Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = magnetohydrodynamic equations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 12185 KB  
Article
Artificial Neural Network-Based Heat Transfer Analysis of Sutterby Magnetohydrodynamic Nanofluid with Microorganism Effects
by Fateh Ali, Mujahid Islam, Farooq Ahmad, Muhammad Usman and Sana Ullah Asif
Magnetochemistry 2025, 11(10), 88; https://doi.org/10.3390/magnetochemistry11100088 (registering DOI) - 10 Oct 2025
Viewed by 104
Abstract
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of [...] Read more.
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of a Sutterby nanofluid (SNF) within a thin channel, considering the combined effects of magnetohydrodynamics (MHD), Brownian motion, and bioconvection of microorganisms. Analyzing such systems is essential for optimizing design and performance in relevant engineering applications. Method: The governing non-linear partial differential equations (PDEs) for the flow, heat, concentration, and bioconvection are derived. Using lubrication theory and appropriate dimensionless variables, this system of PDEs is simplified into a more simplified system of ordinary differential equations (ODEs). The resulting nonlinear ODEs are solved numerically using the boundary value problem (BVP) Midrich method in Maple software to ensure accuracy. Furthermore, data for the Nusselt number, extracted from the numerical solutions, are used to train an artificial neural network (ANN) model based on the Levenberg–Marquardt algorithm. The performance and predictive capability of this ANN model are rigorously evaluated to confirm its robustness for capturing the system’s non-linear behavior. Results: The numerical solutions are analyzed to understand the variations in velocity, temperature, concentration, and microorganism profiles under the influence of various physical parameters. The results demonstrate that the non-Newtonian rheology of the Sutterby nanofluid is significantly influenced by Brownian motion, thermophoresis, bioconvection parameters, and magnetic field effects. The developed ANN model demonstrates strong predictive capability for the Nusselt number, validating its use for this complex system. These findings provide valuable insights for the design and optimization of microfluidic devices and specialized coating applications in industrial engineering. Full article
Show Figures

Figure 1

29 pages, 3520 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 - 5 Oct 2025
Viewed by 148
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

27 pages, 4212 KB  
Article
Artificial Neural Network Modeling of Darcy–Forchheimer Nanofluid Flow over a Porous Riga Plate: Insights into Brownian Motion, Thermal Radiation, and Activation Energy Effects on Heat Transfer
by Zafar Abbas, Aljethi Reem Abdullah, Muhammad Fawad Malik and Syed Asif Ali Shah
Symmetry 2025, 17(9), 1582; https://doi.org/10.3390/sym17091582 - 22 Sep 2025
Viewed by 339
Abstract
Nanotechnology has become a transformative field in modern science and engineering, offering innovative approaches to enhance conventional thermal and fluid systems. Heat and mass transfer phenomena, particularly fluid motion across various geometries, play a crucial role in industrial and engineering processes. The inclusion [...] Read more.
Nanotechnology has become a transformative field in modern science and engineering, offering innovative approaches to enhance conventional thermal and fluid systems. Heat and mass transfer phenomena, particularly fluid motion across various geometries, play a crucial role in industrial and engineering processes. The inclusion of nanoparticles in base fluids significantly improves thermal conductivity and enables advanced phase-change technologies. The current work examines Powell–Eyring nanofluid’s heat transmission properties on a stretched Riga plate, considering the effects of magnetic fields, porosity, Darcy–Forchheimer flow, thermal radiation, and activation energy. Using the proper similarity transformations, the pertinent governing boundary-layer equations are converted into a set of ordinary differential equations (ODEs), which are then solved using the boundary value problem fourth-order collocation (BVP4C) technique in the MATLAB program. Tables and graphs are used to display the outcomes. Due to their significance in the industrial domain, the Nusselt number and skin friction are also evaluated. The velocity of the nanofluid is shown to decline with a boost in the Hartmann number, porosity, and Darcy–Forchheimer parameter values. Moreover, its energy curves are increased by boosting the values of thermal radiation and the Biot number. A stronger Hartmann number M decelerates the flow (thickening the momentum boundary layer), whereas increasing the Riga forcing parameter Q can locally enhance the near-wall velocity due to wall-parallel Lorentz forcing. Visual comparisons and numerical simulations are used to validate the results, confirming the durability and reliability of the suggested approach. By using a systematic design technique that includes training, testing, and validation, the fluid dynamics problem is solved. The model’s performance and generalization across many circumstances are assessed. In this work, an artificial neural network (ANN) architecture comprising two hidden layers is employed. The model is trained with the Levenberg–Marquardt scheme on reliable numerical datasets, enabling enhanced prediction capability and computational efficiency. The ANN demonstrates exceptional accuracy, with regression coefficients R1.0 and the best validation mean squared errors of 8.52×1010, 7.91×109, and 1.59×108 for the Powell–Eyring, heat radiation, and thermophoresis models, respectively. The ANN-predicted velocity, temperature, and concentration profiles show good agreement with numerical findings, with only minor differences in insignificant areas, establishing the ANN as a credible surrogate for quick parametric assessment and refinement in magnetohydrodynamic (MHD) nanofluid heat transfer systems. Full article
(This article belongs to the Special Issue Computational Mathematics and Its Applications in Numerical Analysis)
Show Figures

