Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = low gain fluctuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1271 KB  
Article
Flexible Interconnection Planning Towards Mutual Energy Support in Low-Voltage Distribution Networks
by Hao Bai, Yingjie Tan, Qian Rao, Wei Li and Yipeng Liu
Electronics 2025, 14(18), 3696; https://doi.org/10.3390/electronics14183696 - 18 Sep 2025
Viewed by 356
Abstract
The increasing uncertainty of distributed energy resources (DERs) challenges the secure and resilient operation of low-voltage distribution networks (LVDNs). Flexible interconnection via power-electronic devices enables controllable links among LVDAs, supporting capacity expansion, reliability, load balancing, and renewable integration. This paper proposes a two-stage [...] Read more.
The increasing uncertainty of distributed energy resources (DERs) challenges the secure and resilient operation of low-voltage distribution networks (LVDNs). Flexible interconnection via power-electronic devices enables controllable links among LVDAs, supporting capacity expansion, reliability, load balancing, and renewable integration. This paper proposes a two-stage robust optimization framework for flexible interconnection planning in LVDNs. The first stage determines investment decisions on siting and sizing of interconnection lines, while the second stage schedules short-term operations under worst-case wind, solar, and load uncertainties. The bi-level problem is reformulated into a master–subproblem structure and solved using a column-and-constraint generation (CCG) algorithm combined with a distributed iterative method. Case studies on typical scenarios and a modified IEEE 33-bus system show that the proposed approach mitigates overloads and cross-area imbalances, improves voltage stability, and maintains high DER utilization. Although the robust plan incurs slightly higher costs, its advantages in reliability and renewable accommodation confirm its practical value for uncertainty-aware interconnection planning in future LVDNs. Case studies on typical scenarios and a modified IEEE 33-bus system demonstrate that under the highest uncertainty the proposed method reduces the voltage fluctuation index from 0.0093 to 0.0079, lowers the autonomy index from 0.0075 to 0.0019, and eliminates all overload events compared with stochastic planning. Even under the most adverse conditions, DER utilization remains above 84%. Although the robust plan increases daily operating costs by about $70, this moderate premium yields significant gains in reliability and renewable accommodation. In addition, the decomposition-based algorithm converges within only 39 s, confirming the practical efficiency of the proposed framework for uncertainty-aware interconnection planning in future LVDNs. Full article
(This article belongs to the Special Issue Reliability and Artificial Intelligence in Power Electronics)
Show Figures

Figure 1

18 pages, 9176 KB  
Article
A 100 MHz Bandwidth, 48.2 dBm IB OIP3, and 3.6 mW Reconfigurable MFB Filter Using a Three-Stage OPA
by Minghao Jiang, Tianshuo Xie, Jiangfeng Wu and Yongzhen Chen
Electronics 2025, 14(18), 3590; https://doi.org/10.3390/electronics14183590 - 10 Sep 2025
Viewed by 342
Abstract
This paper proposes a second-order low-pass Butterworth multiple-feedback (MFB) filter with a reconfigurable bandwidth and gain, implemented in a 28 nm CMOS. The filter supports independent tuning of the bandwidth from 10 MHz to 100 MHz and the gain from 0 dB to [...] Read more.
This paper proposes a second-order low-pass Butterworth multiple-feedback (MFB) filter with a reconfigurable bandwidth and gain, implemented in a 28 nm CMOS. The filter supports independent tuning of the bandwidth from 10 MHz to 100 MHz and the gain from 0 dB to 19 dB, effectively addressing the challenge of a tightly coupled gain and quality factor in traditional MFB designs. Notably, compared to the widely adopted Tow–Thomas structure, the proposed filter achieves second-order filtering and the same degree of flexibility using only a single operational amplifier (OPA), significantly reducing both the power consumption and area. Additionally, an RC tuning circuit is employed to reduce fluctuations in the RC time constant under process, voltage, and temperature (PVT) variations. To meet the requirements for high linearity and low power consumption in broadband applications, a three-stage push–pull OPA with current re-use feedforward and an RC Miller compensation technique is proposed. With the current re-use feedforward, the OPA’s loop gain at 100 MHz is significantly enhanced from 22.34 dB to 28.75 dB, achieving a 2.14 GHz unity-gain bandwidth. Using this OPA, the filter achieves a 48.2 dBm in-band (IB) OIP3, a 53.4 dBm out-of-band (OOB) OIP3, and a figure of merit (FoM) of 185.5 dBJ−1 at a100 MHz bandwidth while consuming only 3.6 mW from a 1.8 V supply. Full article
Show Figures

Figure 1

40 pages, 17003 KB  
Article
Marine Predators Algorithm-Based Robust Composite Controller for Enhanced Power Sharing and Real-Time Voltage Stability in DC–AC Microgrids
by Md Saiful Islam, Tushar Kanti Roy and Israt Jahan Bushra
Algorithms 2025, 18(8), 531; https://doi.org/10.3390/a18080531 - 20 Aug 2025
Viewed by 625
Abstract
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on [...] Read more.
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on backstepping fast terminal sliding mode control (BFTSMC). This controller is further enhanced with a virtual capacitor to emulate synthetic inertia and with a fractional power-based reaching law, which ensures smooth and finite-time convergence. Moreover, the proposed control strategy ensures the effective coordination of power sharing between AC and DC sub-grids through bidirectional converters, thereby maintaining system stability during rapid fluctuations in load or generation. To achieve optimal control performance under diverse and dynamic operating conditions, the controller gains are adaptively tuned using the marine predators algorithm (MPA), a nature-inspired metaheuristic optimization technique. Furthermore, the stability of the closed-loop system is rigorously established through control Lyapunov function analysis. Extensive simulation results conducted in the MATLAB/Simulink environment demonstrate that the proposed controller significantly outperforms conventional methods by eliminating steady-state error, reducing the settling time by up to 93.9%, and minimizing overshoot and undershoot. In addition, real-time performance is validated via processor-in-the-loop (PIL) testing, thereby confirming the controller’s practical feasibility and effectiveness in enhancing the resilience and efficiency of HADCMG operations. Full article
Show Figures

Figure 1

22 pages, 8647 KB  
Article
A High-Performance Ka-Band Cylindrical Conformal Transceiver Phased Array with Full-Azimuth Scanning Capability
by Weiwei Liu, Shiqiao Zhang, Anxue Zhang and Wenchao Chen
Appl. Sci. 2025, 15(16), 8982; https://doi.org/10.3390/app15168982 - 14 Aug 2025
Viewed by 474
Abstract
This paper presents a Ka-band cylindrical conformal transceiver active phased array (CCTAPA) with a full-azimuth scanning gain fluctuation of 0.8 dB and low power consumption. The array comprises 20 panels of 4 × 4 antenna elements, RF beam-control circuits, a Wilkinson power divider [...] Read more.
This paper presents a Ka-band cylindrical conformal transceiver active phased array (CCTAPA) with a full-azimuth scanning gain fluctuation of 0.8 dB and low power consumption. The array comprises 20 panels of 4 × 4 antenna elements, RF beam-control circuits, a Wilkinson power divider network, and frequency converters. The proposed three-subarray architecture enables ±9° beam scanning with minimal gain degradation. By dynamically switching subarrays and transceiver channels across azimuthal directions, the array achieves full 360° coverage with low gain fluctuation and power consumption. Fabrication and testing demonstrate a gain fluctuation of 0.8 dB, equivalent isotropically radiated power (EIRP) between 50.6 and 51.3 dBm, and a gain-to-noise-temperature ratio (G/T) ranging from −8 dB/K to −8.5 dB/K at 28.5 GHz. The RF power consumption remains below 8.73 W during full-azimuth scanning. This design is particularly suitable for airborne platforms requiring full-azimuth coverage with stringent power budgets. Full article
Show Figures

