Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,259)

Search Parameters:
Keywords = macropores

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4774 KB  
Review
Review of the Integration of Fused Filament Fabrication with Complementary Methods for Fabricating Hierarchical Porous Polymer Structures
by Savvas Koltsakidis and Dimitrios Tzetzis
Appl. Sci. 2025, 15(17), 9703; https://doi.org/10.3390/app15179703 - 3 Sep 2025
Abstract
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures [...] Read more.
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures using fused filament fabrication (FFF), the most widely used polymer additive manufacturing technique. Unlike earlier reviews that consider lattice architectures and foaming chemistries separately, this work integrates both within a single analysis. It begins with an overview of FFF fundamentals and how process parameters affect macropore formation. Design strategies for achieving macroporosity (≳100 µm) with a single thermoplastic are presented and categorized: 2D infill patterns, strut-based lattices, triply periodic minimal surfaces (TPMS), and Voronoi structures, along with functionally graded approaches. The discussion then shifts to functional filaments incorporating chemical or physical blowing agents, thermally expandable or hollow microspheres, and sacrificial porogens, which create microporosity (≲100 µm) either in situ or through post-processing. Each material approach is connected to case studies that demonstrate its application. A comparative analysis highlights the advantages of each method. Key challenges such as viscosity control, thermal gradient management, dimensional instability during foaming, environmental concerns, and the absence of standardized porosity measurement techniques are addressed. Finally, emerging solutions and future directions are explored. Overall, this review provides a comprehensive perspective on strategies that enhance FFF’s capability to fabricate hierarchically porous polymer structures. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

13 pages, 2897 KB  
Article
Dual Effects of In Situ Coal Combustion on CaO Pellets for CO2 Capture: High-Temperature Sintering and Ash Stabilization
by Yun Long, Changqing Wang, Ruichang Xu, Lei Liu, Pengxin Zeng, Zijian Zhou and Minghou Xu
Int. J. Mol. Sci. 2025, 26(17), 8535; https://doi.org/10.3390/ijms26178535 - 2 Sep 2025
Abstract
High-temperature CaO-based CO2 capture technology, energized by in situ coal combustion, exhibits substantial promise owing to its high energy efficiency, strong compatibility, and maturity. However, sorbent deactivation mechanisms under complex coal combustion conditions, particularly for industrially required pelletized sorbents, are unclear. Pelletized [...] Read more.
High-temperature CaO-based CO2 capture technology, energized by in situ coal combustion, exhibits substantial promise owing to its high energy efficiency, strong compatibility, and maturity. However, sorbent deactivation mechanisms under complex coal combustion conditions, particularly for industrially required pelletized sorbents, are unclear. Pelletized sorbents were co-fired with four representative coals (differing in Na-K, S, and Al-Si content) in this study. Key factors were decoupled, and two competing mechanisms were revealed: (1) High-temperature sintering deactivation: Single co-firing triggers localized overheating (>900 °C), causing severe sintering and pore collapse. This reduces the specific surface area by 29% and pore volume by 50%, occludes meso-/macropores, and leads to a significant drop in initial CO2 capture capacity to 0.266–0.297 g/g. Coal types and minor residual surface impurities (<1.7%) are secondary factors. (2) Si-Al ash stabilization: During repeated co-firing (1–9 cycles), Si-Al ash components enrich on sorbents (0.1–7.6%), forming a thermally protective layer. After 20 adsorption–desorption cycles, the CO2 capture capacity loss drops from 17.6% to 3.9%, improving cycle stability. These findings clarify these dual mechanisms, providing a theoretical basis for system optimization and highlighting precise control of the combustion temperature field as critical for industrial deployment. Full article
Show Figures

Figure 1

30 pages, 11585 KB  
Article
Multifractal Characterization of Marine Shale Pore Structure Alteration Induced by Supercritical CO2–Water–Rock Interaction
by Haonan Wei, Yi Du, Changqing Fu, Gaoqiang Fu, Yingfang Zhou, Jinfeng Ma, Zhenliang Wang, Zhejun Pan and Wei Gao
Fractal Fract. 2025, 9(9), 582; https://doi.org/10.3390/fractalfract9090582 - 2 Sep 2025
Abstract
Supercritical CO2 (ScCO2) injection has emerged as a promising method to enhance shale gas recovery while simultaneously achieving CO2 sequestration. This research investigates how ScCO2 interacts with water and shale rock, altering the pore structure characteristics of shale [...] Read more.
Supercritical CO2 (ScCO2) injection has emerged as a promising method to enhance shale gas recovery while simultaneously achieving CO2 sequestration. This research investigates how ScCO2 interacts with water and shale rock, altering the pore structure characteristics of shale reservoirs. The study examines shale samples from three marine shale formations in southern China under varying thermal and pressure regimes simulating burial conditions at 1000 m (45 °C and 10 MPa) and 2000 m (80 °C and 20 MPa). The research employs multiple analytical techniques including XRD for mineral composition analysis, MICP, N2GA, and CO2GA for comprehensive pore characterization, FE–SEM for visual observation of mineral and pore changes, and multifractal theory to analyze pore structure heterogeneity and connectivity. Key findings indicate that ScCO2–water–shale interactions lead to dissolution of minerals such as kaolinite, calcite, dolomite, and chlorite, and as the reaction proceeds, substantial secondary mineral precipitation occurs, with these changes being more pronounced under 2000 m simulation conditions. Mineral dissolution and precipitation cause changes in pore structure parameters of different pore sizes, with macropores showing increased PV and decreased SSA, mesopores showing decreased PV and SSA, and micropores showing insignificant changes. Moreover, mineral precipitation effects are stronger than dissolution effects. These changes in pore structure parameters lead to alterations in multifractal parameters, with mineral precipitation reducing pore connectivity and consequently enhancing pore heterogeneity. Correlation analysis further revealed that H and D−10D10 exhibit a significant negative correlation, confirming that reduced connectivity corresponds to stronger heterogeneity, while mineral composition strongly controls the multifractal responses of macropores and mesopores, with micropores mainly undergoing morphological changes. However, these changes in micropores are mainly manifested as modifications of internal space. Siliceous shale samples exhibit stronger structural stability compared to argillaceous shale, which is attributed to the mechanical strength of the quartz framework. By integrating multifractal theory with multi–scale pore characterization, this study achieves a unified quantification of shale pore heterogeneity and connectivity under ScCO2–water interactions at reservoir–representative pressure–temperature conditions. This novelty not only advances the methodological framework but also provides critical support for understanding CO2–enhanced shale gas recovery mechanisms and CO2 geological sequestration in depleted shale gas reservoirs, highlighting the complex coupling between geochemical reactions and pore structure evolution. Full article
Show Figures

Figure 1

20 pages, 3603 KB  
Article
Effects of Contour Antislope Terracing on Preferential Soil Flow in Sloping Cropland in the Alpine Valley Area of Southwest China
by Miaomiao Zhai, Yangyi Zhao, Keqin Wang, Jindong Xiang, Zhenchao Wang, Yaxin Pan and Sanjian Li
Agronomy 2025, 15(9), 2101; https://doi.org/10.3390/agronomy15092101 - 30 Aug 2025
Viewed by 172
Abstract
This study was conducted to reveal the response relationship between soil preferential flow characteristics and soil pore structure of sloping cropland under contour antislope step measures in the alpine canyon area of Southwest China. In the sub-watershed of Nantangjing, Yunlong County, the upper [...] Read more.
This study was conducted to reveal the response relationship between soil preferential flow characteristics and soil pore structure of sloping cropland under contour antislope step measures in the alpine canyon area of Southwest China. In the sub-watershed of Nantangjing, Yunlong County, the upper and lower slopes of primary sloping cultivated land (PSC) and contour reverse-slope terraced rectified land (CR) were used for the study, and a field staining tracer test was used to compare the differences in preferential flow morphology between different slopes with and without measures. The maximum infiltration depth of preferential flow under the contour reverse-slope terrace land preparation reached 21 cm. The stained area ratio tended to decrease with increasing soil depth. Compared to the original slope farmland, the stable infiltration rate under land preparation increased from 0.017 to 0.244 cm3·s−1, and the maximum macroporosity increased by up to 17.00%. Furthermore, land preparation measures significantly enhanced the correlation between macropore quantity and preferential flow characteristics, with the highest correlation coefficient reaching 0.98. And the soil factors in total porosity, total nitrogen and organic matter were particularly influential on preferential flow. Contour antislope terracing promotes the formation and development of preferential soil flow by remodeling soil structure and optimizing pore network distribution. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 1539 KB  
Article
Enhanced Heparin Adsorption from Porcine Mucosa Using Beta Zeolites: Optimization and Kinetic Analysis
by Laiba Butt, Anushree Das, Alireza Tabibi, Mousab Rehmani and Benson Karimi
Purification 2025, 1(2), 6; https://doi.org/10.3390/purification1020006 - 30 Aug 2025
Viewed by 122
Abstract
Heparin, an essential plasma-derived therapy, acts as a naturally occurring anticoagulant and is essential in various physiological processes. Due to its complex structure, repeating units of sulfated glycosaminoglycan, it attracts attention in the field of commercial pharmaceuticals. In recent decades, significant advancements have [...] Read more.
Heparin, an essential plasma-derived therapy, acts as a naturally occurring anticoagulant and is essential in various physiological processes. Due to its complex structure, repeating units of sulfated glycosaminoglycan, it attracts attention in the field of commercial pharmaceuticals. In recent decades, significant advancements have been made in the development of economical adsorbents designed especially for the extraction of heparin from the intestinal mucosa of pigs, as evidenced by investments from various pharmaceutical industries. This requirement arises from the demand for efficient, scalable extraction methods for natural sources. In this study, we investigated the application of beta zeolites to increase the recovery of heparin from real porcine mucosa samples, emphasizing materials with greater adsorption surfaces, higher thermal stability, and increased porosity. According to our research, the zeolite CP814E’s macropores and huge surface area allow it to adsorb up to 20.6 mg·g−1 (39%) of heparin from actual mucosa samples. We also investigated the adsorbent’s surface conditions, which are essential for efficient heparin recovery, and adjusted temperature and pH to enhance heparin uptake. These findings demonstrate that zeolite-based adsorbents can enhance the extraction of heparin effectively for use in medicinal applications. Full article
Show Figures