Figure 1

15 pages, 2516 KB  
Article
Enhancement of Heat Transfer Accompanied by a Decrease in Kinetic Energy Due to Magnetic Field Imposition in Liquid Metal Natural Convection
by Shu Kondo, Takuya Masuda, Masaki Sakaguchi, Yasutaka Hayamizu, M. M. A. Alam and Toshio Tagawa
Magnetism 2025, 5(3), 23; https://doi.org/10.3390/magnetism5030023 - 22 Sep 2025
Viewed by 313
Abstract
Natural convection of liquid metals under magnetic fields is a phenomenon of interest in various industrial and scientific applications, including fusion reactor blankets and magnetohydrodynamic (MHD) power systems. While the application of a magnetic field generally suppresses convection and reduces the heat transfer [...] Read more.
Natural convection of liquid metals under magnetic fields is a phenomenon of interest in various industrial and scientific applications, including fusion reactor blankets and magnetohydrodynamic (MHD) power systems. While the application of a magnetic field generally suppresses convection and reduces the heat transfer rate, recent studies have reported cases where the Nusselt number increases under certain magnetic field conditions. In this study, we conduct numerical simulations of natural convection in an annular container filled with a liquid metal, subject to a circumferential static magnetic field. The governing equations, incorporating both temperature and electromagnetic fields, are solved using a high-order finite difference scheme. The results show that, within a specific range of parameters, the Nusselt number increases at moderate Hartmann numbers, even under low Rayleigh number conditions. Notably, this enhancement in heat transfer occurs alongside a reduction in kinetic energy, indicating that convective strength is not necessarily the dominant factor. Further analysis confirms that this phenomenon weakens and eventually vanishes as the Rayleigh number approaches 106. These findings provide evidence that magnetic field-induced heat transfer enhancement can occur without a corresponding increase in convective motion, thereby challenging conventional assumptions in magnetoconvection theory. Full article
Show Figures

Figure 1

7 pages, 232 KB  
Article
One-Dimensional Analytical Solutions of the Transport Equations for Incompressible Magnetohydrodynamic (MHD) Turbulence
by Bingbing Wang, Gary P. Zank, Laxman Adhikari and Swati Sharma
Galaxies 2025, 13(5), 104; https://doi.org/10.3390/galaxies13050104 - 3 Sep 2025
Viewed by 506
Abstract
We derive one-dimensional (1D) analytical solutions for the transport equations of incompressible magnetohydrodynamic (MHD) turbulence, including the Elsässer energies and the correlation lengths. The solutions are suitable for an arbitrary given background convection speed and Alfvén speed profiles but require near equipartition of [...] Read more.
We derive one-dimensional (1D) analytical solutions for the transport equations of incompressible magnetohydrodynamic (MHD) turbulence, including the Elsässer energies and the correlation lengths. The solutions are suitable for an arbitrary given background convection speed and Alfvén speed profiles but require near equipartition of turbulent kinetic energy and magnetic field energy. These analytical solutions provide a simple tool to investigate the evolution of turbulence and resulting energetic particle diffusion coefficients in various space and astrophysical environments that possess simple geometry. Full article
Show Figures