Figure 1

34 pages, 7297 KB  
Article
Passive Design for Residential Buildings in Arid Desert Climates: Insights from the Solar Decathlon Middle East
by Esra Trepci and Edwin Rodriguez-Ubinas
Buildings 2025, 15(15), 2731; https://doi.org/10.3390/buildings15152731 - 2 Aug 2025
Viewed by 2416
Abstract
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, [...] Read more.
This study investigates the effectiveness of passive design in low-rise residential buildings located in arid desert climates, using the Dubai Solar Decathlon Middle East (SDME) competition as a case study. This full-scale experiment offers a unique opportunity to evaluate design solutions under controlled, realistic conditions; prescriptive, modeled performance; and monitored performance assessments. The prescriptive assessment reviews geometry, orientation, envelope thermal properties, and shading. Most houses adopt compact forms, with envelope-to-volume and envelope-to-floor area ratios averaging 1 and 3.7, respectively, and window-to-wall ratios of approximately 17%, favoring north-facing openings to optimize daylight while reducing heat gain. Shading is strategically applied, horizontal on south façades and vertical on east and west. The thermal properties significantly exceed the local code requirements, with wall performance up to 80% better than that mandated. The modeled assessment uses Building Energy Models (BEMs) to simulate the impact of prescriptive measures on energy performance. Three variations are applied: assigning minimum local code requirements to all the houses to isolate the geometry (baseline); removing shading; and applying actual envelope properties. Geometry alone accounts for up to 60% of the variation in cooling intensity; shading reduces loads by 6.5%, and enhanced envelopes lower demand by 14%. The monitored assessment uses contest-period data. Indoor temperatures remain stable (22–25 °C) despite outdoor fluctuations. Energy use confirms that houses with good designs and airtightness have lower cooling loads. Airtightness varies widely (avg. 14.5 m3/h/m2), with some well-designed houses underperforming due to construction flaws. These findings highlight the critical role of passive design as the first layer for improving the energy performance of the built environment and advancing toward net-zero targets, specifically in arid desert climates. Full article
(This article belongs to the Special Issue Climate-Responsive Architectural and Urban Design)
Show Figures

Figure 1

11 pages, 6279 KB  
Communication
Low-Profile Broadband Filtering Antennas for Vehicle-to-Vehicle Applications
by Shengtao Chen and Wang Ren
Sensors 2025, 25(15), 4747; https://doi.org/10.3390/s25154747 - 1 Aug 2025
Viewed by 400
Abstract
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two [...] Read more.
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two radiation nulls in the primary radiation direction, effectively enhancing the filtering effect. The antenna achieves a wide operational bandwidth (S1110 dB) of 35.9% (4.3–6.4 GHz), making it highly suitable for Sub-6 GHz communication systems. Despite its compact size of 25 × 25 mm2, the antenna consistently maintains stable broadside radiation patterns, with a peak gain of 6.14 dBi and a minimal gain fluctuation of less than 1 dBi at 4.6–6.45 GHz. This design ensures reliable and robust communication performance for V2V systems operating in the designated frequency band. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 5158 KB  
Article
Enhancing Oil Recovery Through Vibration-Stimulated Waterflooding: Experimental Insights and Mechanisms
by Shixuan Lu, Zhengyuan Zhang, Liming Dai and Na Jia
Fuels 2025, 6(3), 56; https://doi.org/10.3390/fuels6030056 - 29 Jul 2025
Viewed by 557
Abstract
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both [...] Read more.
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both crude and emulsified oil samples. Vibration significantly improves recovery by inducing stick-slip flow, lowering the threshold pressure, and enhancing oil phase permeability while suppressing the water phase flow. Crude oil recovery increased by up to 24% under optimal vibration conditions, while emulsified oil showed smaller gains due to higher viscosity. Intermittent vibration achieved similar recovery rates to continuous vibration, but with reduced energy use. Statistical analysis revealed a strong correlation between pressure fluctuations and oil production in vibration-assisted tests, but no such relationship in non-vibration cases. These results provide insight into the mechanisms behind vibration-enhanced recovery, supported by analysis of pressure and flow rate responses during waterflooding. Full article
Show Figures

