Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = lung inflammatory disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1144 KB  
Review
Glymphatic Dysfunction in Neuro-Pulmonary Complications Following Subarachnoid Hemorrhage: A New Perspective on Brain–Lung Axis Disruption
by Eun Chae Lee and Jae Sang Oh
Cells 2025, 14(21), 1739; https://doi.org/10.3390/cells14211739 - 5 Nov 2025
Viewed by 572
Abstract
Subarachnoid hemorrhage (SAH), often resulting from aneurysmal rupture, remains a life-threatening cerebrovascular disorder with high morbidity and mortality. While previous research has focused primarily on cerebral damage and neurological outcomes, growing evidence suggests that SAH also causes systemic complications, including pulmonary dysfunction. The [...] Read more.
Subarachnoid hemorrhage (SAH), often resulting from aneurysmal rupture, remains a life-threatening cerebrovascular disorder with high morbidity and mortality. While previous research has focused primarily on cerebral damage and neurological outcomes, growing evidence suggests that SAH also causes systemic complications, including pulmonary dysfunction. The underlying mechanisms linking SAH to lung injury, however, are not fully understood. The glymphatic system, a perivascular network that facilitates the clearance of cerebrospinal fluid (CSF) and interstitial waste from the brain, plays a critical role in maintaining central nervous system (CNS) homeostasis. Aquaporin-4 (AQP4) water channels, predominantly expressed in astrocytic end feet, are essential for efficient glymphatic flow. Emerging studies have shown that SAH impairs glymphatic function by disrupting AQP4 polarity and CSF circulation, resulting in the accumulation of neurotoxic substances and neuroinflammation. Recent findings further suggest that glymphatic dysfunction may exert systemic effects beyond the CNS, contributing to a breakdown of the brain–lung axis. The release of pro-inflammatory cytokines, blood degradation products, and damage-associated molecular patterns (DAMPs) into systemic circulation can promote pulmonary endothelial injury and trigger immune responses in the lungs. This phenomenon is exacerbated by impaired clearance via the glymphatic system, amplifying systemic inflammation and increasing the risk of acute lung injury (ALI) or neurogenic pulmonary edema (NPE). This review proposes a novel perspective linking glymphatic impairment with pulmonary complications after SAH. Understanding this connection could open new therapeutic avenues—such as targeting AQP4 function, enhancing CSF circulation, or modulating the inflammatory response—to mitigate both neurological and respiratory sequelae in SAH patients. Full article
Show Figures

Figure 1

16 pages, 27038 KB  
Article
HCX3 Mitigates LPS-Induced Inflammatory Responses in Macrophages by Suppressing the Activation of the NF-κB Signaling Pathway
by Qianyi Wu, Jiyuan Shi, Luojin Wu, Lingxi Li, Yong Ling, Liming Mao and Jie Zhang
Curr. Issues Mol. Biol. 2025, 47(10), 809; https://doi.org/10.3390/cimb47100809 - 1 Oct 2025
Viewed by 634
Abstract
Acute lung injury (ALI) is a severe pulmonary disorder characterized by the disruption of the alveolar–capillary barrier, leading to impaired oxygenation and pulmonary edema. Current pharmacological interventions primarily involve the use of steroid drugs, oxygen radical scavengers, and bronchodilators. However, the therapeutic efficacy [...] Read more.
Acute lung injury (ALI) is a severe pulmonary disorder characterized by the disruption of the alveolar–capillary barrier, leading to impaired oxygenation and pulmonary edema. Current pharmacological interventions primarily involve the use of steroid drugs, oxygen radical scavengers, and bronchodilators. However, the therapeutic efficacy of these interventions remains inconsistent. Canthin-6-ones, a class of tryptophan-derived alkaloids, exhibit anti-inflammatory, antioxidant, and immunomodulatory properties. In this study, we synthesized a novel Canthin-6-one derivative, namely HCX3, and evaluated its potential beneficial effects and underlying mechanisms on ALI. Prior to the experimental study, network pharmacology analysis revealed that HCX3 may exert anti-inflammatory effects in the context of ALI through the regulation of multiple signaling pathways, including the NF-κB pathways. To validate these findings, Lipopolysaccharide (LPS) was employed to stimulate RAW 264.7 macrophages and bone marrow-derived macrophages (BMDMs) to construct cellular models of inflammatory response associated with ALI. Our data demonstrated that exposure to HCX3 significantly inhibited the transcription and the secretion of multiple pro-inflammatory mediators, including IL-1β, IL-6, and TNF-α, in a dose-dependent manner. Additionally, HCX3 reduced LPS-induced phosphorylation levels of p65 and IκB-α in macrophages, indicating an inhibitory effect of the compound on the activation of NF-κB signaling pathway. Collectively, our data suggest that HCX3 exhibits significant anti-inflammatory effects by inhibiting NF-κB-related signaling pathways, providing new insights for ALI treatment. Full article
(This article belongs to the Special Issue The Role of Bioactives in Inflammation, 2nd Edition)
Show Figures

