Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (247)

Search Parameters:
Keywords = mSOD1 mice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4454 KB  
Article
Modulation of Pulmonary Inflammation and the Redox Pathway In Vitro and In Vivo by Fumaric Ester
by Aline Pontes de Oliveira, Alexsandro Tavares Figueiredo-Junior, Priscilla Cristine de Oliveira Mineiro, Evelyn Caribé Mota, Carolinne Souza de Amorim, Helber da Maia Valenca, Aline Cristina Casimiro de Albuquerque Gomes, Sabrina Sodré de Souza Serra, Pedro Leme Silva, Christina Maeda Takiya, João Alfredo de Moraes, Samuel Santos Valenca and Manuella Lanzetti
Antioxidants 2025, 14(9), 1141; https://doi.org/10.3390/antiox14091141 - 22 Sep 2025
Viewed by 359
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic pulmonary inflammation and the destruction of the pulmonary parenchyma (emphysema), with only symptomatic treatment available. Molecules with antioxidant and anti-inflammatory properties, such as dimethyl fumarate (DMF), have shown therapeutic potential. This study evaluated the [...] Read more.
Chronic obstructive pulmonary disease (COPD) is characterized by chronic pulmonary inflammation and the destruction of the pulmonary parenchyma (emphysema), with only symptomatic treatment available. Molecules with antioxidant and anti-inflammatory properties, such as dimethyl fumarate (DMF), have shown therapeutic potential. This study evaluated the effects of DMF and its metabolite, monomethyl fumarate (MMF), on pulmonary inflammation induced by cigarette smoke (in vitro) and porcine pancreatic elastase (PPE) in mice (in vivo). In vitro, human pulmonary epithelial cells (PC-9) were treated with MMF at concentrations of 10, 30, and 100 µM and exposed to cigarette smoke extract (CSE) to assess cell viability, oxidative stress (ROS), lipid peroxidation, and nitrite production. In vivo, C57BL/6 mice were treated with DMF (30 and 100 mg/kg) during and after the induction of emphysema by PPE. ROS levels, total cell count in bronchoalveolar lavage fluid (BALF), lung histology, and the expression of oxidative stress proteins (SOD1 and HO-1) were analyzed. MMF reduced oxidative stress and lipid peroxidation under in vitro conditions. In vivo, DMF reduced ROS levels, inflammation, and prevented lung damage, such as alveolar enlargement. The expression of SOD1 and HO-1 was modulated by DMF treatment. The results suggest that DMF could be an effective therapeutic alternative for COPD, reducing oxidative stress and inflammation. Full article
(This article belongs to the Special Issue Redox Regulation in COPD: Therapeutic Implications of Antioxidants)
Show Figures

Graphical abstract

24 pages, 2263 KB  
Article
Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells
by Katy Thouvenot, Fanny Le Sage, Angélique Arcambal, David Couret, Wildriss Viranaïcken, Philippe Rondeau, Olivier Meilhac and Marie-Paule Gonthier
Microorganisms 2025, 13(9), 2074; https://doi.org/10.3390/microorganisms13092074 - 5 Sep 2025
Viewed by 523
Abstract
During periodontitis, Porphyromonas gingivalis and its lipopolysaccharides (LPS) may translocate into the bloodstream and alter adipocyte function, aggravating obesity-related disorders. This study aimed to evaluate the inflammatory and metabolic effects of P. gingivalis in obese db/db mice, and to decipher the [...] Read more.
During periodontitis, Porphyromonas gingivalis and its lipopolysaccharides (LPS) may translocate into the bloodstream and alter adipocyte function, aggravating obesity-related disorders. This study aimed to evaluate the inflammatory and metabolic effects of P. gingivalis in obese db/db mice, and to decipher the molecular mechanisms targeted by P. gingivalis or its LPS in 3T3-L1 adipocytes. Then, we determined the ability of three major dietary polyphenols, namely caffeic acid, quercetin and epicatechin, to protect adipocytes under LPS conditions. Results show that obese mice exposed to P. gingivalis exhibited an altered lipid profile with higher triglyceride accumulation, an enhanced pro-inflammatory response and a reduced antioxidant SOD activity in the adipose tissue. In adipose cells, P. gingivalis and LPS induced the TLR2-4/MyD88/NFκB signaling pathway, and promoted IL-6 and MCP-1 secretion. Bacterial stimuli also increased ROS levels and the expression of NOX2, NOX4 and iNOS genes, while they deregulated mRNA levels of Cu/ZnSOD, MnSOD, catalase, GPx and Nrf2. Interestingly, caffeic acid, quercetin and epicatechin protected adipose cells via antioxidant and anti-inflammatory effects. Overall, these findings show the deleterious impact of P. gingivalis on inflammation, oxidative stress and lipid metabolism in obese mice and adipose cells, and highlight the therapeutic potential of polyphenols in mitigating periodontal bacteria-mediated complications during obesity. Full article
(This article belongs to the Special Issue Microbiota in Human Health and Disease)
Show Figures

Figure 1

19 pages, 2712 KB  
Article
Effects and Mechanisms of Long-Term Lycium barbarum Water Consumption on Skeletal Muscle Function in Aged Mice
by Yundi Tang, Qingwei Zheng, Jinyi Wang, Mingcong Fan, Haifeng Qian, Li Wang and Yan Li
Foods 2025, 14(17), 3049; https://doi.org/10.3390/foods14173049 - 29 Aug 2025
Viewed by 864
Abstract
With the global aging population, skeletal muscle aging has threatened to elderly health, making dietary interventions for age-related muscle decline a research priority. Lycium barbarum, a traditional food and medicinal herb, was used in the study to prepare Lycium barbarum water (LBW). [...] Read more.
With the global aging population, skeletal muscle aging has threatened to elderly health, making dietary interventions for age-related muscle decline a research priority. Lycium barbarum, a traditional food and medicinal herb, was used in the study to prepare Lycium barbarum water (LBW). This experiment was conducted in animals and included four groups: young control (C-Young), aged control (C-Aged), young LBW-drinking (G-Young), and aged LBW-drinking (G-Aged). Assessments covered skeletal muscle mass, cross-sectional area, and exercise ability to compare health status. The study measured mRNA expression of Atrogin-1 and MuRF-1 from the Forkhead Box O (FOXO) pathway, advanced glycation end products (AGEs) and senescence-associated β-galactosidase (SA-β-gal), oxidative stress levels via superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH), inflammatory levels through interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α), and applied untargeted metabolomics to profile metabolic alterations. Optimal LBW was achieved at 80 °C with a 1:10 (w/v) solid-liquid ratio. In aged mice, long-term LBW administration improved exercise capacity, reduced muscle atrophy, and increased muscle mass, alongside decreased aging-related markers, alleviated oxidative stress, and modulated inflammatory levels. Additionally, metabolomics confirmed age-related oxidative stress and inflammation. Long-term LBW consumption alleviates age-related skeletal muscle dysfunction via multi-target regulation, holding promise as a natural nutritional intervention for mitigating skeletal muscle aging. Full article
(This article belongs to the Special Issue Functional Foods for Health Promotion and Disease Prevention)
Show Figures

Graphical abstract

15 pages, 983 KB  
Article
Longan Polysaccharide as Adjuvant for Cyclophosphamide-Induced Side Effects in Murine Model
by Yajuan Bai, Bei Fan, Fengzhong Wang and Mingwei Zhang
Foods 2025, 14(16), 2901; https://doi.org/10.3390/foods14162901 - 21 Aug 2025
Viewed by 541
Abstract
Identifying effective adjuvants to prevent and alleviate the adverse effects of chemotherapy remains a critical challenge in cancer therapy. This study investigated the protective effects of longan polysaccharide (LP) against cyclophosphamide-induced immunosuppression and oxidative stress in mice. Our findings revealed that LP administration [...] Read more.
Identifying effective adjuvants to prevent and alleviate the adverse effects of chemotherapy remains a critical challenge in cancer therapy. This study investigated the protective effects of longan polysaccharide (LP) against cyclophosphamide-induced immunosuppression and oxidative stress in mice. Our findings revealed that LP administration significantly improved systemic immune function, as evidenced by marked increases in serum immunoglobulin levels (IgG2a: 1.82-fold, IgG2b: 1.46-fold, IgM: 1.26-fold, and IgG1: 1.22-fold) and key cytokines (IL-10: 1.53-fold, IL-12: 1.22-fold, and IFN-γ: 1.20-fold), accompanied by substantial reductions in pro-inflammatory mediators (TGF-β1: 28.72% decrease and IL-21: 36.28% decrease). Concurrently, LP restored oxidative balance by increasing SOD, GSH, and NO levels in multiple organs (liver, kidneys, and small intestine) and serum. Mechanistic studies using an in vitro Caco-2/RAW264.7 coculture system revealed that four purified LP fractions (LPIa-LPIVa) effectively suppressed NF-κB pathway activation through downregulation of TLR4 expression, reduction of the p-IκB-α/IκB-α ratio, and inhibition of nuclear NF-κB translocation. These molecular effects correlated with decreased production of inflammatory mediators (TNF-α, IL-6, IL-8, iNOS, and NO). Collectively, these findings provide compelling evidence that LP possesses dual immunomodulatory and antioxidant capabilities, highlighting its potential as a natural adjuvant for alleviating chemotherapy-induced side effects. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Graphical abstract

12 pages, 2151 KB  
Article
Hair Growth and Health Promoting Effects of Standardized Ageratum conyzoides Extract in Human Follicle Dermal Papilla Cells and in C57BL/6 Mice
by Jong-Hwan Lim, Chunsik Yi, Eun-Hye Chung, Ji-Soo Jeong, Jin-Hwa Kim, So-Young Boo, Su-Ha Lee, Je-Won Ko, Tae-Won Kim and Young-Hun Kim
Nutrients 2025, 17(16), 2617; https://doi.org/10.3390/nu17162617 - 12 Aug 2025
Viewed by 1068
Abstract
Background/Objectives: Hair loss, driven by disrupted hair cycles, age-related hormonal imbalances, and oxidative stress, poses significant psychological challenges, necessitating the development of safe and effective therapies. This research investigates the trichogenic potential and underlying mechanisms of a standardized Ageratum conyzoides extract (ACE) [...] Read more.
Background/Objectives: Hair loss, driven by disrupted hair cycles, age-related hormonal imbalances, and oxidative stress, poses significant psychological challenges, necessitating the development of safe and effective therapies. This research investigates the trichogenic potential and underlying mechanisms of a standardized Ageratum conyzoides extract (ACE) using human follicle dermal papilla cells (HFDPCs) and C57BL/6 mice as models. Methods: HFDPCs were treated with ACE to assess its effects on 5α-reductase activity, estrogen receptor (ERα/ERβ) signaling, and activation of Wnt/β-catenin and MAPK pathways. Reactive oxygen species (ROS) levels and antioxidant enzyme expression were also evaluated. In vivo, C57BL/6 mice were administered ACE orally, and hair regrowth, follicle number and depth, and histological changes were measured. Results: In HFDPCs, ACE inhibited 5α-reductase activity, modulated ERα and ERβ signaling, and activated Wnt/β-catenin and MAPK pathways. ACE treatment at 100 μg/mL significantly increased β-catenin, p-GSK3β, and vascular endothelial growth factor (VEGF) expression (p < 0.01) and decreased Dickkopf-related protein-1 (DKK-)1 expression (p < 0.05). It also upregulated VEGF and other hair-growth-related factors and exhibited substantial antioxidant properties by reducing reactive oxygen species (ROS) and elevating the expression of antioxidant enzymes, notably SOD2 at 100 μg/mL. In C57BL/6 mice, oral administration of ACE significantly increased hair regrowth, with the 50 mg/kg group showing the most prominent effects, including increased hair follicle number and depth compared to the negative control group (p < 0.05). These effects were observed to be dose-dependent and comparable to those of minoxidil. Histological analysis confirmed enhanced anagen-phase follicle development. Conclusions: These findings highlight ACE’s multifaceted biological activity in promoting hair growth through hormonal modulation, pathway activation, and antioxidant protection, positioning it as a promising natural supplement for hair growth and health, although further clinical studies are required to confirm its efficacy in humans. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

17 pages, 1901 KB  
Article
Neuroprotective Potential of Acmella oleracea Aerial Parts and Root Extracts: The Role of Phenols and Alkylamides Against Neuropathic Pain
by Valentina Ferrara, Beatrice Zonfrillo, Maria Bellumori, Marzia Innocenti, Laura Micheli, Valentina Maggini, Daniel Venturi, Eugenia Gallo, Patrizia Bogani, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Nadia Mulinacci and Fabio Firenzuoli
Nutrients 2025, 17(16), 2588; https://doi.org/10.3390/nu17162588 - 8 Aug 2025
Viewed by 752
Abstract
Background: Chemotherapy-induced neuropathic pain is a major side effect of antineoplastic treatment. This study investigated the neuroprotective potential of Acmella oleracea L. extracts containing the N-alkylamide spilanthol, phenolic acids, and glycosylated flavonoids. Methods: Hydroalcoholic extracts of aerial parts (AP) and roots [...] Read more.
Background: Chemotherapy-induced neuropathic pain is a major side effect of antineoplastic treatment. This study investigated the neuroprotective potential of Acmella oleracea L. extracts containing the N-alkylamide spilanthol, phenolic acids, and glycosylated flavonoids. Methods: Hydroalcoholic extracts of aerial parts (AP) and roots (R) of in vitro seedlings were quali-quantitatively characterized by HPLC-DAD-MS and by 1H-NMR. Different concentrations (15–150 µg/mL) of AP and R were tested in SH-SY5Y cells differentiated into neurons exposed to oxaliplatin (10 µM), assessing cell viability (MTT), cytotoxicity (LDH), SOD activity, and expression of ATF-3, Ire1α, and Nf-H genes. To evaluate the impact on neuropathic pain, CD-1 mice were treated intraperitoneally with oxaliplatin (2.4 mg/kg), the effect of AP and R extracts (200–1200 mg/kg) were measured by the cold plate test. Results: AP extract was rich in phenols and alkylamides, whereas R extract showed higher phenolic levels but lower alkylamides content. Both extracts significantly reduced mortality and cytotoxicity and counteracted oxidative imbalance by enhancing SOD activity. Gene expression analysis confirmed their neuroprotective effects. In vivo, oxaliplatin induced a 50% reduction in pain threshold, while acute treatment with AP and R extracts dose-dependently alleviated neuropathic pain. Despite the lower spilanthol content in R extract, its efficacy was comparable to AP, suggesting an important role of phenolic compounds. Conclusions: Extracts from both aerial parts and roots of A. oleracea show promise in alleviating chemotherapy-induced neuropathy through mechanisms not solely related to spilanthol. Further studies to elucidate the contribution of phenolic components are desirable. Full article
(This article belongs to the Special Issue Nutrition and Diet for Pain Prevention and Treatment)
Show Figures

Figure 1

18 pages, 5256 KB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 - 5 Aug 2025
Viewed by 712
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

20 pages, 4727 KB  
Article
Developing a Novel Fermented Milk with Anti-Aging and Anti-Oxidative Properties Using Lactobacillus kefiranofaciens HL1 and Lactococcus lactis APL015
by Sheng-Yao Wang, Wei-Chen Yen, Yen-Po Chen, Jia-Shian Shiu and Ming-Ju Chen
Nutrients 2025, 17(15), 2447; https://doi.org/10.3390/nu17152447 - 27 Jul 2025
Viewed by 1174
Abstract
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing [...] Read more.
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing HL1 with Lactococcus lactis subsp. cremoris APL015 (APL15) to enhance fermentation and health benefits. Methods: HL1 and APL15 were co-cultured to produce fermented milk (FM), and fermentation performance, microbial viability, texture, and syneresis were evaluated. A D-galactose-induced aging BALB/c mouse model was used to assess cognitive function, oxidative stress, inflammation, antioxidant enzyme activity, and gut microbiota after 8 weeks of oral administration. Results: FM reached pH 4.6 within 16 h, with high viable counts (~109 CFU/mL) for both strains. HL1 viability and texture were maintained, with smooth consistency and low syneresis. In vivo, FM improved cognitive behavior (Y-maze, Morris water maze), reduced oxidative damage (MDA), lowered IL-1β and TNF-α, and enhanced brain SOD levels. FM-fed mice exhibited increased short-chain fatty acid producers, higher cecal butyrate, and reduced Clostridium perfringens. Conclusions: The co-cultured fermented milk effectively delivers HL1 and provides antioxidant, anti-inflammatory, and anti-aging effects in vivo, likely via gut–brain axis modulation. It shows promise as a functional food for healthy aging. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

23 pages, 5768 KB  
Article
Effect of Peanut Shell Extract and Luteolin on Gut Microbiota and High-Fat Diet-Induced Sequelae of the Inflammatory Continuum in a Metabolic Syndrome-like Murine Model
by Hemalata Deshmukh, Roberto Mendóza, Julianna M. Santos, Sathish Sivaprakasam, Moamen M. Elmassry, Jonathan M. Miranda, Patrick Q. Pham, Zarek Driver, Matthew Bender, Jannette M. Dufour and Chwan-Li Shen
Nutrients 2025, 17(14), 2290; https://doi.org/10.3390/nu17142290 - 10 Jul 2025
Cited by 1 | Viewed by 1170
Abstract
Background: Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the [...] Read more.
Background: Metabolic syndrome (MetS) is characterized by chronic inflammation, oxidative stress, and mitochondrial dysfunction. MetS is associated with increased intestinal permeability and dysbiosis. The objective of this study was to investigate the effects of peanut shell extract (PSE) and luteolin (LUT) on the kidneys, colon, and ileum in a MetS-like murine model. Methods: Thirty-six male Slc6a14y/− mice were divided into four groups: low-fat diet (LFD), high-fat diet (HFD), HFD + 200 mg PSE/kg BW (PSE, p.o.), and HFD + 100 mg LUT/kg BW (LUT, p.o.) for 4 months. Outcome measures included glucose homeostasis, intestinal permeability, gut microbiome composition, and mRNA gene expression of mitochondrial homeostasis and inflammation/oxidative stress in the kidneys, colon, and ileum. Results: HFD resulted in glucose dysregulation with hyperglycemia and insulin resistance. PSE and LUT improved insulin tolerance and beta-cell function. PSE and LUT mitigated HFD-increased serum lipopolysaccharide-binding protein concentration. Perturbations in the gut microbiome were associated with HFD, and PSE or LUT reversed some of these changes. Specifically, Phocaeicola vulgatus was depleted by HFD and reverted by PSE or LUT. Relative to the LFD group, the HFD group (1) upregulated mitochondrial fusion (MFN1, MFN2, OPA1), mitophagy (TLR4, PINK1, LC3B), and inflammation (NFκB, TNFα, IL6), and (2) downregulated mitochondrial fission (FIS1, DRP1), biosynthesis (PGC1α, NRF1, NRF2, TFAM), electron transport chain (complex I), and antioxidant enzyme (SOD1) in the kidneys, colon, and ileum. Conclusions: PSE and LUT reversed such HFD-induced changes in the aforementioned gene expression levels. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

23 pages, 3707 KB  
Article
Structural and Functional Profiling of Water-Extracted Polypeptides from Periplaneta americana: A Multifunctional Cosmetic Bioactive Agent with Antioxidative and Anti-Inflammatory Properties
by Xinyu Sun, Zhengyang Zhang, Jingyao Qu, Deyun Yao, Zeyuan Sun, Jingyi Zhou, Jiayuan Xie, Mingyang Zhou, Xiaodeng Yang and Ling Wang
Molecules 2025, 30(14), 2901; https://doi.org/10.3390/molecules30142901 - 9 Jul 2025
Viewed by 823
Abstract
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which [...] Read more.
Low-molecular-weight polypeptides (<3 kDa) were prepared from Periplaneta americana via enzymatic hydrolysis and ultrafiltration, yielding 3.53 ± 0.01 mg/g of peptide-rich extract. The extract was primarily composed of peptides, proteins, polysaccharides, phenolics, and flavonoids. HPLC-MS analysis identified 1402 peptide sequences, 80.51% of which were below 1000 Da, predominantly consisting of tri-, tetra-, and octapeptides. Monosaccharide profiling detected D-(+)-galactose, and quantitative assays determined the contents of total phenolics (12.28 mg/g), flavonoids (15.50 mg/g), proteins (85.84 mg/g), and total sugars (17.62 mg/g). The biological activities of the extract were systematically evaluated. The peptide fraction inhibited hyaluronidase activity by 58% at 5 mg/mL, suggesting protection of extracellular matrix integrity. In HaCaT keratinocytes, it promoted cell proliferation by 62.6%, accelerated scratch wound closure by 54%, upregulated Wnt-10b and β-catenin expression, and reduced intracellular ROS levels under oxidative stress. In LPS-stimulated RAW 264.7 macrophages, the extract decreased TNF-α, IL-6, and IL-1β production by 30%, 25%, and 28%, respectively, reduced MDA levels by 35.2%, and enhanced CAT and SOD activities by 12.3% and 60.3%. In vivo, complete closure of full-thickness skin wounds in mice was achieved by day 14. Safety evaluations using the chick chorioallantoic membrane assay and human patch tests confirmed the extract to be non-irritating and non-toxic. These findings highlight Periplaneta americana extract as a promising multifunctional bioactive ingredient for cosmetic and dermatological applications. Further studies on its active components, mechanisms of action, and clinical efficacy are warranted to support its development in skin health and aesthetic medicine. Full article
Show Figures

Figure 1

19 pages, 2466 KB  
Article
Agmatine Mitigates Diabetes-Related Memory Loss in Female Mice by Targeting I2/I3 Imidazoline Receptors and Enhancing Brain Antioxidant Defenses
by Luis E. Cobos-Puc and Hilda Aguayo-Morales
Antioxidants 2025, 14(7), 837; https://doi.org/10.3390/antiox14070837 - 8 Jul 2025
Viewed by 1690
Abstract
Cognitive decline is a common complication of diabetes mellitus, driven in part by oxidative stress and impaired glucose–insulin homeostasis. This study examined the neuroprotective effects of agmatine (200 mg/kg intraperitoneally) in female BALB/c diabetic mice. Several receptor pathways were examined using commercially available [...] Read more.
Cognitive decline is a common complication of diabetes mellitus, driven in part by oxidative stress and impaired glucose–insulin homeostasis. This study examined the neuroprotective effects of agmatine (200 mg/kg intraperitoneally) in female BALB/c diabetic mice. Several receptor pathways were examined using commercially available antagonists. Behavioral performance was evaluated using the novel object recognition test. Metabolic parameters, such as glucose and insulin levels, as well as antioxidants, including catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH), were measured in blood and brain tissue. The diabetic mice exhibited impaired recognition memory (discrimination index = 0.08), hyperglycemia (24.3 mmol/L), decreased insulin levels (38.4 µU/mL), and diminished antioxidant defenses (CAT: 75.4 U/g tissue, SOD: 32.6 U/g tissue, and GSH: 8.3 mmol/g tissue). Agmatine treatment improved cognitive function and reversed the biochemical alterations. However, these effects were reduced when agmatine was co-administered with imidazoline I2/I3 receptor antagonists. Correlation analysis revealed that cognitive performance positively correlated with antioxidant enzyme levels and insulin levels and negatively correlated with glucose concentrations. Strong intercorrelations among CAT, SOD, and GSH levels suggest a coordinated antioxidant response. Overall, these results imply that agmatine’s neuroprotective effects are partially mediated by modulation of the oxidative balance and glucose–insulin regulation via imidazoline receptors. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

24 pages, 5468 KB  
Article
Pretreatment with Citrus reticulata ‘Chachi’ Polysaccharide Alleviates Alcohol-Induced Gastric Ulcer by Inhibiting NLRP3/ASC/Caspase-1 and Nrf2/HO-1 Signaling Pathways
by Huosheng Liang, Yiyao Liang, Lipeng Wu, Long Lin, Yunan Yao, Jinji Deng, Jiepei Xu, Huajian Li, Fangfang Gao, Wenlong Xing, Meng Yu, Xuejing Jia, Minyan Wei, Chuwen Li and Guodong Zheng
Nutrients 2025, 17(13), 2062; https://doi.org/10.3390/nu17132062 - 20 Jun 2025
Viewed by 1021
Abstract
Objectives: This study was designed to investigate the gastroprotective effects of Citrus reticulata ‘Chachi’ polysaccharide (CRP) against alcohol-induced gastric ulcers (GUs) and to elucidate its underlying mechanisms. Methods: CRP was extracted, purified, and structurally characterized. BALB/c mice (50/250 mg/kg CRP) and GES-1 cells [...] Read more.
Objectives: This study was designed to investigate the gastroprotective effects of Citrus reticulata ‘Chachi’ polysaccharide (CRP) against alcohol-induced gastric ulcers (GUs) and to elucidate its underlying mechanisms. Methods: CRP was extracted, purified, and structurally characterized. BALB/c mice (50/250 mg/kg CRP) and GES-1 cells (1 mg/mL CRP) were subjected to alcohol-induced injury. Oxidative stress (SOD, MDA, ROS), inflammation (TNF-α, IL-1β, NLRP3 inflammasome), mucosal barrier proteins (ZO-1, occludin, Claudin-5), and Nrf2/HO-1 signaling were analyzed via histopathology, Western blot, flow cytometry, and immunohistochemistry. Results: CRP pretreatment significantly alleviated gastric lesions, decreased oxidative stress, and suppressed inflammatory responses in alcohol-induced mice. Mechanistically, CRP induced the Nrf2/HO-1 antioxidant pathway while inhibiting the activation of the NLRP3 inflammasome. CRP also restored tight junction protein expression, enhanced mucosal repair, and reduced epithelial apoptosis. In vitro, CRP promoted cell proliferation, migration, and survival of GES-1 cells under alcohol stress. Conclusions: CRP mitigated alcohol-induced GU via dual antioxidant, anti-inflammatory, and barrier-protective mechanisms, positioning it as a considerable agent for GU. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

15 pages, 2958 KB  
Article
Isostrictiniin Alleviates LPS-Induced Acute Lung Injury via the Regulation of the Keap1-Nrf2/HO-1 and MAPK/NF-κB Signaling Pathways
by Wanting Ding, Yuan Sun, Wulipan Tuohudaali, Chenyang Li, Yuhan Yao and Jun Zhao
Int. J. Mol. Sci. 2025, 26(12), 5912; https://doi.org/10.3390/ijms26125912 - 19 Jun 2025
Viewed by 897
Abstract
This study aimed to investigate the preventive effects of isostrictiniin (ITN) from Nymphaea candida against acute lung injury (ALI) through lipopolysaccharide (LPS)-induced ALI mice and LPS-induced A549 cells. Compared with the model group, ITN (50 and 100 mg/kg) significantly reduced the lung indexes, [...] Read more.
This study aimed to investigate the preventive effects of isostrictiniin (ITN) from Nymphaea candida against acute lung injury (ALI) through lipopolysaccharide (LPS)-induced ALI mice and LPS-induced A549 cells. Compared with the model group, ITN (50 and 100 mg/kg) significantly reduced the lung indexes, W/D rates, BALF WBC counts, and total protein contents in ALI mice (p < 0.05), as well as the blood neu counts (p < 0.01), while increasing the blood lym counts (p < 0.01). ITN (50 and 100 mg/kg) also markedly decreased the lung tissue TNF-α, IL-6, IL-1β, MDA, and MPO activities in ALI mice (p < 0.01) and enhanced the SOD and GSH levels (p < 0.01). Additionally, ITN (50 and 100 mg/kg) significantly improved lung histopathological damage in ALI mice. Moreover, ITN (10 and 25 µM) significantly reduced the NO, PGE2, IL-1β, IL-6, TNF-α, and MDA levels in LPS-induced A549 cells (p < 0.01) while significantly increasing the SOD and GSH activities (p < 0.01). After LPS-induced A549 cells, the Keap1, p-JNK/JNK, p-ERK1/2/ERK1/2, p-P38/P38, p-IκBα/IκBα, and p-NF-κBp65/NF-κB p65 levels were significantly upregulated (p < 0.05), whereas the Nrf2 and HO-1 protein expressions were downregulated (p < 0.05). After treatment with ITN (25 μM), the changes in these relative protein expressions in LPS-induced A549 cells were significantly reversed (p < 0.05). The above results indicate that ITN has a better preventive effect against ALI, and its mechanisms are related to the regulation of the Keap1-Nrf2/HO-1 and MAPK/NF-κB signaling pathways. Full article
(This article belongs to the Special Issue Antioxidants: The Molecular Guardians Against Oxidative Stress)
Show Figures

Figure 1

20 pages, 6365 KB  
Article
Peptide DFCPPGFNTK Mitigates Dry Eye Pathophysiology by Suppressing Oxidative Stress, Apoptosis, Inflammation, and Autophagy: Evidence from In Vitro and In Vivo Models
by Kaishu Deng, Wenan Li, Jinyuan Liang, Zhengdao Chen, Yan Xu, Jingxi Zhang, Yingtong Zhan, Zhiyou Yang, Shaohong Chen, Yun-Tao Zhao and Chuanyin Hu
Curr. Issues Mol. Biol. 2025, 47(6), 441; https://doi.org/10.3390/cimb47060441 - 10 Jun 2025
Viewed by 816
Abstract
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human [...] Read more.
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human corneal epithelial cells (HCECs) were challenged by 100 mM NaCl in a hyperosmotic environment. DFC restored the cell viability of HCECs induced by NaCl, reduced the transition of mitochondrial membrane potential, delayed the apoptosis of damaged cells, reduced the production of reactive oxygen (ROS) and malondialdehyde (MDA), increased the activities of superoxide dismutase (SOD) and catalase (CAT), and increased the expression rate of Bcl-2/Bax. Compared to the model group, the protein expression levels of COX-2 and iNOS were down-regulated, the mRNA expression of Tnf-α and Il-6 were decreased, the protein expression levels of Nrf2 and HO-1 were increased, and the levels of autophagy-related proteins p62 and LC3B were regulated. In vivo, the dry eye model was developed by administering eye drops of 0.2% BAC to mice for 14 days. DFC increased tear secretion, changed the morphology of tear fern crystals, prevented corneal epithelial thinning, reduced the loss of conjunctival goblet cells (GCs), and inhibited the apoptosis of mice corneal epithelial cells. In summary, DFC improved dry eye by inhibiting oxidative stress, apoptosis, inflammation, and autophagy. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

23 pages, 6844 KB  
Article
A Hydrolyzed Soybean Protein Enhances Oxidative Stress Resistance in C. elegans and Modulates Gut–Immune Axis in BALB/c Mice
by Jun Liu, Yansheng Zhao, Fei Leng, Xiang Xiao, Weibo Jiang and Shuntang Guo
Antioxidants 2025, 14(6), 689; https://doi.org/10.3390/antiox14060689 - 5 Jun 2025
Viewed by 939
Abstract
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein [...] Read more.
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein (20% HSP) was prepared from SPI, and the effects of 20% HSP and SPI on alleviating oxidative stress in Caenorhabditis elegans (C. elegans) and regulating immune–gut microbiota in cyclophosphamide (CTX)-induced immunocompromised BALB/c mice were investigated. In C. elegans, both SPI and 20% HSP (300 μg/mL) enhanced locomotive activities, including body bending and head thrashing, and improved oxidative stress resistance under high glucose conditions. This improvement was mediated by increased antioxidant enzyme activities (SOD, CAT, and GSH-Px), while malondialdehyde (MDA) content was reduced by 60.15% and 82.28%, respectively. Both of them can also significantly extend the lifespan of normal C. elegans and paraquat-induced oxidative stress models by inhibiting lipofuscin accumulation. This effect was mediated through upregulation of daf-16 and suppression of daf-2 and akt-1 expression. In immunocompromised mice, 20% HSP alleviated CTX-induced immune dysfunction by increasing peripheral white blood cells and lymphocytes, attenuating thymic atrophy, and reducing hepatic oxidative stress via MDA inhibition. Gut microbiota analysis revealed that 20% HSP restored microbial balance by suppressing Escherichia-Shigella and enriching beneficial genera, like Psychrobacter. These findings highlight 20% HSP and SPI’s conserved anti-aging mechanisms via daf-16 activation in C. elegans and immune–gut modulation in mice, positioning them as plant-derived nutraceuticals targeting oxidative stress and immune dysregulation. Full article
(This article belongs to the Special Issue The Interaction Between Gut Microbiota and Host Oxidative Stress)
Show Figures

Figure 1

Back to TopTop