Figure 1

24 pages, 2152 KB  
Review
A Concise Overview of the Use of Low-Dimensional Molybdenum Disulfide as an Electrode Material for Li-Ion Batteries and Beyond
by Mattia Bartoli, Meltem Babayiğit Cinali, Özlem Duyar Coşkun, Silvia Porporato, Diego Pugliese, Erik Piatti, Francesco Geobaldo, Giuseppe A. Elia, Claudio Gerbaldi, Giuseppina Meligrana and Alessandro Piovano
Batteries 2025, 11(7), 269; https://doi.org/10.3390/batteries11070269 - 16 Jul 2025
Viewed by 908
Abstract
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and [...] Read more.
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and grid-scale storage systems, are continually evolving to meet the growing performance requirements. In this dynamic context, two-dimensional (2D) materials have emerged as highly promising candidates for use in electrodes due to their layered structure, tunable electronic properties, and high theoretical capacity. Among 2D materials, molybdenum disulfide (MoS2) has gained increasing attention as a promising low-dimensional candidate for LIB anode applications. This review provides a comprehensive yet concise overview of recent advances in the application of MoS2 in LIB electrodes, with particular attention to its unique electrochemical behavior at the nanoscale. We critically examine the interplay between structural features, charge-storage mechanisms, and performance metrics—chiefly the specific capacity, rate capability, and cycling stability. Furthermore, we discuss current challenges, primarily poor intrinsic conductivity and volume fluctuations, and highlight innovative strategies aimed at overcoming these limitations, such as through nanostructuring, composite formation, and surface engineering. By shedding light on the opportunities and hurdles in this rapidly progressing field, this work offers a forward-looking perspective on the role of MoS2 in the next generation of high-performance LIBs. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

23 pages, 1438 KB  
Article
Research on Collaborative Governance Mechanism of Air Pollutant Emissions in Ports: A Tripartite Evolutionary Game Analysis with Evidence from Ningbo-Zhoushan Port
by Kebiao Yuan, Lina Ma and Renxiang Wang
Mathematics 2025, 13(12), 2025; https://doi.org/10.3390/math13122025 - 19 Jun 2025
Cited by 1 | Viewed by 1034
Abstract
Under the “Dual Carbon” strategy, collaborative governance of port atmospheric pollutants and carbon emissions is critical for low-carbon transformation. Focusing on Ningbo-Zhoushan Port (48% regional ship emissions), this study examines government, port enterprises, and public interactions. A tripartite evolutionary game model with numerical [...] Read more.
Under the “Dual Carbon” strategy, collaborative governance of port atmospheric pollutants and carbon emissions is critical for low-carbon transformation. Focusing on Ningbo-Zhoushan Port (48% regional ship emissions), this study examines government, port enterprises, and public interactions. A tripartite evolutionary game model with numerical simulation reveals dynamic patterns and key factors. The results show the following: (1) A substitution effect exists between government incentive costs and penalty intensity—increased environmental governance budgets reduce the probability of government incentives, whereas higher public reporting rewards accelerate corporate emission reduction convergence. (2) Public supervision exhibits cyclical fluctuations due to conflicts between individual rationality and collective interests, with excessive reporting rewards potentially triggering free-rider behavior. (3) The system exhibits two stable equilibria: a low-efficiency equilibrium (0,0,0) and a high-efficiency equilibrium (1,1,1). The latter requires policy cost compensation, corporate emission reduction gains exceeding investments, and a supervision benefit–cost ratio greater than 1. Accordingly, the study proposes a three-dimensional “Incentive–Constraint–Collaboration” governance strategy, recommending floating penalty mechanisms, green financial instrument innovation, and community supervision network optimization to balance environmental benefits with fiscal sustainability. This research provides a dynamic decision-making framework for multi-agent collaborative emission reduction in ports, offering both methodological innovation and practical guidance value. Full article
Show Figures

Figure 1

21 pages, 1609 KB  
Article
Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study
by Marco Muccio, Giuseppina Pilloni, Lillian Walton Masters, Peidong He, Lauren Krupp, Abhishek Datta, Marom Bikson, Leigh Charvet and Yulin Ge
Bioengineering 2025, 12(6), 672; https://doi.org/10.3390/bioengineering12060672 - 19 Jun 2025
Viewed by 1027
Abstract
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following [...] Read more.
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following repeated tDCS sessions) on the regional brain activity during rest need further investigation, especially in MS. This study aims to elucidate tDCS’ underpinnings, alongside its therapeutic impact in MS patients, using concurrent tDCS-MRI methods. In total, 20 MS patients (age = 48 ± 12 years; 8 males) and 28 healthy controls (HCs; age = 36 ± 15 years; 12 males) were recruited. They participated in a tDCS-MRI session, during which resting-state functional MRI (rs-fMRI) was used to measure the levels of the fractional amplitude of low-frequency fluctuations (fALFFs), which is an index of regional neuronal activity, before and during left anodal dorsolateral prefrontal cortex (DLPFC) tDCS (2.0 mA for 15 min). MS patients were then asked to return for an identical tDCS-MRI visit (follow-up) after 20 identical at-home tDCS sessions. Simultaneous tDCS-induced changes in fALFF are seen across cortical and subcortical areas in both HC and MS patients, with some regions showing increased and others decreased brain activity. In HCs, fALFF increased in the right pre- and post-central gyrus whilst it decreased in subcortical regions. Conversely, MS patients initially displayed increases in more posterior cortical regions but decreases in the superior and temporal cortical regions. At follow-up, MS patients showed reversed patterns, emphasizing significant cumulative effects of tDCS treatment upon brain excitation. Such long-lasting changes are further supported by greater pre-tDCS fALFFs measured at follow-up compared to baseline, especially around the cuneus. The results were significant after correcting for multiple comparisons (p-FDR < 0.05). Our study shows that tDCS has both simultaneous and cumulative effects on neuronal activity measured with rs-fMRI, especially involving major brain areas distant from the site of stimulation, and it is responsible for fatigue and cognitive and motor skills. Full article
Show Figures

Figure 1

22 pages, 2268 KB  
Article
Evaluation of Water Quality in the Production of Rainbow Trout (Oncorhynchus mykiss) in a Recirculating Aquaculture System (RAS) in the Precordilleran Region of Northern Chile
by Renzo Pepe-Victoriano, Piera Pepe-Vargas, Anahí Pérez-Aravena, Héctor Aravena-Ambrosetti, Jordan I. Huanacuni, Felipe Méndez-Abarca, Germán Olivares-Cantillano, Olger Acosta-Angulo and Luis Espinoza-Ramos
Water 2025, 17(11), 1685; https://doi.org/10.3390/w17111685 - 2 Jun 2025
Viewed by 3204
Abstract
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen [...] Read more.
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen were monitored, with values ranging from 7 to 21 °C, <0.1 to 0.63 mg/L, 2.0 to 135 mg/L, and 1.8 to 7.5 mg/L, respectively. Additional parameters—including alkalinity, arsenic, chlorine, true color, conductivity, hardness, phosphorus, pH, potassium, suspended solids, and salinity—were also assessed, comparing different points within the system (head tank, culture tanks, and settling tanks). The results showed that water quality remained within acceptable ranges for aquaculture, although fluctuations in pH and low alkalinity levels caused stress in the fish. Despite these challenges, the specific growth rate (SGR) was 1.49, the feed conversion ratio (FCR) was 1.52, and weight gain reached 298.7%, with a survival rate of 96.2%. This study demonstrates that aquaculture in the Altiplano is feasible and can contribute to the sustainable development of aquaculture in the region. Furthermore, it highlights the importance of comprehensive water quality monitoring to optimize RAS performance in challenging environments. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