Figure 1

21 pages, 770 KB  
Review
Beyond the Cardio–Renal–Metabolic Axis: Emerging Therapeutic Targets and Novel Mechanisms of Action of Flozins
by Wojciech Matuszewski, Lena Tomaszek, Michał Szklarz, Jan Marek Górny, Bernard Kordas, Joanna Rutkowska and Judyta Juranek
J. Clin. Med. 2025, 14(18), 6348; https://doi.org/10.3390/jcm14186348 - 9 Sep 2025
Viewed by 1229
Abstract
Contemporary diabetes management is progressively moving away from a glucocentric approach, with growing expectations that novel antidiabetic agents offer benefits beyond glycaemic control. Sodium–glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a cornerstone in the treatment of type 2 diabetes mellitus (T2DM). In [...] Read more.
Contemporary diabetes management is progressively moving away from a glucocentric approach, with growing expectations that novel antidiabetic agents offer benefits beyond glycaemic control. Sodium–glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a cornerstone in the treatment of type 2 diabetes mellitus (T2DM). In addition to reducing blood glucose levels by promoting renal glucose excretion, these agents contribute significantly to cardio–renal–metabolic protection and are associated with improved cardiovascular outcomes and prolonged survival. Although SGLT2 inhibitors do not exhibit a class effect in all clinical aspects, growing evidence suggests their potential in a variety of additional therapeutic areas. We conducted an in-depth review of current scientific literature and clinical studies regarding this class of drugs. SGLT2 inhibitors demonstrate neuroprotective properties and may provide benefits in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, potentially through the improvement of mitochondrial function and attenuation of inflammatory responses. Their anti-inflammatory and antioxidative effects are closely linked to reductions in cardiac and renal fibrosis. Other observed benefits include weight loss, improved insulin sensitivity, normalization of serum uric acid, and a reduction in hepatic steatosis—each with important metabolic implications. Furthermore, SGLT2 inhibitors have been shown to positively influence iron metabolism and improve erythrocyte indices. Emerging data also indicate beneficial effects in women with polycystic ovary syndrome. Another promising area of investigation involves the modulation of Klotho protein expression and support of vascular homeostasis. In oncology, SGLT2 inhibitors are gaining attention, with encouraging preclinical results observed in malignancies such as pancreatic, thyroid, breast, and lung cancers. Based on a comprehensive evaluation of the existing body of evidence, it is anticipated that the clinical indications for SGLT2 inhibitors will expand beyond the cardio–renal–metabolic axis in the near future. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Graphical abstract

23 pages, 6877 KB  
Article
Nagilactone C from the Seeds of Podocarpus nakaii May Protect Against LPS-Induced Acute Lung Injury via STAT Signaling Pathway Inhibition
by Xiaoxiao Chen, Jing Tang, Shijie Zhan, Yixian Qiu, Jing Li, Weiguang Shan and Youmin Ying
Pharmaceuticals 2025, 18(9), 1319; https://doi.org/10.3390/ph18091319 - 3 Sep 2025
Viewed by 734
Abstract
Background/Objectives: Acute lung injury (ALI) is a respiratory disorder lacking specific targeted therapy. Our preliminary screening revealed that the ethanol extract of the seeds of Podocarpus nakaii (EESPN) alleviated the symptoms of ALI in mice. The objectives of this study were to identify [...] Read more.
Background/Objectives: Acute lung injury (ALI) is a respiratory disorder lacking specific targeted therapy. Our preliminary screening revealed that the ethanol extract of the seeds of Podocarpus nakaii (EESPN) alleviated the symptoms of ALI in mice. The objectives of this study were to identify the active constituents in EESPN and study the mechanism involved. Methods: Column chromatography was performed to separate the chemical constituents of EESPN. The structures of the isolates were determined via spectroscopic methods. MTT assays, Western blotting, histological analysis, TUNEL assays, immunofluorescence staining, transcriptomic analysis, and quantitative real-time polymerase chain reaction (qRT–PCR) were employed to evaluate the anti-inflammatory activity and to elucidate the potential mechanism of nagilactone C (3, Nag C) in ALI treatment. Results: Twelve compounds were isolated from EESPN and structurally characterized. The structure of podolactone E (1) was confirmed via single-crystal X-ray diffraction. In vitro, Nag C showed potent anti-inflammatory activity in LPS-induced RAW 264.7 cells. Nag C liposomes significantly ameliorated LPS-induced histopathological damage to the lungs, reduced neutrophil infiltration and inflammatory cytokine levels, increased myeloperoxidase (MPO) activity, and promoted apoptosis in mice. In addition to suppressing inflammation, Nag C also significantly suppressed the phosphorylation of the NF-κB, STAT3, and STAT1 proteins. Conclusions: Nag C is an active constituent of EESPN. It may protect against LPS-induced ALI via inhibition of the STAT signaling pathway. Thus, Nag C is a promising lead compound in the development of novel STAT-targeted anti-inflammatory agents. Full article
Show Figures

Figure 1

15 pages, 841 KB  
Perspective
Next-Generation Regenerative Therapies for Alpha-1 Antitrypsin Deficiency: Molecular Pathogenesis to Clinical Translation
by Se-Ran Yang and Hyung-Ryong Kim
Int. J. Mol. Sci. 2025, 26(17), 8504; https://doi.org/10.3390/ijms26178504 - 1 Sep 2025
Viewed by 1717
Abstract
Alpha-1 antitrypsin deficiency (AATD) represents a paradigmatic genetic disorder with well-characterized hepatic manifestations but relatively underexplored pulmonary implications. While liver involvement has been extensively reviewed, the underlying mechanisms of lung disease progression remain poorly understood, particularly regarding immunological pathways and inflammatory processes. The [...] Read more.
Alpha-1 antitrypsin deficiency (AATD) represents a paradigmatic genetic disorder with well-characterized hepatic manifestations but relatively underexplored pulmonary implications. While liver involvement has been extensively reviewed, the underlying mechanisms of lung disease progression remain poorly understood, particularly regarding immunological pathways and inflammatory processes. The pathophysiology involves defective alpha-1 antitrypsin (AAT) production, including AAT variants that induce neutrophil elastase activity, causing progressive alveolar destruction and sustained inflammation, leading to emphysema, as one of the main components of chronic obstructive pulmonary disease (COPD). AATD and smoking represent major risk factors for COPD, the third leading cause of death worldwide at present. In AATD patients, neutrophils, which constitute the majority of circulating leukocytes, become dysregulated. Under normal conditions, cells perform essential functions, including phagocytosis and neutrophil extracellular trap formation (NETosis); in AATD, however, they accumulate excessively in alveolar spaces due to impaired elastase control. The accumulation of Z-AAT polymers within epithelial cells creates a pathological cycle, acting as chemoattractants that sustain pro-inflammatory responses and contribute to chronic obstructive pulmonary disease development. In addition, monocytes, representing a smaller fraction of leukocytes, migrate to inflammatory sites and differentiate into macrophages while secreting AAT with anti-inflammatory properties. However, in PiZZ patients, this protective mechanism fails, as polymer accumulation within cells reduces both AAT secretion and the number of protective human leukocyte antigen(HLA)-DR-monocyte subsets. In particular, macrophages demonstrate remarkable plasticity, switching between pro-inflammatory M1 (classically activated macrophages) and tissue-repairing M2 (alternatively activated macrophages) phenotypes based on environmental cues. In AATD, this adaptive capability becomes compromised due to intracellular polymer accumulation, leading to impaired phagocytic function and dysregulated cytokine production and ultimately perpetuating chronic inflammation and progressive tissue damage. Recent advances in induced pluripotent stem cell (iPSC) technology have facilitated alveolar epithelial cell (AEC) generation, in addition to the correction of AATD mutations through gene editing systems. Despite the limitations of AAT correction, iPSC-derived organoid models harboring AATD mutations can deliver important insights into disease pathophysiology, while gene editing approaches help demonstrate causality between specific mutations and observed phenotypes. Therefore, in this review, we investigated recent studies that can serve as tools for gene editing and drug development based on recently developed iPSC-related technologies to understand the pathogenesis of AATD. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1092 KB  
Review
From Acute Carditis, Rheumatic Carditis, and Morphologic Cardiac Reactions to Allergic Angina, Allergic Myocardial Infarction, and Kounis Syndrome: A Multidisciplinary and Multisystem Disease
by Nicholas G. Kounis, Alexandros Stefanidis, Ming-Yow Hung, Uğur Özkan, Cesare de Gregorio, Alexandr Ceasovschih, Virginia Mplani, Christos Gogos, Stelios F. Assimakopoulos, Christodoulos Chatzigrigoriadis, Panagiotis Plotas, Periklis Dousdampanis, Sophia N. Kouni, Grigorios Tsigkas, Nicholas Patsouras, Gianfranco Calogiuri, Soheila Pourmasumi and Ioanna Koniari
J. Cardiovasc. Dev. Dis. 2025, 12(9), 325; https://doi.org/10.3390/jcdd12090325 - 25 Aug 2025
Cited by 1 | Viewed by 2262
Abstract
This narrative review explains the history of anaphylactic or hypersensitivity reactions, their connection to the cardiovascular system, and Kounis syndrome, which is linked to hypersensitivity. Additional subjects discussed include immunoglobulin E and serum tryptase, common pathways of allergic and nonallergic cardiovascular events, current [...] Read more.
This narrative review explains the history of anaphylactic or hypersensitivity reactions, their connection to the cardiovascular system, and Kounis syndrome, which is linked to hypersensitivity. Additional subjects discussed include immunoglobulin E and serum tryptase, common pathways of allergic and nonallergic cardiovascular events, current perspectives on Kounis syndrome, allergic myocardial infarction, allergic angina, and the impact of COVID-19 and its vaccination on Kounis syndrome. Kounis syndrome is a distinct kind of acute vascular disease that affects the coronary, cerebral, mesenteric, peripheral, and venous systems. Kounis syndrome is currently used to describe coronary symptoms linked to disorders involving mast cell activation and inflammatory cell interactions, such as those involving T-lymphocytes and macrophages, which further induce allergic, hypersensitive, anaphylactic, or anaphylactic insults. Platelet activating factor, histamine, neutral proteases like tryptase and chymase, arachidonic acid products, and a range of cytokines and chemokines released during the activation process are among the inflammatory mediators that cause it. Proinflammatory cytokines are primarily produced by mast cells in COVID-19 infections. Mast cell-derived proteases and eosinophil-associated mediators are also more prevalent in the lung tissues and sera of COVID-19 patients. As a modern global threat to civilization, COVID-19 is linked to chemical patterns that can activate mast cells; therefore, allergic stimuli are usually the reason. Virus-associated molecular patterns can activate mast cells, but allergic triggers are typically the cause. By activating SARS-CoV-2 and other toll-like receptors, a variety of proinflammatory mediators, including IL-6 and IL-1β, are released, potentially contributing to the pathology of COVID-19. Full article
Show Figures

