Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = lyonization affects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1294 KB  
Review
VEXAS Syndrome: Genetics, Gender Differences, Clinical Insights, Diagnostic Pitfalls, and Emerging Therapies
by Salvatore Corrao, Marta Moschetti, Salvatore Scibetta, Luigi Calvo, Annarita Giardina, Ignazio Cangemi, Carmela Zizzo, Paolo Colomba and Giovanni Duro
Int. J. Mol. Sci. 2025, 26(16), 7931; https://doi.org/10.3390/ijms26167931 - 17 Aug 2025
Viewed by 447
Abstract
VEXAS syndrome (Vacuoles, E1-enzyme, X-linked, Autoinflammation, and Somatic) is a recently identified late-onset autoinflammatory disorder characterized by a unique interplay between hematological and inflammatory manifestations. It results from somatic mutations in the UBA1 gene, located on the short arm of the X chromosome. [...] Read more.
VEXAS syndrome (Vacuoles, E1-enzyme, X-linked, Autoinflammation, and Somatic) is a recently identified late-onset autoinflammatory disorder characterized by a unique interplay between hematological and inflammatory manifestations. It results from somatic mutations in the UBA1 gene, located on the short arm of the X chromosome. Initially, females were considered mere carriers, with the syndrome primarily affecting males over 50. However, recent evidence indicates that heterozygous females can exhibit symptoms as severe as those seen in hemizygous males. The disease manifests as systemic inflammation, macrocytic anemia, thrombocytopenia, chondritis, neutrophilic dermatoses, and steroid-dependent inflammatory symptoms. Due to its overlap with autoimmune and hematologic disorders such as relapsing polychondritis, Still’s disease, and myelodysplastic syndromes, misdiagnosis is common. At the molecular level, VEXAS syndrome is driven by impaired ubiquitination pathways, resulting in dysregulated immune responses and clonal hematopoiesis. A key diagnostic marker is the presence of cytoplasmic vacuoles in myeloid and erythroid precursors, though definitive diagnosis requires genetic testing for UBA1 mutations. Traditional immunosuppressants and TNF inhibitors are generally ineffective, while JAK inhibitors and IL-6 blockade provide partial symptom control. Azacitidine and decitabine have shown promise in reducing disease burden, but hematopoietic stem cell transplantation (HSCT) remains the only curative treatment, albeit with significant risks. This review provides a comprehensive analysis of VEXAS syndrome, examining its clinical features, differential diagnoses, diagnostic challenges, and treatment approaches, including both pharmacological and non-pharmacological strategies. By enhancing clinical awareness and optimizing therapeutic interventions, this article aims to bridge emerging genetic insights with practical patient management, ultimately improving outcomes for those affected by this complex and often life-threatening disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 1542 KB  
Review
Fabry Disease in Women: Genetic Basis, Available Biomarkers, and Clinical Manifestations
by Raafiah Izhar, Margherita Borriello, Antonella La Russa, Rossella Di Paola, Ananya De, Giovambattista Capasso, Diego Ingrosso, Alessandra F. Perna and Mariadelina Simeoni
Genes 2024, 15(1), 37; https://doi.org/10.3390/genes15010037 - 26 Dec 2023
Cited by 39 | Viewed by 7295
Abstract
Fabry Disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene on the X chromosome, leading to a deficiency in α-galactosidase A (AGAL) enzyme activity. This leads to the accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in vital organs [...] Read more.
Fabry Disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene on the X chromosome, leading to a deficiency in α-galactosidase A (AGAL) enzyme activity. This leads to the accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in vital organs such as the kidneys, heart, and nervous system. While FD was initially considered predominantly affecting males, recent studies have uncovered that heterozygous Fabry women, carrying a single mutated GLA gene, can manifest a wide array of clinical symptoms, challenging the notion of asymptomatic carriers. The mechanisms underlying the diverse clinical manifestations in females remain not fully understood due to X-chromosome inactivation (XCI). XCI also known as “lyonization”, involves the random inactivation of one of the two X chromosomes. This process is considered a potential factor influencing phenotypic variation. This review delves into the complex landscape of FD in women, discussing its genetic basis, the available biomarkers, clinical manifestations, and the potential impact of XCI on disease severity. Additionally, it highlights the challenges faced by heterozygous Fabry women, both in terms of their disease burden and interactions with healthcare professionals. Current treatment options, including enzyme replacement therapy, are discussed, along with the need for healthcare providers to be well-informed about FD in women, ultimately contributing to improved patient care and quality of life. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop