Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,248)

Search Parameters:
Keywords = low emissivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2294 KB  
Article
Pollution Sources, Distribution, and Health Risks of Microplastic in Road Dust of Industrial, Peri-Urban Areas and Capital City of Bangladesh
by Md. Sohel Rana, Qingyue Wang, Miho Suzuki, Weiqian Wang, Christian Ebere Enyoh, Md. Rezwanul Islam and Tochukwu Oluwatosin Maduka
Microplastics 2025, 4(4), 73; https://doi.org/10.3390/microplastics4040073 (registering DOI) - 9 Oct 2025
Abstract
Microplastic (MP) pollution in urban areas is a growing global concern due to its health risks and environmental effects. This study investigates the sources, spatial distribution, and health risks of MPs in road dust across industrial, capital city, and peri-urban areas of Bangladesh. [...] Read more.
Microplastic (MP) pollution in urban areas is a growing global concern due to its health risks and environmental effects. This study investigates the sources, spatial distribution, and health risks of MPs in road dust across industrial, capital city, and peri-urban areas of Bangladesh. Street dust samples were collected from 15 heavily congested traffic sites across Dhaka and its surrounding areas. The samples were analyzed using fluorescence microscopy and Fourier Transform Infrared (FTIR) spectroscopy to identify MP types and their morphological characteristics. We have identified six types of polymers, including Polyvinyl alcohol (PVA), Polyethylene (PE), Polypropylene (PP), Polystyrene (PS), Low-Density Polyethylene (LDPE) and High-Density Polyethylene (HDPE), with industrial areas exhibiting the highest levels of MPs followed by capital city and peri-urban zones. PP was the most prevalent MP polymer, with the highest level in industrial areas (14.1 ± 1.7 MPs/g), followed by capital city (9.6 ± 1.92 MPs/g) and peri-urban areas (7.2 ± 1.56 MPs/g). Principal Component Analysis (PCA) identified traffic emissions, industrial activities, and mismanaged plastic waste as the primary sources of MPs. Health risk evaluations indicated that children are more susceptible to MP exposure through ingestion and inhalation, with industrial areas posing the highest carcinogenic risk. The findings underscore the pressing demand for better waste management systems and stricter regulatory measures to mitigate MP pollution and safeguard public health in urban environments. Addressing these challenges is essential to reduce the growing threat of MPs and their long-term effects on ecosystems and human well-being. Full article
Show Figures

Figure 1

32 pages, 3159 KB  
Article
Fuzzy Logic–Enhanced PMC Index for Assessing Policies for Decarbonization in Higher Education: Evidence from a Public University
by Fatma Şener Fidan
Sustainability 2025, 17(19), 8966; https://doi.org/10.3390/su17198966 (registering DOI) - 9 Oct 2025
Abstract
Higher education institutions play a critical role in the transition to a low-carbon future due to their research capacity and societal influence. Accordingly, the calculation of greenhouse gas (GHG) emissions and the prioritization of mitigation strategies are of particular importance. In this study, [...] Read more.
Higher education institutions play a critical role in the transition to a low-carbon future due to their research capacity and societal influence. Accordingly, the calculation of greenhouse gas (GHG) emissions and the prioritization of mitigation strategies are of particular importance. In this study, a comprehensive campus-level GHG inventory was prepared for a public university in Türkiye in alignment with the ISO 14064-1:2018 standard, and mitigation strategies were evaluated. To prioritize these strategies, both the classical Policy Modeling Consistency (PMC) index and, for the first time in the literature, a fuzzy extension of the PMC model was applied. The results reveal that the total GHG emissions for 2023 amounted to 4888.63 tCO2e (1.19 tCO2e per capita), with the largest shares originating from investments (31%) and purchased electricity (28.38%). While the classical PMC identified only two high-priority actions, the fuzzy PMC reduced score dispersion, resolved ranking ties, and expanded the number of high-priority actions to seven. The top strategies include awareness programs, energy-efficiency measures, virtual meeting practices, advanced electricity monitoring, and improved data management systems. By comparing the classical and fuzzy approaches, the study demonstrates that integrating fuzzy logic enhances the transparency, reproducibility, and robustness of strategy prioritization, thereby offering a practical roadmap for campus decarbonization and sustainability policy in higher education institutions. Full article
24 pages, 4428 KB  
Article
Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data
by Banglong Pan, Qi Wang, Zhuo Diao, Jiayi Li, Wuyiming Liu, Qianfeng Gao, Ying Shu and Juan Du
Atmosphere 2025, 16(10), 1173; https://doi.org/10.3390/atmos16101173 - 9 Oct 2025
Abstract
Land use patterns are a critical driver of changes in carbon emissions, making it essential to elucidate the relationship between regional carbon emissions and land use types. As a nationally designated economic strategic zone, the Yangtze River Basin encompasses megacities, rapidly developing medium-sized [...] Read more.
Land use patterns are a critical driver of changes in carbon emissions, making it essential to elucidate the relationship between regional carbon emissions and land use types. As a nationally designated economic strategic zone, the Yangtze River Basin encompasses megacities, rapidly developing medium-sized cities, and relatively underdeveloped regions. However, the mechanism underlying the interaction between landscape patterns and carbon emissions across such gradients remains inadequately understood. This study utilizes nighttime light, land use and carbon emissions datasets, employing XGBoost, CatBoost, LightGBM and a stacking ensemble model to analyze the impacts and driving factors of land use changes on carbon emissions in the Yangtze River Basin from 2002 to 2022. The results showed: (1) The stacking ensemble learning model demonstrated the best predictive performance, with a coefficient of determination (R2) of 0.80, a residual prediction deviation (RPD) of 2.22, and a root mean square error (RMSE) of 4.46. Compared with the next-best models, these performance metrics represent improvements of 19.40% in R2 and 28.32% in RPD, and a 22.16% reduction in RMSE. (2) Based on SHAP feature importance and Pearson correlation analysis, the primary drivers influencing CO2 net emissions in the Yangtze River Basin are GDP per capita (GDPpc), population density (POD), Tertiary industry share (TI), land use degree comprehensive index (LUI), dynamic degree of water-body land use (Kwater), Largest patch index (LPI), and number of patches (NP). These findings indicate that changes in regional landscape patterns exert a significant effect on carbon emissions in strategic economic regions, and that stacked ensemble models can effectively simulate and interpret this relationship with high predictive accuracy, thereby providing decision support for regional low-carbon development planning. Full article
(This article belongs to the Special Issue Urban Carbon Emissions: Measurement and Modeling)
18 pages, 982 KB  
Article
Model Construction and Scenario Analysis for Carbon Dioxide Emissions from Energy Consumption in Jiangsu Province: Based on the STIRPAT Extended Model
by Ying Liu, Lvhan Yang, Meng Wu, Jinxian He, Wenqiang Wang, Yunpeng Li, Renjiang Huang, Dongfang Liu and Heyao Tan