Figure 1

11 pages, 311 KB  
Article
Characteristics and Outcomes of Diffuse Interstitial Pneumonias Discovered in the ICU: A Retrospective Monocentric Study—The “IPIC” (Interstitial Pneumonia in Intensive Care) Study
by Damien Eckert, Julien Bermudez, Marc Leone, Mathieu Di Bisceglie and Florent Montini
Diagnostics 2025, 15(16), 1995; https://doi.org/10.3390/diagnostics15161995 - 9 Aug 2025
Viewed by 615
Abstract
Background/Objectives: Interstitial lung disease (ILD) is a heterogenous group of disorders characterised by an association of inflammatory and fibrotic abnormalities of the lung. Acute respiratory failure (ARF) may represent the initial picture of the disease. This study aims to highlight the diagnosis [...] Read more.
Background/Objectives: Interstitial lung disease (ILD) is a heterogenous group of disorders characterised by an association of inflammatory and fibrotic abnormalities of the lung. Acute respiratory failure (ARF) may represent the initial picture of the disease. This study aims to highlight the diagnosis of ILD in the intensive care unit (ICU) and to describe the epidemiological, prognostic, and imaging features of patients diagnosed for the first time with ILD in the ICU. Methods: We conducted a single-centre retrospective study. We screened all 2459 patients admitted to our ICU from October 2017 to February 2020. The inclusion criteria consisted of the ILD diagnosis criteria. For each patient, clinical data and lung computed tomography scan patterns were analysed. The selected cases were then reviewed by an expert team at the tertiary care teaching hospital of Marseille (Hôpital Nord, Marseille, France). Results: During the study period, 26 ICU patients were diagnosed with ILD and 20 cases were confirmed by the expert team. The most frequent diagnoses were idiopathic ILD (n = 7, 35%), auto-immune disease-related ILD (n = 7, 35%), exposure-related ILD (n = 3, 15%), and carcinomatous lymphangitis (n = 3, 15%). Fifteen patients were men (75%), with a mean age of 70 (62–72) years. The median SOFA score was 4 (3–7), and 16 (80%) patients received invasive mechanical ventilation. The mean ratio of the oxygen pressure to the fraction of inspired oxygen was 174 (148–198) mmHg. The ICU mortality rate of our cohort was significantly higher than the average ICU mortality (65% vs. 26%, p < 0.003). The mortality rate was lower among the subgroup of auto-immune disease-related ILD (57%). Conclusions: We conducted a single-centre cohort study of patients diagnosed with ILD in the ICU. This rare cause of ARF was associated with poor outcome in the ICU, but auto-immune disease-related ILD seemed to have a better prognosis. High-resolution lung CT and identification of lesion patterns are the cornerstones of the diagnosis. Improved knowledge of ILD and multidisciplinary discussion (MDD) involving radiologists, pneumologists, and intensivists may result in an earlier diagnosis and eventually improved treatments. Full article
Show Figures

Figure 1

22 pages, 3902 KB  
Article
Comparative Immunomodulatory Efficacy of Secukinumab and Honokiol in Experimental Asthma and Acute Lung Injury
by Andrei Gheorghe Vicovan, Diana Cezarina Petrescu, Lacramioara Ochiuz, Petru Cianga, Daniela Constantinescu, Elena Iftimi, Mariana Pavel-Tanasa, Codrina Mihaela Ancuta, Cezar-Cătălin Caratașu, Mihai Glod, Carmen Solcan and Cristina Mihaela Ghiciuc
Pharmaceuticals 2025, 18(8), 1108; https://doi.org/10.3390/ph18081108 - 25 Jul 2025
Viewed by 657
Abstract
Background: The study evaluates the immunomodulatory potential of secukinumab (SECU) and honokiol (HONK) in a murine model of allergic asthma complicated by acute lung injury (ALI), with an emphasis on modulating key inflammatory pathways. The rationale is driven by the necessity to attenuate [...] Read more.
Background: The study evaluates the immunomodulatory potential of secukinumab (SECU) and honokiol (HONK) in a murine model of allergic asthma complicated by acute lung injury (ALI), with an emphasis on modulating key inflammatory pathways. The rationale is driven by the necessity to attenuate Th17-mediated cytokine cascades, wherein IL-17 plays a critical role, as well as to explore the adjunctive anti-inflammatory effects of HONK on Th1 cytokine production, including IL-6, TNF-α, and Th2 cytokines. Methods: Mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) was administrated to exacerbate pulmonary pathology, followed by administration of SECU, HONK (98% purity, C18H18O2), or their combination. Quantitative analyses incorporated OVA-specific IgE measurements, differential cell counts in bronchoalveolar lavage fluid (BALF), and extensive cytokine profiling in both BALF and lung tissue homogenates, utilizing precise immunoassays and histopathological scoring systems. Results: Both SECU and HONK, when used alone or in combination, display significant immunomodulatory effects in a murine model of allergic asthma concomitant with ALI. The combined therapy synergistically reduced pro-inflammatory mediators, notably Th1 cytokines, such as TNF-α and IL-6, as measured in both BALF and lung tissue homogenates. Conclusions: The combined therapy showed a synergistic attenuation of pro-inflammatory mediators, a reduction in goblet cell hyperplasia, and an overall improvement in lung histoarchitecture. While the data robustly support the merit of a combinatorial approach targeting multiple inflammatory mediators, the study acknowledges limitations in cytokine diffusion and the murine model’s translational fidelity, thereby underscoring the need for further research to optimize clinical protocols for severe respiratory inflammatory disorders. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 925 KB  
Review
Muscle Wasting and Treatment of Dyslipidemia in COPD: Implications for Patient Management
by Andrea Bianco, Raffaella Pagliaro, Angela Schiattarella, Domenica Francesca Mariniello, Vito D’Agnano, Roberta Cianci, Ersilia Nigro, Aurora Daniele, Filippo Scialò and Fabio Perrotta
Biomedicines 2025, 13(8), 1817; https://doi.org/10.3390/biomedicines13081817 - 24 Jul 2025
Viewed by 1489
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its [...] Read more.
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its role in predicting disease outcomes is complex. Muscle wasting is prevalent in COPD patients and exacerbates disease severity, contributing to poor physical performance, reduced quality of life, and increased mortality. Additionally, COPD is linked to metabolic disorders, such as dyslipidemia and diabetes, which contribute to systemic inflammation and worse prognosis and, therefore, should be treated. The systemic inflammatory response plays a central role in the development of sarcopenia. In this review, we highlight the mixed efficacy of statins in managing dyslipidemia in COPD, considering side effects, including muscle toxicity in such a frail population. Alternative lipid-lowering therapies and nutraceuticals, in addition to standard treatment, have the potential to target hypercholesterolemia, which is a coexisting condition present in more than 50% of all COPD patients, without worsening muscle wasting. The interference between adipose tissue and lung, and particularly the potential protective role of adiponectin, an adipocytokine with anti-inflammatory properties, is also reviewed. Respiratory, metabolic and muscular health in COPD is comprehensively assessed. Identifying and managing dyslipidemia and paying attention to other relevant COPD comorbidities, such as sarcopenia and muscle wasting, is important to improve the quality of life and to reduce the clinical burden of COPD patients. Future research should focus on understanding the relationships between these intimate mechanisms to facilitate specific treatment for systemic involvement of COPD. Full article
Show Figures

Figure 1

24 pages, 3224 KB  
Review
Quercetin in Idiopathic Pulmonary Fibrosis and Its Comorbidities: Gene Regulatory Mechanisms and Therapeutic Implications
by Verónica Rocío Vásquez-Garzón, Juan Manuel Velázquez-Enríquez, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Jaime Arellanes-Robledo, Cristian Jiménez-Martínez and Rafael Baltiérrez-Hoyos
Genes 2025, 16(8), 856; https://doi.org/10.3390/genes16080856 - 23 Jul 2025
Viewed by 5099
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, has emerged as a promising compound due to its antioxidant, anti-inflammatory, and antifibrotic properties. Preclinical and clinical studies have demonstrated its ability to modulate key molecular pathways involved in IPF, including Nrf2, SIRT1/AMPK, and the regulation of fibrosis-associated microRNAs (miRNAs). Furthermore, quercetin shows therapeutic potential across a range of IPF-related comorbidities, including chronic obstructive pulmonary disease, pulmonary hypertension, lung cancer, cardiovascular disease, diabetes, and psychiatric disorders. Under these conditions, quercetin acts via epigenetic modulation of miRNAs and regulation of oxidative stress and inflammatory signaling pathways. This review highlights the multifunctional role of quercetin in IPF and its comorbidities, emphasizing its gene regulatory mechanisms and potential as an adjunctive or alternative therapeutic strategy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

29 pages, 6133 KB  
Article
Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis
by Yujin Shen, Xi Ma, Zhenzhen Du, Yang Li, Zhinan Mei and Ling Zhao
Pharmaceuticals 2025, 18(7), 1059; https://doi.org/10.3390/ph18071059 - 18 Jul 2025
Cited by 1 | Viewed by 1157
Abstract
Background: Allergic rhinitis (AR) is a prevalent allergic disorder characterized by a complex pathogenesis. Drawing on traditional Chinese medicine theory and contemporary pharmacological principles, this study developed an inhalation-based herbal formulation, ZHW, to explore a novel non-invasive therapeutic approach. Objective: To investigate the [...] Read more.
Background: Allergic rhinitis (AR) is a prevalent allergic disorder characterized by a complex pathogenesis. Drawing on traditional Chinese medicine theory and contemporary pharmacological principles, this study developed an inhalation-based herbal formulation, ZHW, to explore a novel non-invasive therapeutic approach. Objective: To investigate the therapeutic effects of ZHW on AR and elucidate its underlying mechanisms and potential targets through an integrated analysis of network pharmacology and proteomics. Materials and Methods: The volatile components of ZHW were analyzed by gas chromatography–mass spectrometry (GC-MS). The mouse model of AR was induced by OVA sensitization. The therapeutic efficacy of ZHW was assessed based on nasal symptom scores, histopathological examination, and inflammatory cytokine levels. Furthermore, the underlying mechanisms and potential targets of ZHW were investigated through integrated network pharmacology and proteomics analyses. Results: GC-MS analysis identified 39 bioactive compounds in ZHW. Inhalation treatment with ZHW demonstrated significant anti-allergic effects in OVA-sensitized mice, as evidenced by (1) reduced sneezing frequency and nasal rubbing behaviors; (2) decreased serum levels of IL-4, histamine, and OVA-specific IgE; (3) attenuated IL-4 concentrations in both nasal lavage fluid and lung tissue; (4) diminished nasal mucosal thickening; and (5) suppression of inflammatory cell infiltration. Integrated network pharmacology and proteomics analyses indicated that ZHW’s therapeutic effects were mediated through the modulation of multiple pathways, including the PI3K-Akt signaling pathway, the B cell receptor signaling pathway, oxidative phosphorylation, and the FcεRI signaling pathway. Key molecular targets involved Rac1, MAPK1, and SYK. Molecular docking simulations revealed strong binding affinities between ZHW’s primary bioactive constituents (linalool, levomenthol, linoleic acid, Linoelaidic acid, and n-Valeric acid cis-3-hexenyl ester) and these target proteins. Conclusions: The herbal formulation ZHW demonstrates significant efficacy in alleviating allergic rhinitis symptoms through multi-target modulation of key signaling pathways, including PI3K-Akt- and FcεRI-mediated inflammatory responses. These findings substantiate ZHW’s therapeutic potential as a novel, non-invasive treatment for AR and provide a strong basis for the development of new AR therapies. Future clinical development will require systematic safety evaluation to ensure optimal therapeutic outcomes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

29 pages, 1953 KB  
Review
Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications
by Renata Maria Văruț, Dop Dalia, Kristina Radivojevic, Diana Maria Trasca, George-Alin Stoica, Niculescu Stefan Adrian, Niculescu Elena Carmen and Cristina Elena Singer
Pharmaceuticals 2025, 18(7), 1021; https://doi.org/10.3390/ph18071021 - 10 Jul 2025
Cited by 3 | Viewed by 4277
Abstract
Asthma represents a heterogeneous disorder characterized by a dynamic balance between pro-inflammatory and anti-inflammatory forces, with allergic sensitization contributing substantially to airway hyperresponsiveness and remodeling. Central to its pathogenesis are cytokines such as IL-4, IL-5, IL-13, IL-17, and IL-33, which drive recruitment of [...] Read more.
Asthma represents a heterogeneous disorder characterized by a dynamic balance between pro-inflammatory and anti-inflammatory forces, with allergic sensitization contributing substantially to airway hyperresponsiveness and remodeling. Central to its pathogenesis are cytokines such as IL-4, IL-5, IL-13, IL-17, and IL-33, which drive recruitment of eosinophils, neutrophils, and other effector cells, thereby precipitating episodic exacerbations in response to viral and environmental triggers. Conventional biomarkers, including blood and sputum eosinophil counts, IgE levels, and fractional exhaled nitric oxide, facilitate phenotypic classification and guide the emerging biologic era. Monoclonal antibodies targeting IgE (omalizumab) and IL-5 (mepolizumab, benralizumab, reslizumab, depemokimab) have demonstrated the ability to reduce exacerbation frequency and improve lung function, with newer agents such as depemokimab offering extended dosing intervals. Itepekimab, an anti-IL-33 antibody, effectively engages its target and mitigates tissue eosinophilia, while CM310-stapokibart, tralokinumab, and lebrikizumab inhibit IL-4/IL-13 signaling with variable efficacy depending on patient biomarkers. Comparative analyses of these biologics, encompassing affinity, dosing regimens, and trial outcomes, underscore the imperative of personalized therapy to optimize disease control in severe asthma. Full article
Show Figures

Graphical abstract

39 pages, 4547 KB  
Review
Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases
by Doaa Elsayed Mahmoud, Seyedeh Hanieh Hosseini, Hassaan Anwer Rathore, Alaaldin M. Alkilany, Andreas Heise and Abdelbary Elhissi
Pharmaceutics 2025, 17(7), 893; https://doi.org/10.3390/pharmaceutics17070893 - 9 Jul 2025
Cited by 2 | Viewed by 3952
Abstract
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to [...] Read more.
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to be the most appropriate type of inhalation devices for the pulmonary delivery of nanoparticles, since formulations can be prepared using straightforward techniques, with no need for liquefied propellants as in the case of pressurized metered dose inhalers (pMDIs), or complicated preparation procedures as in the case of dry powder inhalers (DPIs). We demonstrated examples of how formulations should be designed considering the operation mechanism of nebulizers, and how an interplay of factors can affect the aerosol characteristics of nanoparticle formulations. Overall, nanoparticle-based formulations offer promising potential for the treatment of inflammatory lung diseases due to their unique physicochemical properties and ability to provide localized drug delivery in the lung following inhalation. Full article
(This article belongs to the Special Issue Recent Advances in Pulmonary Inhalation of Nanoformulations)
Show Figures

