Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = log diameter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1040 KB  
Article
PROX1 Expression in Resected Non-Small Cell Lung Cancer: Immunohistochemical Profile and Clinicopathological Correlates
by Evangelia Ntikoudi, Thomas Karagkounis, Konstantinos S. Mylonas, Stylianos Kykalos, Dimitrios Schizas, Ioannis N. Vamvakaris, Ekaterini Politi, Michail V. Karamouzis and Stamatios Theocharis
Med. Sci. 2025, 13(3), 140; https://doi.org/10.3390/medsci13030140 - 17 Aug 2025
Viewed by 266
Abstract
Background/Objectives: PROX1 (prospero homeobox 1) is a transcription factor involved in lymphangiogenesis and cellular differentiation. Its role in cancer biology appears to be highly context-dependent, with it exhibiting both tumor-promoting and -suppressive functions across various malignancies. Nonetheless, the clinical significance of PROX1 expression [...] Read more.
Background/Objectives: PROX1 (prospero homeobox 1) is a transcription factor involved in lymphangiogenesis and cellular differentiation. Its role in cancer biology appears to be highly context-dependent, with it exhibiting both tumor-promoting and -suppressive functions across various malignancies. Nonetheless, the clinical significance of PROX1 expression in non-small cell lung cancer (NSCLC) remains poorly elucidated. The objective of this study is to evaluate the immunohistochemical expression of PROX1 in NSCLC, specifically in the adenocarcinoma and squamous cell carcinoma subtypes, and to assess its correlation with clinicopathologic features and overall survival (OS). Methods: This retrospective study included surgically resected specimens from 121 patients with histologically confirmed NSCLC. PROX1 expression was assessed via immunohistochemistry on formalin-fixed, paraffin-embedded specimens. Staining intensity (graded 0– National and Kapodistrian University of Athens 3) and the percentage of positive tumor cells were recorded. Correlations with histological subtype, tumor characteristics, and OS were analyzed using chi-square tests, one-way ANOVA, and Kaplan–Meier survival analysis with log-rank testing. Results: Low PROX1 intensity (level 1) was significantly associated with P63 positivity (p = 0.028), while high PROX1 intensity (level 3) correlated with nodal metastasis to station 3 (S3+) (p = 0.025). Additionally, alveolar-pattern adenocarcinomas exhibited intermediate PROX1 expression (26–50%) (p = 0.010). Although PROX1 positivity did not differ among mucinous and non-mucinous adenocarcinomas (p = 0.152), its distribution across defined expression subgroups was statistically significant (p = 0.002). Tumors with low PROX1 expression (0–24%) were associated with a larger maximum tumor diameter (p = 0.026). PROX1 expression was not independently associated with OS (p > 0.05). Factors significantly associated with improved survival included an age < 50 years, female sex, the absence of necrosis, fewer than 10 positive lymph nodes, a lymph node ratio < 0.5, and the absence of extensive nodal involvement in stations 5, 10, 11, and 12. Conclusions: Although PROX1 expression is variably associated with specific histologic subtypes and nodal metastases in NSCLC, it does not independently predict overall survival. Its expression patterns suggest a potential role in tumor differentiation and lymphatic spread. Further mechanistic and immunologic studies are warranted to elucidate the functional significance of PROX1 in lung cancer biology. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
Show Figures

Figure 1

13 pages, 1086 KB  
Article
Effect of AAA Size on Mortality and Morbidity After Endovascular Aortic Repair
by Paulina Julia Wiatrzyk, Oliwia Grzelak, Joanna Halman, Klaudia Szydłowska and Jacek Wojciechowski
J. Clin. Med. 2025, 14(16), 5787; https://doi.org/10.3390/jcm14165787 - 15 Aug 2025
Viewed by 273
Abstract
Objectives: To analyze the effect of abdominal aortic aneurysm (AAA) diameter on late complication occurrence and survival in patients following endovascular aneurysm repair (EVAR). Methods: The study was a retrospective cohort analysis with a prospective follow-up of 176 patients diagnosed with unruptured AAA [...] Read more.
Objectives: To analyze the effect of abdominal aortic aneurysm (AAA) diameter on late complication occurrence and survival in patients following endovascular aneurysm repair (EVAR). Methods: The study was a retrospective cohort analysis with a prospective follow-up of 176 patients diagnosed with unruptured AAA who underwent EVAR from 2016 to 2024. Preoperative computed tomography (CT) images were used to measure maximal aneurysm diameter. Prospective follow-up data were collected post-EVAR at 1 month, 6 months, and annually through clinical evaluations and imaging studies. The mean follow-up duration was 26 months. For statistical purposes, the group was divided into tertiles based on aneurysm size. This study was intentionally focused on aneurysm size as an isolated imaging parameter, and did not incorporate other known predictors of complications, such as neck morphology or device-related variables. As such, key limitations include the single-center design, relatively small sample size, and lack of data on anatomical features beyond maximum diameter. Results: Kaplan–Meier survival analysis demonstrated that patients in the highest tertile of aneurysm size experienced significantly higher rates of long-term adverse outcomes compared to those in the lower two tertiles, both in terms of late complications (log-rank p = 0.049) and all-cause mortality at 36 months (p = 0.022). In multivariate logistic regression, the occurrence of late complications was independently associated with symptomatic presentation (p = 0.003, OR = 3.616, 95% CI: 1.533–8.529) and acute admission (p = 0.033, OR = 0.345, 95% CI: 0.130–0.916). The largest aneurysms were significantly associated with late endoleak (p = 0.041, OR = 5.365, 95% CI: 1.071–26.871). Conclusions: This study demonstrates that AAA size is an independent predictor of both late complications and long-term survival following EVAR. Patients with larger aneurysm diameters experienced significantly higher rates of late complications and reduced overall survival. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

19 pages, 5535 KB  
Article
Comparison of Stiffness Measurements of Wooden Rods Using Acoustic Guided Wave and Static Bending Test Techniques
by Adli Hasan Abu Bakar, Mathew Legg, Khalid Mahmood Arif, Daniel Konings and Fakhrul Alam
Sensors 2025, 25(16), 4930; https://doi.org/10.3390/s25164930 - 9 Aug 2025
Viewed by 248
Abstract
Traditionally, mechanical bending tests are used to measure the stiffness of lumber, which is generally represented by the static modulus of elasticity (MoE). However, it is desirable to measure the stiffness of wood before it is processed into lumber. Acoustic nondestructive testing techniques [...] Read more.
Traditionally, mechanical bending tests are used to measure the stiffness of lumber, which is generally represented by the static modulus of elasticity (MoE). However, it is desirable to measure the stiffness of wood before it is processed into lumber. Acoustic nondestructive testing techniques are therefore the main techniques used by the wood industry to estimate the dynamic MoE of wood. The acoustic resonance technique is employed for measuring the MoE in felled logs and lumber. In contrast, the acoustic time-of-flight (ToF) technique is traditionally used for MoE measurements on standing trees and seedlings. However, the ToF technique overestimates stiffness compared to both resonance and static bending tests (considered the gold standard). In this work, a guided wave technique is used to measure the stiffness of wooden rods. This work is the first to compare the MoE values obtained using static bending tests (gold standard) with those obtained using acoustic resonance, ToF, and guided wave methods. Measurements were performed on 16 mm diameter radiata pine wooden rods. For comparison, measurements were also performed on acetal, aluminium, and steel rods of similar dimensions. The findings show that stiffness measurements obtained using the proposed guided wave method are more accurate than those obtained using the traditional ToF method and closely match those of the resonance method across all materials. The measurements from the ToF method were overestimated compared to resonance, guided wave, and static bending methods. The findings show the potential for the guided wave method to be used as an alternative method to provide more accurate stiffness measurements in juvenile trees/seedlings compared with the traditional ToF technique. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 1363 KB  
Article
Non-Structural Carbohydrate Concentration Increases and Relative Growth Decreases with Tree Size in the Long-Lived Agathis australis (D.Don) Lindl.
by Julia Kaplick, Benjamin M. Cranston and Cate Macinnis-Ng
Forests 2025, 16(8), 1270; https://doi.org/10.3390/f16081270 - 3 Aug 2025
Viewed by 341
Abstract
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its [...] Read more.
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its distribution. Like many large tree species, little is known about the carbon dynamics of this ecologically and culturally significant species. We explored seasonal variations in non-structural carbohydrates (NSCs) and growth in trees ranging from 20 to 175 cm diameter at breast height (DBH). NSCs were seasonally stable with no measurable pattern across seasons. However, we found growth rates standardised to basal area and sapwood area (growth efficiency) declined with tree age and stem NSC concentrations (including total NSCs, sugars and starch) all increased as trees aged. Total NSC concentrations were 0.3%–0.6% dry mass for small trees and 0.8%–1.8% dry mass for larger trees, with strong relationships between DBH and total NSC, sugar and starch in stems but not roots. Cumulative growth efficiency across the two-year study period declined as tree size increased. Furthermore, there was an inverse relationship between growth efficiency across the two-year study period and NSC concentrations of stems. This relationship was driven by differences in carbon dynamics in trees of different sizes, with trees progressing to a more conservative carbon strategy as they aged. Simultaneously declining growth efficiency and increasing NSC concentrations as trees age could be evidence for active NSC accumulation to buffer against carbon starvation in larger trees. Our study provides new insights into changing carbon dynamics as trees age and may be evidence for active carbon accumulation in older trees. This may provide the key for understanding the role of carbon processes in tree longevity. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

21 pages, 1349 KB  
Article
The Impact of Supply and Demand Shocks on Chinese Wood Market
by Yeheng Jiang, Haiying Su and Weicong Qian
Forests 2025, 16(8), 1231; https://doi.org/10.3390/f16081231 - 26 Jul 2025
Viewed by 354
Abstract
China’s timber market is very complex and heterogeneous, and is experiencing the impact of the construction of national reserve forests and the downturn in the real estate sector. By setting up a partial equilibrium model which reflects the heterogeneity of China’s wood market, [...] Read more.
China’s timber market is very complex and heterogeneous, and is experiencing the impact of the construction of national reserve forests and the downturn in the real estate sector. By setting up a partial equilibrium model which reflects the heterogeneity of China’s wood market, not only difference among domestic timber groups can be identified, but the dissimilarity of imported timber can also be differentiated from the aspects of species and sources. This model is capable of capturing the effects of macroeconomic conditions, forestry sector policies, and trade cost variations on China’s timber market structure. According to simulations of supply shocks, China’s large-diameter log capacity enhancement will have a noticeable crowding-out effect on imported timber, suggesting the diameter of logs is an important factor for market entities to make trade-offs between domestic and imported timber. Amidst both supply and demand shocks, the equilibrium quantity changes in China’s domestic small-diameter logs and imported timber are dominated by demand shocks, whereas the equilibrium quantity change in China’s domestic large-diameter logs is dominated by supply shocks; moreover, only domestic large-diameter logs realize quantity increase in double shocks; this improves China’s domestic timber supply structure, and is a good example of “opportunities in crisis” in the face of negative demand shocks. Full article
Show Figures

Figure 1

14 pages, 2616 KB  
Article
Evaluation Model of Water Production in Tight Gas Reservoirs Considering Bound Water Saturation
by Wenwen Wang, Bin Zhang, Yunan Liang, Sinan Fang, Zhansong Zhang, Guilan Lin and Yue Yang
Processes 2025, 13(7), 2317; https://doi.org/10.3390/pr13072317 - 21 Jul 2025
Viewed by 307
Abstract
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for [...] Read more.
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for tight gas wells. This study analyzes the water production mechanism in tight sandstone reservoirs and identifies that the core of water production evaluation in the Shihezi Formation of the Linxing block is to clarify the pore permeability structure of tight sandstone and the type of intra-layer water. The primary challenge lies in the accurate characterization of bound water saturation. By integrating logging data with core experiments, a bound water saturation evaluation model based on grain size diameter and pore structure index was established, achieving a calculation accuracy of 92% for the multi-parameter-fitted bound water saturation. Then, based on the high-precision bound water saturation, a gas–water ratio prediction model for the first month of production, considering water saturation, grain size diameter, and fluid type, was established, improving the prediction accuracy to 87.7%. The bound water saturation evaluation and water production evaluation models in this study can achieve effective water production prediction in the early stage of production, providing theoretical support for the scientific development of tight gas in the Linxing block. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

17 pages, 3482 KB  
Article
Chinese Pangolins in China Demonstrate Regional Differences in Burrow Habitat Selection
by Dongling Liang, Xinrui Tang, Yilong Chen, Fei Xi, Shibao Wu and Fuhua Zhang
Animals 2025, 15(14), 2093; https://doi.org/10.3390/ani15142093 - 16 Jul 2025
Viewed by 306
Abstract
Knowledge of the habitat characteristics of endangered species is an important basis for in situ conservation, release-site selection, and habitat modification. Although the Chinese pangolin (Manis pentadactyla) is one of the world’s most endangered species, little is known about its habitat [...] Read more.
Knowledge of the habitat characteristics of endangered species is an important basis for in situ conservation, release-site selection, and habitat modification. Although the Chinese pangolin (Manis pentadactyla) is one of the world’s most endangered species, little is known about its habitat preferences, and the results of past studies differ greatly. To clarify the habitat characteristics of the Chinese pangolin, we conducted habitat surveys in Guangdong, Jiangxi, and Zhejiang provinces of China using the transect method. A total of 520 burrow sites of Chinese pangolins were recorded in three study areas. The resulting data were analyzed using a generalized additive model, principal coordinate analysis, and Kruskal–Wallis tests. Nine ecological factors (elevation, slope, soil type, canopy coverage, surface coverage, number of trees, number of logs, tree diameter at breast height, and distance to a settlement) were found to affect pangolins’ distribution. Burrows were preferentially distributed at elevations of 50–150 m (62.3%), in silty soil (88.1%), on 20–40° slopes (83.3%), within young and medium-aged broadleaved forests with a canopy coverage exceeding 70% (65.8%), and close to water (less than 300 m). Among the three study regions, pangolin habitats differed significantly in seven environmental factors: elevation, canopy coverage, surface coverage, number of trees, distance to water, distance to a road, and distance to a settlement. Our findings imply that the Chinese pangolin appears to tolerate a broad range of ecological characteristics; however, food resources may be the key factor affecting its habitat selection, and other factors may indirectly affect its distribution by affecting food abundance. Finally, aside from hunting, a low level of human disturbance does not affect the presence of this species. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

20 pages, 2364 KB  
Article
Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools
by Carlos Illanes-Bordomás, Mariana Landin and Carlos A. García-González
Polymers 2025, 17(14), 1919; https://doi.org/10.3390/polym17141919 - 11 Jul 2025
Viewed by 457
Abstract
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six [...] Read more.
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six variables: alginate and konjac glucomannan concentrations, compressed airflow, liquid pump pressures, and nozzle configuration. A hybrid software using Artificial Neural Networks and genetic algorithms was used to model and optimize the hydrogel formation, achieving a 100% desirable solution. The optimal formulation identified resulted in particles displaying a log-normal size distribution (R2 = 0.967) with an average diameter of 1.57 mm. Supercritical CO2 drying yielded aerogels with macropores and mesopores and a high specific surface area (201 ± 10 m2/g). The loading of vancomycin hydrochloride (Van) or a dexamethasone base (DX) into the aerogel cores during the process was tested. The aerogels exhibited appropriate structural characteristics, and both drugs showed burst release profiles with ca. 80% release within 10 min for DX and medium-dependent release for Van. This study demonstrates the feasibility of producing konjac aerogel particles for delivery systems and the high potential of AI-driven optimization methods, highlighting the need for coating modifications to achieve the desired release profiles. Full article
Show Figures

Graphical abstract

21 pages, 1627 KB  
Article
Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove
by Adhe Rahmatullah Sugiharto Suwito P, Ayumi Ohnishi, Tsutomu Terada and Masahiko Tsukamoto
Appl. Sci. 2025, 15(13), 7534; https://doi.org/10.3390/app15137534 - 4 Jul 2025
Viewed by 347
Abstract
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, [...] Read more.
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, several studies have demonstrated an excellent correlation between stretch sensors and EMG, which provides significant potential for addressing the monitoring issue at home. Additionally, due to its flexible nature, it can be attached to the finger, which facilitates the logging of the kinematic mechanisms of a finger. This study proposes a method for estimating forearm muscle contraction in a cylinder grasping environment during home-based rehabilitation using a stretch-sensor glove. This study employed support vector machine (SVM), multi-layer perceptron (MLP), and random forest (RF) to construct the estimation model. The root mean square (RMS) of the EMG signal, representing the muscle contraction force, was collected from 10 participants as the target learning for the stretch-sensor glove. This study constructed an experimental design based on a home-based therapy protocol known as the graded repetitive arm supplementary program (GRASP). Six cylinders with varying diameters and weights were employed as the grasping object. The results demonstrated that the RF model achieved the lowest root mean square error (RMSE) score, which differed significantly from the SVM and MLP models. The time series waveform comparison revealed that the RF model yields a similar estimation output to the ground truth, which incorporates the contraction–relaxation phases and the muscle’s contraction force. Additionally, despite the subjectivity of the participants’ grasping power, the RF model could produce similar trends in the muscle contraction forces of several participants. Utilizing a stretch-sensor glove, the proposed method demonstrated great potential as an alternative modality for monitoring forearm muscle contraction force, thereby improving the practicality for patients to self-implement home-based rehabilitation. Full article
(This article belongs to the Special Issue Applications of Emerging Biomedical Devices and Systems)
Show Figures

Figure 1

15 pages, 2147 KB  
Article
Clinical Features of Intraductal Papillary Mucinous Neoplasm-Related Pancreatic Carcinomas in Long-Term Surveillance
by Kyohei Matsuura, Shinsaku Nagamatsu, Shoma Kikukawa, Yuya Nishio, Yusuke Komeda, Yuya Matsuo, Kohei Ohta, Chisa Yamamoto, Ayana Sueki and Kei Moriya
J. Clin. Med. 2025, 14(13), 4585; https://doi.org/10.3390/jcm14134585 - 27 Jun 2025
Viewed by 778
Abstract
Background and Aims: An appropriate surveillance system must be established to efficiently identify cases of intraductal papillary mucinous neoplasm (IPMN)-related malignant transformation. We analyzed the initial clinical background that affects long-term prognosis and narrowed the population for whom continued evaluation is inevitable. Methods: [...] Read more.
Background and Aims: An appropriate surveillance system must be established to efficiently identify cases of intraductal papillary mucinous neoplasm (IPMN)-related malignant transformation. We analyzed the initial clinical background that affects long-term prognosis and narrowed the population for whom continued evaluation is inevitable. Methods: We included 1645 patients with IPMN treated at our hospital since 2010. We examined the types and timing of malignant transformation in terms of the worrisome features (WFs). The chi-squared test, log-rank test, and Cox proportional hazards model were used for the analysis (statistical significance at α = 0.05). Results: In total, 123 (7.5%) and 41 patients (2.5%) had IPMN-derived carcinoma (IPMN-DC) and concomitant pancreatic ductal adenocarcinoma (c-PDAC), respectively. Compared with IPMN-DC, a significantly higher proportion of c-PDAC patients were diagnosed with an advanced disease stage that developed earlier. The factors with significantly shorter time for IPMN-DC development were maximum cyst diameter (MCD) ≥ 30 mm, nonbranched type, main pancreatic duct (MPD) diameter ≥ 5 mm, and septal nodal structure (SNS) for IPMN-DC, and MCD ≥ 30 mm, main duct type, MPD ≥ 5 mm, SNS, cyst enlargement (≥2.5 mm/year), and abnormal CA19-9 levels for c-PDAC. Both groups could be significantly stratified by the number of WFs. A relative risk analysis revealed that SNS, MCD ≥ 30 mm, and MPD ≥ 5 mm were significant factors for IPMN-DC, whereas abnormal CA19-9 and SNS were significant for c-PDAC. Conversely, significantly more patients exhibiting these factors initially later developed IPMN-DC or c-PDAC. Conclusions: Ten percent of IPMN cases will develop IPMN-DC or c-PDAC, thereby requiring careful follow-up, especially in cases with SNS, abnormal CA19-9, and MCD ≥ 30 mm. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

13 pages, 3694 KB  
Article
Round-Shaped vs. Hexagonally Shaped Saw Chain: Cutting Efficiency and Vibration Comparison
by Zdravko Pandur, Marin Bačić, Gordan Grden, Kristijan Mudrovčić, Václav Mergl and Matija Landekić
Forests 2025, 16(7), 1066; https://doi.org/10.3390/f16071066 - 26 Jun 2025
Viewed by 315
Abstract
Despite advances in technique and technology, the chainsaw is still the most widely used tool in forestry. For this reason, equipment manufacturers are developing new technical solutions to make working with a chainsaw as easy and efficient as possible. Some examples of this [...] Read more.
Despite advances in technique and technology, the chainsaw is still the most widely used tool in forestry. For this reason, equipment manufacturers are developing new technical solutions to make working with a chainsaw as easy and efficient as possible. Some examples of this are the development of professional battery-powered chainsaws and the development of new types of saw chains by the leading industry manufacturers. The aim of this paper was to determine the efficiency of the Stihl MSA 300C battery-powered chainsaw equipped with two different types of professional saw chains (Stihl Rapid Super and Stihl Rapid Hexa) when sawing round wood. The efficiency was determined based on measurements of electricity consumption, sawing speed, sawn wood cross-section, and wood chips and dust mass produced during sawing. The second aim was to determine whether there is a difference in measured vibration magnitude between the two tested saw chains. Fresh-fallen European beech (Fagus sylvatica L.) log, approx. 25 cm diameter without pronounced ellipticity, was used for sampling. Results indicate that although the saw chain manufacturer claims the new type of saw chain (Stihl Rapid Hexa) enables greater efficiency of the chainsaw, this was not the case. Results point to a 37% increase in mean sawing time, as well as a 23% increase in energy consumption when using the Rapid Hexa chain, with statistically significant difference (p ≤ 0.05). It should be emphasized that the manual operation of the chainsaw does not allow for a reliable determination of differences in energy consumption caused by changes in saw chain geometry. The advantages of this saw chain are that it is easier to maintain (sharpen) and significantly less wood chips and dust are produced. The measured vibration magnitude shows a statistically significant difference (p ≤ 0.05), i.e., a lower vibration total value on the front handle when using the Stihl Rapid Hexa chain. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

16 pages, 2914 KB  
Article
Designing Polymeric Multifunctional Nanogels for Photothermal Inactivation: Exploiting Conjugate Polymers and Thermoresponsive Platforms
by Ignacio Velzi, Edith Ines Yslas and Maria Molina
Pharmaceutics 2025, 17(7), 827; https://doi.org/10.3390/pharmaceutics17070827 - 25 Jun 2025
Viewed by 417
Abstract
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization [...] Read more.
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization of thermoresponsive nanogels composed of poly (N-isopropylacrylamide-co-N-isopropylmethylacrylamide) (PNIPAM-co-PNIPMAM) semi-interpenetrated with polypyrrole (PPy), yielding monodisperse particles of 377 nm diameter. Spectroscopic analyses—including 1H-NMR, FTIR, and UV-Vis—confirmed successful copolymer formation and PPy incorporation, while TEM images revealed uniform spherical morphology. Differential scanning calorimetry established a volumetric phase transition temperature of 38.4 °C, and photothermal assays demonstrated a ΔT ≈ 10 °C upon 10 min of 850 nm NIR irradiation. In vitro antimicrobial activity tests against Pseudomonas aeruginosa (ATCC 15692) showed a dose-time-dependent reduction in bacterial viability, with up to 4 log CFU/mL. Additionally, gentamicin-loaded nanogels achieved 38.7% encapsulation efficiency and exhibited stimulus-responsive drug release exceeding 75% under NIR irradiation. Conclusions: Combined photothermal and antibiotic therapy yielded augmented bacterial killing, underscoring the potential of PPy-interpenetrated nanogels as smart, dual-mode antimicrobials. Full article
Show Figures

Graphical abstract

30 pages, 3023 KB  
Article
Integrated Design as a Strategy for Innovating Native Timber Products and Promoting Sustainable Forest Management
by Alejandra Schueftan, Marjorie Martin, Carlos Buchner, Sol García, Mariela Reyes and Michael Arnett
Buildings 2025, 15(11), 1886; https://doi.org/10.3390/buildings15111886 - 29 May 2025
Viewed by 689
Abstract
This study explores how integrating design processes into the native timber industry of southern Chile, specifically in the Araucanía and Los Ríos regions, can improve the value chain and promote sustainability. Chile’s native wood sector is constrained by fragmented value chains, underutilised small-diameter [...] Read more.
This study explores how integrating design processes into the native timber industry of southern Chile, specifically in the Araucanía and Los Ríos regions, can improve the value chain and promote sustainability. Chile’s native wood sector is constrained by fragmented value chains, underutilised small-diameter logs and limited market confidence. These challenges jeopardise forest sustainability and rural livelihoods, underscoring the imperative to find innovative solutions to reinvigorate the sector. A market gap analysis revealed critical limitations in the current industry, including low supply, limited demand, and weak technological development, especially in producing value-added wood products. The research identified over 417,000 hectares of second-growth roble (Nothofagus obliqua)-raulí (Nothofagus alpina)-coigüe (Nothofagus dombeyi) forests suitable for sustainable management. Interviews with woodworking SMEs showed that 66% already use native timber, yet 46% of the projected volume remains underutilised due to the prevalence of short and thin logs. In response to these challenges, the study developed innovative prototypes such as interior claddings and lattices made from smaller, underutilised logs. These designs were evaluated and validated for use in residential and public buildings, demonstrating their potential to meet new market demands while promoting resource efficiency. The results show that, whilst there is a clear need for better infrastructure, workforce training, and commercial planning to support product adoption, design-driven innovation offers a promising path forward enhancing the industry’s competitiveness. Demonstrating how design-led integration can transform under-used native timber into high-value products, simultaneously driving sustainable forest stewardship and local economic growth. Full article
(This article belongs to the Special Issue Research on Timber and Timber–Concrete Buildings)
Show Figures

Figure 1

16 pages, 856 KB  
Article
Inactivation of Aerosolized Hepatitis A Viral Droplets on Food Contact Surfaces by Ultraviolet-Light-Emitting Diodes at 255 nm and 279 nm
by Breanna Polen, Ankit Patras, Brahmaiah Pendyala and Doris H. D’Souza
Foods 2025, 14(11), 1899; https://doi.org/10.3390/foods14111899 - 27 May 2025
Viewed by 565
Abstract
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses [...] Read more.
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses for aerosolized HAV inactivation. This study evaluates the UV-C LED doses for the inactivation of aerosolized hepatitis A virus (HAV) deposited on stainless-steel and glass discs. HAV was aseptically deposited onto stainless-steel or glass discs (1.27 cm diameter) using a nebulizer within a chamber followed by treatments for up to 1.5 min with 255 nm (surface dose = 0–76.5 mJ/cm2) or 279 nm (surface dose = 0–8.1 mJ/cm2) UV-C LED. Plaque assays were used to enumerate infectious titers of recovered viruses and data from three replicates were statistically analyzed. The calculated linear D10-value (UV-C dose for a 1-log reduction in aerosolized deposits) for HAV by 255 nm UV-C LED was 47.39 ± 7.40 and 40.0 ± 2.94 mJ/cm2 (R2 = 0.94 and 0.91) and using 279 nm UV-C LED were 6.60 ± 0.27 and 5.57 ± 0.74 mJ/cm2 (R2 = 0.98 and 0.94) on stainless-steel and glass discs, respectively. The non-linear Weibull model showed δ (dose needed for a 1-log reduction in aerosolized HAV deposits) values for HAV of 29.69 ± 5.49 and 35.25 ± 15.01 mJ/cm2 by 255 nm UV-C LED (R2 = 0.99 and 0.92) and 6.67 ± 0.63 and 5.21 ± 1.25 mJ/cm2 by 279 nm UV-C LED (R2 = 0.98 and 0.95) on stainless-steel and glass discs, respectively. These data indicate that 279 nm UV-C LED showed higher efficiency for HAV inactivation than 255 nm UV-C LED, and that Weibull models were a better fit when tailing was observed. This study provides the inactivation data needed to aid in designing UV-C LED systems for delivering doses required to inactivate bio-aerosolized HAV deposits on stainless-steel and glass. Full article
(This article belongs to the Special Issue Antimicrobial Strategies in Food Processing, Production and Storage)
Show Figures

Figure 1

24 pages, 7475 KB  
Article
Application of a Dual-Stream Network Collaboratively Based on Wavelet and Spatial-Channel Convolution in the Inpainting of Blank Strips in Marine Electrical Imaging Logging Images: A Case Study in the South China Sea
by Guilan Lin, Sinan Fang, Manxin Li, Hongtao Wu, Chenxi Xue and Zeyu Zhang
J. Mar. Sci. Eng. 2025, 13(5), 997; https://doi.org/10.3390/jmse13050997 - 21 May 2025
Cited by 1 | Viewed by 543
Abstract
Electrical imaging logging technology precisely characterizes the features of the formation on the borehole wall through high-resolution resistivity images. However, the problem of blank strips caused by the mismatch between the instrument pads and the borehole diameter seriously affects the accuracy of fracture [...] Read more.
Electrical imaging logging technology precisely characterizes the features of the formation on the borehole wall through high-resolution resistivity images. However, the problem of blank strips caused by the mismatch between the instrument pads and the borehole diameter seriously affects the accuracy of fracture identification and formation continuity interpretation in marine oil and gas reservoirs. Existing inpainting methods struggle to reconstruct complex geological textures while maintaining structural continuity, particularly in balancing low-frequency formation morphology with high-frequency fracture details. To address this issue, this paper proposes an inpainting method using a dual-stream network based on the collaborative optimization of wavelet and spatial-channel convolution. By designing a texture-aware data prior algorithm, a high-quality training dataset with geological rationality is generated. A dual-stream encoder–decoder network architecture is adopted, and the wavelet transform convolution (WTConv) module is utilized to enhance the multi-scale perception ability of the generator, achieving a collaborative analysis of the low-frequency formation structure and high-frequency fracture details. Combined with the spatial channel convolution (SCConv) to enhance the feature fusion module, the cross-modal interaction between texture and structural features is optimized through a dynamic gating mechanism. Furthermore, a multi-objective loss function is introduced to constrain the semantic coherence and visual authenticity of image reconstruction. Experiments show that, in the inpainting indexes for Block X in the South China Sea, the mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) of this method are 6.893, 0.779, and 19.087, respectively, which are significantly better than the improved filtersim, U-Net, and AOT-GAN methods. The correlation degree of the pixel distribution between the inpainted area and the original image reaches 0.921~0.997, verifying the precise matching of the low-frequency morphology and high-frequency details. In the inpainting of electrical imaging logging images across blocks, the applicability of the method is confirmed, effectively solving the interference of blank strips on the interpretation accuracy of marine oil and gas reservoirs. It provides an intelligent inpainting tool with geological interpretability for the electrical imaging logging interpretation of complex reservoirs, and has important engineering value for improving the efficiency of oil and gas exploration and development. Full article
(This article belongs to the Special Issue Research on Offshore Oil and Gas Numerical Simulation)
Show Figures

Figure 1

Back to TopTop