Sustainability 2025, 17(19), 8961; https://doi.org/10.3390/su17198961 (registering DOI) - 9 Oct 2025
Abstract
Against the backdrop of China’s “dual carbon” strategy (carbon peaking and carbon neutrality), provincial-level carbon emission research is crucial for the implementation of related policies. However, existing studies insufficiently cover the driving mechanisms and scenario prediction for energy-importing provinces. This study can provide [...] Read more.
Against the backdrop of China’s “dual carbon” strategy (carbon peaking and carbon neutrality), provincial-level carbon emission research is crucial for the implementation of related policies. However, existing studies insufficiently cover the driving mechanisms and scenario prediction for energy-importing provinces. This study can provide theoretical references for similar provinces in China to conduct research on carbon dioxide emissions from energy consumption. The carbon dioxide emissions from energy consumption in Jiangsu Province between 2000 and 2023 were calculated using the carbon emission coefficient method. The Tapio decoupling index model was adopted to evaluate the decoupling relationship between economic growth and carbon dioxide emissions from energy consumption in Jiangsu. An extended STIRPAT model was established to predict carbon dioxide emissions from energy consumption in Jiangsu, and this model was applied to analyze the emissions under three scenarios (baseline scenario, low-carbon scenario, and enhanced low-carbon scenario) during 2024–2030. The results show the following: (1) During 2000–2023, the carbon dioxide emissions from energy consumption in Jiangsu Province ranged from 215.22428 million tons to 783.94270 million tons, with an average of 549.96280 million tons. (2) The decoupling status between carbon dioxide emissions from energy consumption and economic development in Jiangsu was dominated by weak decoupling, accounting for 91.304%, while a small proportion (8.696%) of expansive coupling was also observed. (3) Under the baseline scenario, the carbon dioxide emissions from energy consumption in Jiangsu in 2030 will reach 796.828 million tons; under the low-carbon scenario, the emissions will be 786.355 million tons; and under the enhanced low-carbon scenario, the emissions will be 772.293 million tons. Furthermore, countermeasures and suggestions for reducing carbon dioxide emissions from energy consumption in Jiangsu are proposed, mainly including strengthening the guidance of policies and institutional systems, optimizing the energy consumption structure, intensifying technological innovation efforts, and enhancing government promotion and publicity. Full article
30 pages, 1346 KB  
Article
Spatio-Temporal Coupling of Carbon Efficiency, Carbon Sink, and High-Quality Development in the Greater Chang-Zhu-Tan Urban Agglomeration: Patterns and Influences
by Yong Guo, Lang Yi, Jianbo Zhao, Guangyu Zhu and Dan Sun
Sustainability 2025, 17(19), 8957; https://doi.org/10.3390/su17198957 (registering DOI) - 9 Oct 2025
Abstract
Under the framework of the “dual carbon” goals, promoting the coordinated development of carbon emission efficiency, carbon sink capacity, and high-quality growth has become a critical issue for regional sustainability. Using panel data from 2006 to 2021, this study systematically investigates the three-dimensional [...] Read more.
Under the framework of the “dual carbon” goals, promoting the coordinated development of carbon emission efficiency, carbon sink capacity, and high-quality growth has become a critical issue for regional sustainability. Using panel data from 2006 to 2021, this study systematically investigates the three-dimensional coupling coordination among carbon emission efficiency, carbon sink capacity, and high-quality development in the Greater Chang-Zhu-Tan urban agglomeration. The spatiotemporal evolution, spatial correlation characteristics, and influencing factors of the coupling coordination were also explored. The results indicate that the coupling coordination system exhibits an evolutionary trend of overall stability with localized differentiation. The overall coupling degree remains in the “running-in” stage, while the coordination level is still in a marginally coordinated state. Spatially, the pattern has shifted from “northern leadership” to “multi-polar support,” with Yueyang achieving intermediate coordination, four cities including Changde reaching primary coordination, and three cities including Loudi remaining imbalanced. Spatial correlation has weakened from significant to insignificant, with Xiangtan showing a “low–low” cluster and Hengyang displaying a “high–low” cluster. The evolution of hot and cold spots has moved from marked differentiation to a more balanced distribution, as reflected by the disappearance of cold spots. The empirical analysis confirms a three-dimensional coupling mechanism: ecologically rich regions attain high coordination through carbon sink synergies; economically advanced areas achieve decoupling through innovation-driven development; while traditional industrial cities, despite facing the “green paradox,” demonstrate potential for leapfrog progress through transformation. Among the influencing factors, industrial structure upgrading emerged as the primary driver of spatial differentiation, though with a negative impact. Government support also exhibited a negative effect, whereas the interaction between environmental regulation and both government support and economic development was found to be significant. Full article
17 pages, 2389 KB  
Article
Assessing the Environmental and Occupational Health Implications of Styrene Emissions in Cured-in-Place Pipe (CIPP) Rehabilitation: A Multi-Site Analysis of Installation Practices
by Parisa Beigvand, Mohammad Najafi, Vinayak Kaushal, Ayoub Mohammadi, William Elledge and Burak Kaynak
Int. J. Environ. Res. Public Health 2025, 22(10), 1543; https://doi.org/10.3390/ijerph22101543 - 9 Oct 2025
Abstract
Styrene is an aromatic compound widely used as a reactive monomer in polyester resins, which are among the most utilized resins in cured-in-place pipe (CIPP) technology, the most widely used trenchless pipe renewal method. Given that styrene is classified as a suspected human [...] Read more.
Styrene is an aromatic compound widely used as a reactive monomer in polyester resins, which are among the most utilized resins in cured-in-place pipe (CIPP) technology, the most widely used trenchless pipe renewal method. Given that styrene is classified as a suspected human carcinogen, this study aims to evaluate styrene concentrations emitted into the air during sewer pipe rehabilitation using CIPP. This study included developing a comprehensive methodology to collect data from six different CIPP installations across the U.S. and document styrene emissions before, during, and after the curing process. The air samples were collected and analyzed using the USEPA method TO-15 and TO-17. Measured styrene emissions were then compared with exposure limits established by USEPA, NIOSH, and OSHA to assess potential occupational and worker health impacts. The result confirmed that high styrene concentrations, exceeding the established threshold, can be observed within the CIPP work zone. The result also indicated a considerable reduction in styrene concentration within five feet downwind of the work zone. In conclusion, while the health risk to the public appears to be low, there is a potential for health impact for the CIPP crew. Therefore, implementing real-time air quality monitoring during CIPP installation to mitigate these health risks is recommended. Additionally, the use of appropriate personal protective equipment (PPE) by the crew is essential. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Exposure and Toxicology)
24 pages, 2315 KB  
Article
Mitigating Climate Warming: Mechanisms and Actions
by Jianhui Bai, Xiaowei Wan, Angelo Lupi, Xuemei Zong and Erhan Arslan
Atmosphere 2025, 16(10), 1170; https://doi.org/10.3390/atmos16101170 - 9 Oct 2025
Abstract
To validate a positive relationship between air temperature (T) and atmospheric substances (S/G, a ratio of diffuse solar radiation to global solar radiation) found at four typical stations on the Earth, and a further investigation was conducted. Based on the analysis of long-term [...] Read more.
To validate a positive relationship between air temperature (T) and atmospheric substances (S/G, a ratio of diffuse solar radiation to global solar radiation) found at four typical stations on the Earth, and a further investigation was conducted. Based on the analysis of long-term solar radiation, atmospheric substances, and air temperature at 29 representative stations of baseline surface radiation network (BSRN) in the world, the relationships and the mechanisms between air temperature and atmospheric substances were studied in more detail. A universal non-linear relationship between T and S/G was still found, which supported the previous relationship between T and S/G. This further revealed that a high (or low) air temperature is strongly associated with large (or small) amounts of atmospheric substances. The mechanism is that all kinds of atmospheric substances can keep and accumulate solar energy in the atmosphere and then heat the atmosphere, causing atmospheric warming at the regional and global scales. Therefore, it is suggested to reduce the direct emissions of all kinds of atmospheric substances (in terms gases, liquids and particles, and GLPs) from the natural and anthropogenic sources, and secondary formations produced from atmospheric compositions via chemical and photochemical reactions (CPRs) in the atmosphere, to slow down the regional and global warming through our collective efforts, by all mankind and all nations. Air temperature increased at most BSRN stations and many sites in China, and decreased at a small number of BSRN stations during long time scales, revealing that the mechanisms of air temperature change were very complex and varied with region, atmospheric substances, and the interactions between solar radiation, GLPs, and the land. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

18 pages, 4356 KB  
Article
Development of Low-Smoke Epoxy Resin Carbon Fiber Prepreg
by Yu Zhao, Lili Wu, Yujiao Xu, Dongfeng Cao and Yundong Ji
Polymers 2025, 17(19), 2710; https://doi.org/10.3390/polym17192710 - 9 Oct 2025
Abstract
The smoke toxicity of epoxy resin limits the application of its carbon fiber composites in marine interior structures. To address this issue, a novel epoxy resin (EZ) was synthesized by grafting phenyl propyl polysiloxane (PPPS) onto ortho-cresol novolac epoxy resin (EOCN), building upon [...] Read more.
The smoke toxicity of epoxy resin limits the application of its carbon fiber composites in marine interior structures. To address this issue, a novel epoxy resin (EZ) was synthesized by grafting phenyl propyl polysiloxane (PPPS) onto ortho-cresol novolac epoxy resin (EOCN), building upon the group’s earlier work on polysiloxane-modified epoxy resin (EB). The results confirmed successful grafting of PPPS onto EOCN, which significantly enhanced the thermal stability and char residue of EZ. Specifically, the peak heat release rate (PHRR), total heat release (THR), peak smoke production rate (PSPR), and total smoke production (TSP) of EZ were reduced by 68.5%, 35%, 73.1%, and 48.3%, respectively, attributable to the formation of a stable and compact char layer that suppressed smoke generation. By blending EZ with EB resin, a low-smoke epoxy system (LJF-2) was developed for prepreg applications. Carbon fiber composites (LJF-CF) prepared from LJF-2 exhibited minimal smoke emission and a unique bilayer char structure: a dense inner layer that hindered smoke transport and a thick outer layer that provided thermal insulation, delaying further resin decomposition. Silicon was uniformly distributed in the char residue as silicon oxides, improving its stability and compactness. Without adding any flame retardants or smoke suppressants, LJF-CF achieved a maximum smoke density (Ds,max) of 276.9, meeting the requirements of the FTP Code for ship deck materials (Ds,max < 400). These findings indicate that LJF-CF holds great promise for use in marine interior components where low smoke toxicity is critical. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

27 pages, 539 KB  
Review
Low-Carbon Hydrogen Production and Use on Farms: European and Global Perspectives
by Andrzej Kuranc, Agnieszka Dudziak and Tomasz Słowik
Energies 2025, 18(19), 5312; https://doi.org/10.3390/en18195312 - 9 Oct 2025
Abstract
This article examines the growing potential of low-emission hydrogen as an innovative solution supporting the decarbonization of the agricultural sector. It discusses its potential applications on farms, including as an energy source for powering agricultural machinery, producing fertilizers, and storing energy from renewable [...] Read more.
This article examines the growing potential of low-emission hydrogen as an innovative solution supporting the decarbonization of the agricultural sector. It discusses its potential applications on farms, including as an energy source for powering agricultural machinery, producing fertilizers, and storing energy from renewable sources. Within the European context, it considers actions arising from the European Green Deal and the “Fit for 55” strategy, which promote the development of hydrogen infrastructure and support research into low-emission technologies. The article also discusses global initiatives and trends in the development of the hydrogen economy, pointing to international cooperation, investment, and the need for technology standardization. It highlights the challenges related to cost, infrastructure, and scalability, as well as the opportunities hydrogen offers for a sustainable and energy-efficient agriculture of the future. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

25 pages, 8828 KB  
Review
Agronomic Practices vs. Climate Factors: A Meta-Analysis of Influences on Nitrous Oxide Emissions from Corn and Soybean Fields
by Jamshid Ansari, Morgan P. Davis, Chenhui Li and Sheel Bansal
Agronomy 2025, 15(10), 2358; https://doi.org/10.3390/agronomy15102358 - 9 Oct 2025
Abstract
Nitrous oxide (N2O), a potent greenhouse gas (GHG) and major contributor to climate change, is primarily released through agricultural activities. To better understand and quantify how land management practices, local climate conditions, and soil physicochemical properties affect these agricultural N2 [...] Read more.
Nitrous oxide (N2O), a potent greenhouse gas (GHG) and major contributor to climate change, is primarily released through agricultural activities. To better understand and quantify how land management practices, local climate conditions, and soil physicochemical properties affect these agricultural N2O emissions, we conducted a review of the peer-reviewed literature on N2O emission from corn [Zea mays L.] and soybean [Glycine max (L.) Merr.] fields. We evaluated the seasonal, cumulative effects of three nitrogen fertilizer rates—no fertilizer (0), low (<188 kg N ha−1), and high (188–400 kg N ha−1)—tillage practices, local climate (precipitation and temperature), soil texture, and soil pH on soil N2O emissions. This meta-analysis included 77 articles for corn and 22 articles for soybean fields. Average N2O emissions during the corn rotation were 2.34 and 2.45 kg N2O-N ha−1 season−1 under low and high N fertilizer rates, respectively, and were both substantially (p < 0.0001) greater than those of non-fertilized corn fields (0.91 kg N2O-N ha−1 season−1). Non-fertilized soybean fields showed seasonal N2O emissions of 0.74 kg N2O-N ha−1, while low fertilizer application triggered a sharp increase (1.87 kg N2O-N ha−1) in N2O emissions by roughly 2.5 times (p < 0.028). Increased temperature did not significantly (p > 0.05) affect the emission of N2O from fertilized or non-fertilized corn fields. Regardless of fertilization and tillage practices, our analysis, including Principal Component Analysis, revealed that in corn fields, precipitation and soil pH are the dominant factors influencing soil N2O emissions. This study uniquely quantifies the influence of climate–soil factors, such as precipitation and soil pH, alongside agronomic practices, on N2O emissions, offering new insights beyond previous reviews focused primarily on fertilizer rates or tillage effects. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

30 pages, 1769 KB  
Review
Decarbonizing the Cement Industry: Technological, Economic, and Policy Barriers to CO2 Mitigation Adoption
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Clean Technol. 2025, 7(4), 85; https://doi.org/10.3390/cleantechnol7040085 - 9 Oct 2025
Abstract
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study [...] Read more.
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study is to systematically map and synthesize existing evidence on technological pathways, policy measures, and economic barriers to four core decarbonization strategies: clinker substitution, energy efficiency, alternative fuels, as well as carbon capture, utilization, and storage (CCUS) in the cement sector, with the goal of identifying practical strategies that can align industry practice with long-term climate goals. A scoping review methodology was adopted, drawing on peer-reviewed journal articles, technical reports, and policy documents to ensure a comprehensive perspective. The results demonstrate that each mitigation pathway is technically feasible but faces substantial real-world constraints. Clinker substitution delivers immediate reduction but is limited by SCM availability/quality, durability qualification, and conservative codes; LC3 is promising where clay logistics allow. Energy-efficiency measures like waste-heat recovery and advanced controls reduce fuel use but face high capital expenditure, downtime, and diminishing returns in modern plants. Alternative fuels can reduce combustion-related emissions but face challenges of supply chains, technical integration challenges, quality, weak waste-management systems, and regulatory acceptance. CCUS, the most considerable long-term potential, addresses process CO2 and enables deep reductions, but remains commercially unviable due to current economics, high costs, limited policy support, lack of large-scale deployment, and access to transport and storage. Cross-cutting economic challenges, regulatory gaps, skill shortages, and social resistance including NIMBYism further slow adoption, particularly in low-income regions. This study concludes that a single pathway is insufficient. An integrated portfolio supported by modernized standards, targeted policy incentives, expanded access to SCMs and waste fuels, scaled CCUS investment, and international collaboration is essential to bridge the gap between climate ambition and industrial implementation. Key recommendations include modernizing cement standards to support higher clinker replacement, providing incentives for energy-efficient upgrades, scaling CCUS through joint investment and carbon pricing and expanding access to biomass and waste-derived fuels. Full article
Show Figures

Figure 1

17 pages, 1033 KB  
Review
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
by Ayann Tiam, Marshall Watson and Talal Gamadi
Processes 2025, 13(10), 3195; https://doi.org/10.3390/pr13103195 - 8 Oct 2025
Abstract
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in [...] Read more.
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides base-load preheating and isothermal holding, while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heat-integration targets and duty splits; (ii) assessing scalability through high-pressure reactor design, thermal management, and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX, incorporates carbon pricing and credits, and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically, linking molten media demonstrations, catalyst development, and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed, recycle, and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation, thereby mitigating coking, sintering, and broad particle size distributions. High-pressure operation improves the hydrogen yield and equipment compactness, but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power, and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price, geothermal capacity factor, and overall conversion and selectivity. Overall, geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen, if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment. Full article
Show Figures

Figure 1

20 pages, 2263 KB  
Review
Alternative Fuels for General Aviation Piston Engines: A Comprehensive Review
by Florentyna Morawska, Paula Kurzawska-Pietrowicz, Remigiusz Jasiński and Andrzej Ziółkowski
Energies 2025, 18(19), 5299; https://doi.org/10.3390/en18195299 - 7 Oct 2025
Abstract
This review synthesizes recent research on alternative fuels for piston-engine aircraft and related propulsion technologies. Biofuels show substantial promise but face technological, economic, and regulatory barriers to widespread adoption. Among liquid options, biodiesel offers a high cetane number and strong lubricity yet suffers [...] Read more.
This review synthesizes recent research on alternative fuels for piston-engine aircraft and related propulsion technologies. Biofuels show substantial promise but face technological, economic, and regulatory barriers to widespread adoption. Among liquid options, biodiesel offers a high cetane number and strong lubricity yet suffers from poor low-temperature flow and reduced combustion efficiency. Alcohol fuels (bioethanol, biomethanol) provide high octane numbers suited to high-compression engines but are limited by hygroscopicity and phase-separation risks. Higher-alcohols (biobutanol, biopropanol) combine favorable heating values with stable combustion and emerge as particularly promising candidates. Biokerosene closely matches conventional aviation kerosene and can function as a drop-in fuel with minimal engine modifications. Emissions outcomes are mixed across studies: certain biofuels reduce NOx or CO, while others elevate CO2 and HC, underscoring the need to optimize combustion and advance second- to fourth-generation biofuel production pathways. Beyond biofuels, hydrogen engines and hybrid-electric systems offer compelling routes to lower emissions and improved efficiency, though they require new infrastructure, certification frameworks, and cost reductions. Demonstrated test flights with biofuels, synthetic fuels, and hydrogen confirm technical feasibility. Overall, no single option fully replaces aviation gasoline today; instead, a combined trajectory—biofuels alongside hydrogen and hybrid-electric propulsion—defines a pragmatic medium- to long-term pathway for decarbonizing general aviation. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2025)
Show Figures

Figure 1

75 pages, 13041 KB  
Article
Decarbonizing the Building Sector: The Integrated Role of Environmental, Social, and Governance Indicators
by Nicola Magaletti, Valeria Notarnicola, Mauro Di Molfetta and Angelo Leogrande
Buildings 2025, 15(19), 3601; https://doi.org/10.3390/buildings15193601 - 7 Oct 2025
Abstract
Climate change mitigation for the built environment has become a subject of greatest urgency, as buildings account for nearly 40% of total energy consumption and nearly one-third of total CO2 emissions. While environmental, social, and governance (ESG) indicators are increasingly used to [...] Read more.
Climate change mitigation for the built environment has become a subject of greatest urgency, as buildings account for nearly 40% of total energy consumption and nearly one-third of total CO2 emissions. While environmental, social, and governance (ESG) indicators are increasingly used to monitor sustainability performance, their collective role in impacting building-related emissions is yet largely under-investigated. The current research closes that gap through an examination of the ESG dimension–CO2 emissions intersection of 180 nations from 2000 to 2022, in the hope of illuminating how environmental, social, and governance elements interact to facilitate decarbonization. The research is guided by a multi-method design, including econometric examination, cluster modeling, and machine learning techniques, which provide causal evidence and predictive analysis, respectively. The findings reveal that the deployment of renewable energy significantly reduces emissions, while per capita energy use and PM2.5 air pollution exacerbate this effect. The social indicators show mixed results: learning, women’s parliamentary representation, and women’s workforce representation reduce emissions, while food production and growth among the lowest-income individuals demonstrate higher emissions. Governance demonstrates mixed results as well, with good regulation reducing emissions under specific conditions yet primarily supporting high-income countries with superior infrastructure. The examination of clusters reveals that ESG-balanced performance is retained by countries in the low-emission clusters, whereas decentralized ESG pillars are associated with higher emissions. Machine learning confirms the existence of non-linear effects and identifies PM2.5 exposure and renewable energy deployment as the strongest predictors of the relationship. In summary, the findings suggest that successful policies for decarbonizing the built environment are constructed upon the consistency of environmental, social, and governance plans, rather than single steps. Full article
Show Figures

Figure 1

24 pages, 2338 KB  
Article
Comparative (Bio)monitoring of Airborne PAHs Using Mosses and Filters
by Małgorzata Rajfur, Paweł Świsłowski, Tymoteusz Turlej, Oznur Isinkaralar, Kaan Isinkaralar, Sara Almasi, Arianna Callegari and Anca-Iulia Stoica
Molecules 2025, 30(19), 4009; https://doi.org/10.3390/molecules30194009 - 7 Oct 2025
Abstract
The present investigation provides a comparative six-month analysis of atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) in the urban region of Opole, Poland. The study employs dual monitoring methods: traditional quartz filter-based active air sampling and active moss biomonitoring using Pleurozium schreberi, [...] Read more.
The present investigation provides a comparative six-month analysis of atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) in the urban region of Opole, Poland. The study employs dual monitoring methods: traditional quartz filter-based active air sampling and active moss biomonitoring using Pleurozium schreberi, Sphagnum fallax, and Dicranum polysetum mosses. The experimental campaign took place from August 2021 to February 2022, spanning the autumn and winter seasons. PAH concentrations were measured using gas chromatography–mass spectrometry (GC-MS) following methodical sample extraction protocols. Filters documented transient air changes in PAHs, particularly high-molecular-weight (HMW) components such as benzo[a]pyrene (BaP), which exhibited considerable increases during the colder months due to heightened heating activities and less dispersion. The size of particles deposited on the filters varied from 0.16 to 73.6 μm, with an average size of 0.71 μm. Mosses exhibited cumulative uptake trends, with D. polysetum showing the greatest bioaccumulation efficiency, particularly for low- and medium-molecular-weight PAHs, followed by P. schreberi and S. fallax. Meteorological indices, including sun radiation and air temperature, demonstrated significant negative relationships with PAH buildup in mosses. Diagnostic ratio analysis verified primarily pyrogenic sources (e.g., fossil fuel burning), although petrogenic contributions were detected in D. polysetum, indicating its increased sensitivity to evaporative emissions. The study shows that the integration of moss biomonitoring with traditional filter samples provides a strong, complementary framework for assessing air quality, particularly in fluctuating meteorological settings. The results advocate for the integration of moss-based methodologies into environmental monitoring initiatives and provide significant insights into contaminant dynamics influenced by seasonal and meteorological factors. Full article
Show Figures

Figure 1

Back to TopTop