Figure 1

19 pages, 6101 KB  
Article
A High-Calorie Diet Aggravates Lipopolysaccharide-Induced Pulmonary Inflammation in Juvenile Rats via Hypothalamic-Pituitary-Adrenal Axis-Related Pathways
by Qianqian Li, Hui Liu, Chen Bai, Lin Jiang, Chen Su, Xueying Qin, Tiegang Liu and Xiaohong Gu
Int. J. Mol. Sci. 2025, 26(14), 6554; https://doi.org/10.3390/ijms26146554 - 8 Jul 2025
Viewed by 796
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays an important regulatory role in inflammatory responses to systemic or local infection in the host. A high-calorie diet, which can aggravate pediatric pneumonia and delay recovery, is intimately associated with HPA axis disorder; however, its underlying mechanisms remain [...] Read more.
The hypothalamic-pituitary-adrenal (HPA) axis plays an important regulatory role in inflammatory responses to systemic or local infection in the host. A high-calorie diet, which can aggravate pediatric pneumonia and delay recovery, is intimately associated with HPA axis disorder; however, its underlying mechanisms remain unknown. This study examined whether the mechanism by which a high-calorie diet aggravates pneumonia is related to HPA axis disorder. In this study, juvenile rats were fed a high-calorie diet and/or nebulized with lipopolysaccharide (LPS) for model construction. Our data shows that a high-calorie diet increases interleukin-1 beta(IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels in lung tissues and aggravates LPS-induced inflammatory injury in the lungs of juvenile rats. Additionally, we found that a high-calorie diet decreases the expression level of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in juvenile rats with pneumonia, resulting in HPA axis disorder. Hypothalamus proteomics and Western blot results proved that a high-calorie diet upregulated the expression level of hypothalamus hypoxia-inducible factor-1 alpha (HIF-1α) in juvenile rats with pneumonia, and this mechanism is associated with reduced HIF-1α ubiquitination. We further observed that HPA axis disorder was significantly abated and inflammatory damage in rat lung tissues was significantly alleviated after in vivo HIF-1α pathway inhibition. This shows that pneumonia aggravation by a high-calorie diet is associated with interference in the HIF-1α-mediated HPA axis. A high-calorie diet boosts HIF-1α signaling in the hypothalamus and exacerbates LPS-induced pneumonia by disrupting the HPA axis. This sheds light on lung inflammation and strengthens the lung-brain connection. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

10 pages, 202 KB  
Review
Bronchial Asthma in Youth: A Brief Concept Review
by Roberto W. Dal Negro
Children 2025, 12(7), 841; https://doi.org/10.3390/children12070841 - 26 Jun 2025
Viewed by 852
Abstract
Bronchial asthma is a respiratory chronic disorder frequently affecting youth. It is characterized by a huge personal, familial, and societal impact. Biological and cellular studies in recent decades define asthma as a chronic inflammatory disease of the airways. Inflammation represents the major pathogenetic [...] Read more.
Bronchial asthma is a respiratory chronic disorder frequently affecting youth. It is characterized by a huge personal, familial, and societal impact. Biological and cellular studies in recent decades define asthma as a chronic inflammatory disease of the airways. Inflammation represents the major pathogenetic factor underlying the airflow obstruction and bronchial hyperactivity that peculiarly characterize asthma. When bronchial asthma is diagnosed after too long a delay and treated too late or inadequately, structural remodeling of the whole bronchial wall can occur and lead to persistent limitations in lung function and quality of life. Although adult asthma and asthma in youth may be recognized by some common pathogenetic mechanisms, there are some important differences that justify a peculiar approach to asthma in young individuals, worth particular attention. Anatomical, physiological, social, and emotional aspects that differentiate asthma in children and adolescence are briefly revised and highlighted in the present review. Full article
(This article belongs to the Section Pediatric Allergy and Immunology)
Back to TopTop