19 pages, 2716 KB  
Article
Control Strategy of a Multi-Source System Based on Batteries, Wind Turbines, and Electrolyzers for Hydrogen Production
by Ibrahima Touré, Alireza Payman, Mamadou Baïlo Camara and Brayima Dakyo
Energies 2025, 18(11), 2825; https://doi.org/10.3390/en18112825 - 29 May 2025
Cited by 1 | Viewed by 709
Abstract
Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy [...] Read more.
Multi-source systems are gaining attention as an effective approach to seamlessly incorporate renewable energies within electrical networks. These systems offer greater flexibility and better energy management possibilities. The considered multi-source system is based on a 50 MW wind farm connected to battery energy storage and electrolyzers through modular multi-level DC/DC converters. Wind energy systems interface with the DC-bus via rectifier power electronics that regulate the DC-bus voltage and implement optimal power extraction algorithms for efficient wind turbine operation. However, integrating intermittent renewable energy sources with optimal microgrid management poses significant challenges. It is essential to mention that the studied multi-source system is connected to the DC loads (modular electrolyzers and local load). This work proposes a new regulation method designed specifically to improve the performance of the system. In this strategy, the excess wind farm energy is converted into hydrogen gas and may be stored in the batteries. On the other hand, when the wind speed is low or there is no excess of energy, electrolyzer operations are stopped. The battery energy management depends on the power balance between the DC load (modular electrolyzers and local load) requirements and the energy produced from the wind farm. This control should lead to eliminating the fluctuations in energy production and should have a high dynamic performance. This work presents a nonlinear control method using a backstepping concept to improve the performances of the system operations and to achieve the mentioned goals. To evaluate the developed control strategy, some simulations based on real meteorological wind speed data using Matlab are conducted. The simulation results show that the proposed backstepping control strategy is satisfactory. Indeed, by integrating this control strategy into the multi-source system, we offer a flexible solution for battery and electrolyzer applications, contributing to the transition to a cleaner, more resilient energy system. This methodology offers intelligent and efficient energy management. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 6961 KB  
Article
Research on the Stability Control of Four-Wheel Steering for Distributed Drive Electric Vehicles
by Hongyu Pang, Qiping Chen, Yuanhao Cai, Chunhui Gong and Zhiqiang Jiang
Symmetry 2025, 17(5), 732; https://doi.org/10.3390/sym17050732 - 9 May 2025
Viewed by 967
Abstract
To address the challenge of optimizing system adaptability, disturbance rejection, control precision, and convergence speed simultaneously in four-wheel steering (4WS) stability control, a 4WS controller with a variable steering ratio (VSR) strategy and fast adaptive super-twisting (FAST) sliding mode control is proposed to [...] Read more.
To address the challenge of optimizing system adaptability, disturbance rejection, control precision, and convergence speed simultaneously in four-wheel steering (4WS) stability control, a 4WS controller with a variable steering ratio (VSR) strategy and fast adaptive super-twisting (FAST) sliding mode control is proposed to control and output the steering angles of four wheels. The ideal VSR strategy is designed based on the constant yaw rate gain, and a cubic quasi-uniform B-spline curve fitting method is innovatively used to optimize the VSR curve, effectively mitigating steering fluctuations and obtaining precise reference front wheel angles. A controller based on FAST is designed for active rear wheel steering control using a symmetric 4WS vehicle model. Under double-lane change conditions with varying speeds, the simulations show that, compared with the constant steering ratio, the proposed VSR strategy enhances low-speed sensitivity and high-speed stability, improving the system’s adaptability to different operating conditions. Compared with conventional sliding mode control methods, the proposed FAST algorithm reduces chattering while increasing convergence speed and control precision. The VSR-FAST controller achieves optimization levels of more than 7.3% in sideslip angle and over 41% in yaw rate across different speeds, achieving an overall improvement in the stability control performance of the 4WS system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

38 pages, 2697 KB  
Systematic Review
A Systematic Review on the Research and Development of Adaptive Buildings
by Yaolin Lin, Ling Xu, Wei Yang, Lin Tian and Melissa Chan
Buildings 2025, 15(10), 1593; https://doi.org/10.3390/buildings15101593 - 8 May 2025
Cited by 5 | Viewed by 2108
Abstract
Rapid urbanization and industrialization have led to great changes to the climate, such as global warming, urban heat islands, and frequent fluctuations in ambient temperature, and also a large amount of building energy consumption. Adaptive building provides an appropriate solution to maintain low [...] Read more.
Rapid urbanization and industrialization have led to great changes to the climate, such as global warming, urban heat islands, and frequent fluctuations in ambient temperature, and also a large amount of building energy consumption. Adaptive building provides an appropriate solution to maintain low energy consumption under various indoor and outdoor conditions and therefore has increasingly gained attention recently. Yet there is no clear definition on adaptive buildings and the current literature often focuses on the building envelope and overlooks buildings’ mechanical system, which is also an important part of the building system for responding to the indoor requirements and outdoor conditions. This article presents a systematic review on the research and development of adaptive buildings to address the identified research gaps. Firstly, it introduces and discusses the definition and evolution of the concept of adaptive building. Secondly, it reviews the adaptive building envelope technologies of roof, wall and window. Thirdly, it investigates the research progress on the adaptive mechanical system, especially lighting and air-conditioning systems. Lastly, it demonstrates practical applications of adaptive buildings and provides recommendations on future research directions on adaptive buildings. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

18 pages, 13981 KB  
Article
Analysis of Aerodynamic Characteristics of Rotating Detonation Turbine Based on Proper Orthogonal Decomposition Method
by Meiting Ling, Ting Zhao, Wenguo Luo, Jianfeng Zhu and Yancheng You
Aerospace 2025, 12(5), 406; https://doi.org/10.3390/aerospace12050406 - 4 May 2025
Cited by 1 | Viewed by 1117
Abstract
The unsteady interactions in rotating detonation turbine engines (RDTE) remain poorly understood. To address this, a 2D numerical model integrating a rotating detonation combustor (RDC) with a first-stage turbine is established to analyze flow structures and aerodynamics under various detonation modes. Proper orthogonal [...] Read more.
The unsteady interactions in rotating detonation turbine engines (RDTE) remain poorly understood. To address this, a 2D numerical model integrating a rotating detonation combustor (RDC) with a first-stage turbine is established to analyze flow structures and aerodynamics under various detonation modes. Proper orthogonal decomposition (POD) reveals intrinsic links between flow features and performance metrics. Results show that while the RDC generates total pressure gain, it induces significant unsteady flow. Guide vanes partially suppress pressure fluctuations but cannot eliminate total pressure losses or circumferential non-uniformity, reducing rotor efficiency. Increasing detonation wave numbers decreases total pressure gain at rotor inlet but improves flow uniformity: the counterclockwise double-wave mode exhibits optimal performance (27.9% work gain, 5.0% instability, 86.4% efficiency), whereas the clockwise single-wave mode shows the poorest (20.9% work gain, 11.8% instability, 84.0% efficiency). POD analysis indicates first-order modes represent time-averaged flow characteristics, while low-order modes capture non-uniform pressure distributions and pairing phenomena, reconstructing wave propagation. The study highlights discrepancies between turbine inlet’s actual unsteady flow and conventional quasi-steady design assumptions, proposing enhancing mean flow characteristics and increasing first-mode energy proportion to improve work extraction. These findings clarify the detonation wave mode–turbine performance correlation, offering insights for RDTE engineering applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop