to the glass component, which has much better mechanical performance. The findings are important for understanding the performance of hybrid composites in real loading conditions in automotive frames and other similar applications. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Nanocomposites)
Show Figures

Figure 1

Back to TopTop