Figure 1

28 pages, 3865 KB  
Review
Recent Advances and Future Perspectives on Heat and Mass Transfer Mechanisms Enhanced by Preformed Porous Media in Vacuum Freeze-Drying of Agricultural and Food Products
by Xinkang Hu, Bo Zhang, Xintong Du, Huanhuan Zhang, Tianwen Zhu, Shuang Zhang, Xinyi Yang, Zhenpeng Zhang, Tao Yang, Xu Wang and Chundu Wu
Foods 2025, 14(17), 2966; https://doi.org/10.3390/foods14172966 - 25 Aug 2025
Viewed by 606
Abstract
Preformed porous media (PPM) technology has emerged as a transformative approach to enhance heat and mass transfer in vacuum freeze-drying (VFD) of agricultural and food products. This review systematically analyzes recent advances in PPM research, with particular focus on spray freeze-drying (SFD) as [...] Read more.
Preformed porous media (PPM) technology has emerged as a transformative approach to enhance heat and mass transfer in vacuum freeze-drying (VFD) of agricultural and food products. This review systematically analyzes recent advances in PPM research, with particular focus on spray freeze-drying (SFD) as the dominant technique for precision pore architecture control. Empirical studies confirm PPM’s efficacy: drying time reductions of 20–50% versus conventional VFD while improving product quality (e.g., 15% higher ginsenoside retention in ginseng, 90% enzyme activity preservation). Key innovations include gradient porous structures and multi-technology coupling strategies that fundamentally alter transfer mechanisms through: resistance mitigation via interconnected macropores (50–500 μm, 40–90% porosity), pseudo-convection effects enabling 30% faster vapor removal, and radiation enhancement boosting absorption by 40–60% and penetration depth 2–3 times. While inherent VFD limitations (e.g., low thermal conductivity) persist, we identify PPM-specific bottlenecks: precision regulation of pore structures (<5% size deviation), scalable fabrication of gradient architectures, synergy mechanisms in multi-field coupling (e.g., microwave-PPM interactions). The most promising advancements include 3D-printed gradient pores for customized transfer paths, intelligent monitoring-feedback systems, and multiscale modeling bridging pore-scale physics to macroscale kinetics. This review provides both a critical assessment of current progress and a forward-looking perspective to guide future research and industrial adoption of PPM-enhanced VFD. Full article
Show Figures

Figure 1

21 pages, 2383 KB  
Article
Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves
by Huanhuan Zhang, Ling Zhang, Feihu Gao, Shixiong Yang, Qian Deng, Kaixin Shi and Sheng Li
Foods 2025, 14(16), 2903; https://doi.org/10.3390/foods14162903 - 21 Aug 2025
Viewed by 427
Abstract
Sweet potato stems and leaves (SPSL) are rich in bioactive polyphenols, yet their utilization remains underexplored. This study established an efficient method for SPSL polyphenol enrichment using macroporous resins, with UHPLC-QE-MS/MS characterization of the purified polyphenols (PP) and subsequent evaluation of anti-inflammatory activity. [...] Read more.
Sweet potato stems and leaves (SPSL) are rich in bioactive polyphenols, yet their utilization remains underexplored. This study established an efficient method for SPSL polyphenol enrichment using macroporous resins, with UHPLC-QE-MS/MS characterization of the purified polyphenols (PP) and subsequent evaluation of anti-inflammatory activity. The results showed that NKA-II resin demonstrated the best purification effect on SPSL polyphenols among the six tested resins. The optimal enrichment procedure of NKA-II resin was as follows: loading sample pH 3.0, 4.48 mg CAE/mL concentration, and 80% ethanol (v/v) eluent. A total of 19 major compounds were characterized in PP, including 12 phenolic acids and seven flavonoids, with a polyphenol purity of 75.70%. PP pretreatment (100 and 500 μg/mL) significantly inhibited LPS-induced release of NO (by 40.62% and 68.61%), IL-1β (by 40.07% and 68.34%), IL-6 (by 40.63% and 52.41%), and TNF-α (by 52.29% and 73.76%) compared to the LPS group (p < 0.05), demonstrating potent anti-inflammatory effects. Western blot analysis revealed that PP exerted anti-inflammatory effects by inhibiting the NF-κB (via suppression of IκBα phosphorylation/degradation and blockade of p65 nuclear translocation) and MAPK (via inhibition of p38, ERK, and JNK phosphorylation) signaling pathways. These findings support the utilization of this agricultural by-product in functional food development, particularly as a source of natural anti-inflammatory compounds for dietary supplements or fortified beverages. Full article
(This article belongs to the Special Issue Health Benefits of Antioxidants in Natural Foods)
Show Figures

Figure 1

16 pages, 10820 KB  
Article
Synergistic Enhancement of Li-O2 Battery Capacity and Cycle Life Using Carbon Nanochain/Multiwall Carbon Nanotube Composites
by Michael D. Womble, Cynthia Adebayo, Silas Cascio and Michael J. Wagner
Materials 2025, 18(16), 3897; https://doi.org/10.3390/ma18163897 - 20 Aug 2025
Viewed by 469
Abstract
Multiwalled carbon nanotube (MWCNT) Li-O2 cathodes can achieve high gravimetric capacity. However, the macropores of these cathodes require a relatively large mass of electrolyte to fill, resulting in lower true gravimetric and volumetric capacities. Here we report a simple method to incorporate [...] Read more.
Multiwalled carbon nanotube (MWCNT) Li-O2 cathodes can achieve high gravimetric capacity. However, the macropores of these cathodes require a relatively large mass of electrolyte to fill, resulting in lower true gravimetric and volumetric capacities. Here we report a simple method to incorporate a mesoporous material, carbon nanochains (CNCs), into the macropores of MWCNTs, resulting in composite cathodes that fully utilize their pore structure to store Li2O2 product. The composite cathodes exhibit additional mesopores with an average diameter of ~100 nm. This results in dramatic increases in true gravimetric (21% to 870 mAh/g) and volumetric (>200% to 5664 mAh/cm3) capacities. The composite cathodes demonstrate improved electrochemical reversibility, increasing the cycle life by more than 50%. Full article
Show Figures

Figure 1

16 pages, 7359 KB  
Article
Upcycling of Waste PVC into CaCO3/KOH-Modified Porous Carbon for Supercapacitor Applications
by Wenbo Cai, Le Liu, Peng Zhang and Zhidan Lin
Molecules 2025, 30(16), 3420; https://doi.org/10.3390/molecules30163420 - 19 Aug 2025
Viewed by 484
Abstract
This study introduces a green method for converting waste polyvinyl chloride (PVC) into hierarchical porous carbon materials. By using CaCO3 pre-activation to capture HCl and form meso/macroporous frameworks, followed by KOH activation to tune microporosity, high-surface-area porous carbon was successfully produced. The [...] Read more.
This study introduces a green method for converting waste polyvinyl chloride (PVC) into hierarchical porous carbon materials. By using CaCO3 pre-activation to capture HCl and form meso/macroporous frameworks, followed by KOH activation to tune microporosity, high-surface-area porous carbon was successfully produced. The effects of KOH loading ratios (C-PVC:KOH = 1:1 to 1:3) on the primary activated carbon material were systematically investigated. It was found that a ratio of 1:2 (C-KOH-2) yielded optimal material properties, with a specific surface area of 1729 m2 g−1 and an oxygen doping content of 7.37%. Electrochemical measurements revealed that C-KOH-2 exhibited a high specific capacitance of 360.4 F g−1 at 1 A g−1, retaining 72.1% of its capacitance at 10 A g−1. The symmetric supercapacitors achieved an energy density of 9.9 Wh kg−1 at 125 W kg−1, with 93.12% capacitance retention over 5000 cycles. This dual-purpose approach enables the upcycling of PVC waste while promoting the development of high-performance electrodes. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

33 pages, 5443 KB  
Article
Effects of Carbonation Conditions and Sand-to-Powder Ratio on Compressive Strength and Pore Fractal Characteristics of Recycled Cement Paste–Sand Mortar
by Yuchen Ye, Zhenyuan Gu, Chenhui Zhu and Jie Yang
Buildings 2025, 15(16), 2906; https://doi.org/10.3390/buildings15162906 - 17 Aug 2025
Viewed by 459
Abstract
This study investigates the influence of carbonation duration and sand-to-powder ratio on the compressive strength and pore structure of recycled cement paste–sand (RCP-S) mortar. Specimens incorporating four different sand contents were subjected to carbonation for 1 and 24 h. Fractal dimensions, ranging from [...] Read more.
This study investigates the influence of carbonation duration and sand-to-powder ratio on the compressive strength and pore structure of recycled cement paste–sand (RCP-S) mortar. Specimens incorporating four different sand contents were subjected to carbonation for 1 and 24 h. Fractal dimensions, ranging from 2.60159 to 3.86742, indicated increased pore complexity with extended carbonation exposure. Mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) were employed to characterize pore features, including volume, surface area, and diameter. A Menger sponge-based fractal model was applied to compute the fractal dimensions and investigate their relationships with microstructural parameters and mechanical performance. Results showed that prolonged carbonation markedly reduced macropores and large capillary pores, enhanced fine pore content, and improved overall pore connectivity. Fractal analysis revealed that Segments I and IV exhibited the most significant fractal characteristics. The fractal dimension demonstrated exponential correlations with pore diameter; quadratic relationships—with superior statistical performance—with porosity, surface area, and pore volume; and a power–law relationship with compressive strength. These findings highlight the potential of fractal parameters as effective indicators of pore structure complexity and mechanical performance. This study offers a quantitative basis for optimizing pore structure in recycled cementitious materials, promoting their sustainable application in construction. Full article
Show Figures

Figure 1

23 pages, 5400 KB  
Article
Quantitative Analysis of Multi-Angle Correlation Between Fractal Dimension of Anthracite Surface and Its Coal Quality Indicators in Different Regions
by Shoule Zhao and Dun Wu
Fractal Fract. 2025, 9(8), 538; https://doi.org/10.3390/fractalfract9080538 - 15 Aug 2025
Viewed by 345
Abstract
The nanoporous structure of coal is crucial for the occurrence and development of coalbed methane (CBM). This study, leveraging the combined characterization of atomic force microscopy (AFM) and Gwyddion software (v2.62), investigated six anthracite samples with varying degrees of metamorphism (Ro = [...] Read more.
The nanoporous structure of coal is crucial for the occurrence and development of coalbed methane (CBM). This study, leveraging the combined characterization of atomic force microscopy (AFM) and Gwyddion software (v2.62), investigated six anthracite samples with varying degrees of metamorphism (Ro = 2.11–3.36%). It revealed the intrinsic relationships between their nanoporous structures, surface morphologies, fractal characteristics, and coalification processes. The research found that as Ro increases, the surface relief of coal decreases significantly, with pore structures evolving from being macropore-dominated to micropore-enriched, and the surface tending towards smoothness. Surface roughness parameters (Ra, Rq) exhibit a negative correlation with Ro. Quantitative data indicate that area porosity, pore count, and shape factor positively correlate with metamorphic grade, while mean pore diameter negatively correlates with it. The fractal dimensions calculated using the variance partition method, cube-counting method, triangular prism measurement method, and power spectrum method all show nonlinear correlations with Ro, moisture (Mad), ash content (Aad), and volatile matter (Vdaf). Among these, the fractal dimension obtained by the triangular prism measurement method has the highest correlation with Ro, Aad, and Vdaf, while the variance partition method shows the highest correlation with Mad. This study clarifies the regulatory mechanisms of coalification on the evolution of nanoporous structures and surface properties, providing a crucial theoretical foundation for the precise evaluation and efficient exploitation strategies of CBM reservoirs. Full article
(This article belongs to the Special Issue Applications of Fractal Dimensions in Rock Mechanics and Geomechanics)
Show Figures

Figure 1

19 pages, 2887 KB  
Article
Multifractal Characterization of Heterogeneous Pore Water Redistribution and Its Influence on Permeability During Depletion: Insights from Centrifugal NMR Analysis
by Fangkai Quan, Wei Lu, Yu Song, Wenbo Sheng, Zhengyuan Qin and Huogen Luo
Fractal Fract. 2025, 9(8), 536; https://doi.org/10.3390/fractalfract9080536 - 15 Aug 2025
Viewed by 298
Abstract
The dynamic process of water depletion plays a critical role in both surface coalbed methane (CBM) development and underground gas extraction, reshaping water–rock interactions and inducing complex permeability responses. Addressing the limited understanding of the coupling mechanism between heterogeneous pore water evolution and [...] Read more.
The dynamic process of water depletion plays a critical role in both surface coalbed methane (CBM) development and underground gas extraction, reshaping water–rock interactions and inducing complex permeability responses. Addressing the limited understanding of the coupling mechanism between heterogeneous pore water evolution and permeability during dynamic processes, this study simulates reservoir transitions across four zones (prospective planning, production preparation, active production, and mining-affected zones) via centrifugal experiments. The results reveal a pronounced scale dependence in pore water distribution. During low-pressure stages (0–0.54 MPa), rapid drainage from fractures and seepage pores leads to a ~12% reduction in total water content. In contrast, high-pressure stages (0.54–3.83 MPa) promote water retention in adsorption pores, with their relative contribution rising to 95.8%, forming a dual-structure of macropore drainage and micropore retention. Multifractal analysis indicates a dual-mode evolution of movable pore space. Under low centrifugal pressure, D−10 and Δα decrease by approximately 34% and 36%, respectively, reflecting improved connectivity within large-pore networks. At high centrifugal pressure, an ~8% increase in D0D2 suggests that pore-scale heterogeneity in adsorption pores inhibits further seepage. A quantitative coupling model establishes a quadratic relationship between fractal parameters and permeability, illustrating that permeability enhancement results from the combined effects of pore volume expansion and structural homogenization. As water saturation decreases from 1.0 to 0.64, permeability increases by more than 3.5 times. These findings offer theoretical insights into optimizing seepage pathways and improving gas recovery efficiency in dynamically evolving reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

17 pages, 4064 KB  
Article
Study on Multi-Scale Damage Evolution of Sandstone Under Freeze–Thaw Cycles: A Computational Perspective Based on Pore Structure and Fractal Dimension
by Jianhui Qiu, Keping Zhou, Guanglin Tian and Taoying Liu
Fractal Fract. 2025, 9(8), 534; https://doi.org/10.3390/fractalfract9080534 - 15 Aug 2025
Viewed by 346
Abstract
Understanding the intrinsic relationship between microscopic structures and macroscopic mechanical properties of rock under freeze–thaw (F-T) conditions is essential for ensuring the safety and stability of geotechnical engineering in cold regions. In this study, a series of F-T cycle tests, nuclear magnetic resonance [...] Read more.
Understanding the intrinsic relationship between microscopic structures and macroscopic mechanical properties of rock under freeze–thaw (F-T) conditions is essential for ensuring the safety and stability of geotechnical engineering in cold regions. In this study, a series of F-T cycle tests, nuclear magnetic resonance (NMR) measurements, and uniaxial compression tests were conducted on sandstone samples. The mechanisms by which F-T cycles influence pore structure and mechanical behavior were analyzed, revealing their internal correlation. A degradation model for peak strength was developed using mesopore porosity as the key influencing parameter. The results showed that with increasing F-T cycles, the total porosity and mesopore and macropore porosities all exhibited increasing trends, whereas the micropore and different fractal dimensions decreased. The compaction stage in the stress–strain curves became increasingly prominent with more F-T cycles. Meanwhile, the peak strength and secant modulus decreased, while the peak strain increased. When the frost heave pressure induced by water–ice phase transitions exceeded the ultimate bearing capacity of pore walls, smaller pores progressively evolved into larger ones, leading to an increase in the mesopores and macropores. Notably, mesopores and macropores demonstrated significant fractal characteristics. The transformation in pore size disrupted the power-law distribution of pore radii and reduced fractal dimensions. A strong correlation was observed between peak strength and both the mesopore and mesopore fractal dimensions. The increase in mesopores and macropores enhanced the compaction stage of the stress–strain curve. Moreover, the expansion and interconnection of mesopores under loading conditions degraded the deformation resistance and load-bearing capacity, thereby reducing both the secant modulus and peak strength. The degradation model for peak strength, developed based on changes in mesopore ratio, proved effective for evaluating the mechanical strength when subjected to different numbers of F-T cycles. Full article
(This article belongs to the Special Issue Applications of Fractal Dimensions in Rock Mechanics and Geomechanics)
Show Figures

Figure 1

26 pages, 6451 KB  
Article
Widely Targeted Metabolomic and Network Pharmacology Analyses of Active Compounds Enriched from Ethanolic Extract of Oudemansiella raphanipes
by Zhi Wu, Jin Zhao, Shuang Zhu, Mengxing Chen, Dan Wu, Yiyou Wu, Junbin Lin, Renyun Miao, Rencai Feng, Xiang Li, Bingcheng Gan and Tao Wang
Foods 2025, 14(16), 2820; https://doi.org/10.3390/foods14162820 - 14 Aug 2025
Viewed by 219
Abstract
Oudemansiella raphanipes ethanolic extract (ORE) was prepared via ultrasonication-assisted ethanolic extraction and enriched through silica gel and macroporous adsorption resin chromatography to afford a non-/weakly polar fraction (ORE-S) and a polar fraction (ORE-N), respectively. This study aimed to (1) quantify major bioactive components [...] Read more.
Oudemansiella raphanipes ethanolic extract (ORE) was prepared via ultrasonication-assisted ethanolic extraction and enriched through silica gel and macroporous adsorption resin chromatography to afford a non-/weakly polar fraction (ORE-S) and a polar fraction (ORE-N), respectively. This study aimed to (1) quantify major bioactive components (e.g., polyphenols, alkaloids, and terpenes) in ORE-S and ORE-N, (2) assess their antioxidant activities, (3) correlate compositional differences with antioxidant function, and (4) identify key antioxidant compounds along with their potential mechanisms of action. By integrating widely targeted metabolomics with network pharmacology, we not only elucidated how enrichment methods influence the antioxidant properties of ORE but also demonstrated the potential of ORE-N as a valuable source of bioactive compounds and natural antioxidants. Full article
(This article belongs to the Special Issue Mushroom Biotechnology in Food Industry: 2nd Edition)
Show Figures

Figure 1

22 pages, 4428 KB  
Article
Pore Structure Characteristics and Controlling Factors of the Lower Cambrian Niutitang Formation Shale in Northern Guizhou: A Case Study of Well QX1
by Yuanyan Yin, Niuniu Zou, Daquan Zhang, Yi Chen, Zhilong Ye, Xia Feng and Wei Du
Fractal Fract. 2025, 9(8), 524; https://doi.org/10.3390/fractalfract9080524 - 13 Aug 2025
Viewed by 345
Abstract
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy [...] Read more.
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), low-temperature nitrogen adsorption (LTNA), and nuclear magnetic resonance (NMR) experiments. The results show that ① The pore size of the QX1 well’s Niutitang Formation shale is primarily in the nanometer range, with pore types including intragranular pores, intergranular pores, organic matter pores, and microfractures, with the former two types constituting the primary pore network. ② Pore shapes are plate-shaped intersecting conical microfractures or plate-shaped intersecting ink bottles, ellipsoidal, and beaded pores. ③ The pore size distribution showed a multi-peak distribution, predominantly mesopores, followed by micropores, with the fewest macropores. ④ The fractal dimension D1 > D2 indicates that the shale pore system is characterized by a rough surface and some connectivity of the pore network. ⑤ Carbonate mineral abundances are the main controlling factors affecting the pore structure of shales in the study area, and total organic carbon (TOC) content also has some influence, while clay mineral content shows negligible statistical correlation. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

Back to TopTop