Figure 1

19 pages, 1846 KB  
Article
Numerical–ANN Framework for Thermal Analysis of MHD Water-Based Prandtl Nanofluid Flow over a Stretching Sheet Using Bvp4c
by Syed Asif Ali Shah, Fehaid Salem Alshammari, Muhammad Fawad Malik and Saira Batool
Symmetry 2025, 17(8), 1347; https://doi.org/10.3390/sym17081347 - 18 Aug 2025
Viewed by 738
Abstract
The main goal of this study is to create a computational solver that analyzes the effects of magnetohydrodynamics (MHD) on heat radiation in Cu–water-based Prandtl nanofluid flow using artificial neural networks. Copper nanoparticles are utilized to boost the water-based fluid’s thermal effect. [...] Read more.
The main goal of this study is to create a computational solver that analyzes the effects of magnetohydrodynamics (MHD) on heat radiation in Cu–water-based Prandtl nanofluid flow using artificial neural networks. Copper nanoparticles are utilized to boost the water-based fluid’s thermal effect. This study primarily focuses on heat transfer over a horizontal sheet, exploring different scenarios by varying key factors such as the magnetic field and thermal radiation properties. The mathematical model is formulated using partial differential equations (PDEs), which are then transformed into a corresponding set of ordinary differential equations (ODEs) through appropriate similarity transformations. The bvp4c solver is then used to simulate the numerical behavior. The effects of relevant parameters on the temperature, velocity, skin friction, and local Nusselt number profiles are examined. It is discovered that the parameters of the Prandtl fluid have a considerable impact. The local skin friction and the local Nusselt number are improved by increasing these parameters. The dataset is split into 70% training, 15% validation, and 15% testing. The ANN model successfully predicts skin friction and Nusselt number profiles, showing good agreement with numerical simulations. This hybrid framework offers a robust predictive approach for heat management systems in industrial applications. This study provides important insights for researchers and engineers aiming to comprehend flow characteristics and their behavior and to develop accurate predictive models. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Thermal Management)
Show Figures

Figure 1

23 pages, 1445 KB  
Article
Inclined MHD Flow of Carreau Hybrid Nanofluid over a Stretching Sheet with Nonlinear Radiation and Arrhenius Activation Energy Under a Symmetry-Inspired Modeling Perspective
by Praveen Kumari, Hemant Poonia, Pardeep Kumar and Md Aquib
Symmetry 2025, 17(8), 1330; https://doi.org/10.3390/sym17081330 - 15 Aug 2025
Cited by 1 | Viewed by 564
Abstract
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation [...] Read more.
This work investigates the intricate dynamics of the Carreau hybrid nanofluid’s inclined magnetohydrodynamic (MHD) flow, exploring both active and passive control modes. The study incorporates critical factors, including Arrhenius activation energy across a stretched sheet, chemical interactions, and nonlinear thermal radiation. The formulation of the boundary conditions and governing equations is inherently influenced by symmetric considerations in the physical geometry and flow assumptions. Such symmetry-inspired modeling facilitates dimensional reduction and numerical tractability. The analysis employs realistic boundary conditions, including convective heat transfer and control of nanoparticle concentration, which are solved numerically using MATLAB’s bvp5c solver. Findings indicate that an increase in activation energy results in a steeper concentration boundary layer under active control, while it flattens in passive scenarios. An increase in the Biot number (Bi) and relaxation parameter (Γ) enhances heat transfer and thermal response, leading to a rise in temperature distribution in both cases. Additionally, the 3D surface plot illustrates elevation variations from the surface at low inclination angles, narrowing as the angle increases. The Nusselt number demonstrates a contrasting trend, with thermal boundary layer thickness increasing with higher radiation parameters. A graphical illustration of the average values of skin friction, Nusselt number, and Sherwood number for both active and passive scenarios highlights the impact of each case. Under active control, the Brownian motion’s effect diminishes, whereas it intensifies in passive control. Passive techniques, such as zero-flux conditions, offer effective and low-maintenance solutions for systems without external regulation, while active controls, like wall heating and setting a nanoparticle concentration, maximize heat and mass transfer in shear-thinning Carreau fluids. Full article
(This article belongs to the Special Issue Symmetrical Mathematical Computation in Fluid Dynamics)
Show Figures

Figure 1

18 pages, 601 KB  
Article
Accurate Implementation of Rotating Magneto-Hydrodynamics in a Channel Geometry Using an Influence Matrix Method
by Jean-Clément Ringenbach, Steven M. Tobias and Tobias M. Schneider
Mathematics 2025, 13(16), 2549; https://doi.org/10.3390/math13162549 - 8 Aug 2025
Viewed by 594
Abstract
We numerically study wall-bounded convectively driven magneto-hydrodynamic (MHD) flows subject to rotation in a Cartesian periodic channel. For the accurate treatment of the rotating MHD equations, we develop a pseudo-spectral simulation code with accurate treatment of boundary conditions for both velocity and magnetic [...] Read more.
We numerically study wall-bounded convectively driven magneto-hydrodynamic (MHD) flows subject to rotation in a Cartesian periodic channel. For the accurate treatment of the rotating MHD equations, we develop a pseudo-spectral simulation code with accurate treatment of boundary conditions for both velocity and magnetic fields. The solenoidal condition on the magnetic field is enforced by the addition of a fictitious magnetic pressure. This allows us to employ an influence matrix method with tau correction for the treatment of velocity and magnetic fields subject to Robin boundary conditions at the confining walls. We validate the developed method for the specific case of no slip velocity and perfectly conducting magnetic boundary conditions. The validation includes the accurate reproduction of linear stability thresholds and of turbulent statistics. The code shows favorable parallel scaling properties. Full article
(This article belongs to the Special Issue Numerical Simulation and Methods in Computational Fluid Dynamics)
Show Figures

Figure 1

17 pages, 327 KB  
Review
Renormalization Group and Effective Field Theories in Magnetohydrodynamics
by Amir Jafari
Fluids 2025, 10(8), 188; https://doi.org/10.3390/fluids10080188 - 23 Jul 2025
Viewed by 550
Abstract
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder [...] Read more.
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder singular; (ii) the breakdown of Laplacian determinism of classical physics (spontaneous stochasticity or super chaos) in turbulence; and (iii) the possibility of eliminating the notion of magnetic field lines in magnetized plasmas, using instead magnetic path lines as trajectories of Alfvénic wave packets. These methodologies are then exemplified with their application to the problem of magnetic reconnection—rapid change in magnetic field pattern that accelerates plasma—a ubiquitous phenomenon in astrophysics and laboratory plasmas. Renormalizing rough velocity and magnetic fields on any finite scale l in turbulence inertial range, to remove singularities, implies that magnetohydrodynamic equations should be regarded as effective field theories with running parameters depending upon the scale l. A high wave-number cut-off should also be introduced in fluctuating equations of motion, e.g., Navier–Stokes, which makes them effective, low-wave-number field theories rather than stochastic differential equations. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
19 pages, 7154 KB  
Article
A Heuristic Exploration of Zonal Flow-like Structures in the Presence of Toroidal Rotation in a Non-Inertial Frame
by Xinliang Xu, Yihang Chen, Yulin Zhou, Zhanhui Wang, Xueke Wu, Bo Li, Jiang Sun, Junzhao Zhang and Da Li
Plasma 2025, 8(3), 29; https://doi.org/10.3390/plasma8030029 - 22 Jul 2025
Viewed by 305
Abstract
The mechanisms by which rotation influences zonal flows (ZFs) in plasma are incompletely understood, presenting a significant challenge in the study of plasma dynamics. This research addresses this gap by investigating the role of non-inertial effects—specifically centrifugal and Coriolis forces—on Geodesic Acoustic Modes [...] Read more.
The mechanisms by which rotation influences zonal flows (ZFs) in plasma are incompletely understood, presenting a significant challenge in the study of plasma dynamics. This research addresses this gap by investigating the role of non-inertial effects—specifically centrifugal and Coriolis forces—on Geodesic Acoustic Modes (GAMs) and ZFs in rotating tokamak plasmas. While previous studies have linked centrifugal convection to plasma toroidal rotation, they often overlook the Coriolis effects or inconsistently incorporate non-inertial terms into magneto-hydrodynamic (MHD) equations. In this work, we derive self-consistent drift-ordered two-fluid equations from the collisional Vlasov equation in a non-inertial frame, and we modify the Hermes cold ion code to simulate the impact of rotation on GAMs and ZFs. Our simulations reveal that toroidal rotation enhances ZF amplitude and GAM frequency, with Coriolis convection playing a critical role in GAM propagation and the global structure of ZFs. Analysis of simulation outcomes indicates that centrifugal drift drives parallel velocity growth, while Coriolis drift facilitates radial propagation of GAMs. This work may provide valuable insights into momentum transport and flow shear dynamics in tokamaks, with implications for turbulence suppression and confinement optimization. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

11 pages, 288 KB  
Article
Uniform Analyticity and Time Decay of Solutions to the 3D Fractional Rotating Magnetohydrodynamics System in Critical Sobolev Spaces
by Muhammad Zainul Abidin and Abid Khan
Fractal Fract. 2025, 9(6), 360; https://doi.org/10.3390/fractalfract9060360 - 29 May 2025
Cited by 1 | Viewed by 531
Abstract
In this paper, we investigated a three-dimensional incompressible fractional rotating magnetohydrodynamic (FrMHD) system by reformulating the Cauchy problem into its equivalent mild formulation and working in critical homogeneous Sobolev spaces. For this, we first established the existence and uniqueness of a global mild [...] Read more.
In this paper, we investigated a three-dimensional incompressible fractional rotating magnetohydrodynamic (FrMHD) system by reformulating the Cauchy problem into its equivalent mild formulation and working in critical homogeneous Sobolev spaces. For this, we first established the existence and uniqueness of a global mild solution for small and divergence-free initial data. Moreover, our approach is based on proving sharp bilinear convolution estimates in critical Sobolev norms, which in turn guarantee the uniform analyticity of both the velocity and magnetic fields with respect to time. Furthermore, leveraging the decay properties of the associated fractional heat semigroup and a bootstrap argument, we derived algebraic decay rates and established the long-time dissipative behavior of FrMHD solutions. These results extended the existing literature on fractional Navier–Stokes equations by fully incorporating magnetic coupling and Coriolis effects within a unified fractional-dissipation framework. Full article
16 pages, 5257 KB  
Article
Effects of Driving Current Ripple Fluctuations on the Liquefied Layer of the Armature–Rail Interface in Railguns
by Wen Tian, Gongwei Wang, Ying Zhao, Weikang Zhao, Weiqun Yuan and Ping Yan
Energies 2025, 18(10), 2596; https://doi.org/10.3390/en18102596 - 16 May 2025
Viewed by 452
Abstract
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power [...] Read more.
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power supply. Due to the limitation of control accuracy, the driving current is not an ideal trapezoidal wave, but there is a certain fluctuation (current ripple) in the flat top portion of the trapezoidal wave. The fluctuation of the current will affect the thickness of the liquefied layer at the armature–rail interface as well as the magnitude of the contact pressure, thereby inducing instability at the armature–rail interface and generating micro-arcs, which result in a reduction in the service life of the rails within the launcher. Consequently, it is imperative to conduct an in-depth analysis of the influence of current ripple on the liquefied layer during electromagnetic launching. In this paper, a thermoelastic magnetohydrodynamic model is constructed by coupling temperature, stress, and electromagnetic fields, which are predicated on the Reynolds equation of the metal liquefied layer at the armature–rail contact interface. The effects of current fluctuations on the melting rate of the surface of the armature, the thickness of the liquefied layer, and the hydraulic pressure of the liquefied layer under four different current ripple coefficients (RCs) were analyzed. The results show the following: (1) The thickness and the pressure of the liquefied layer at the armature–rail interface fluctuate with the fluctuation of the current, and, the larger the ripple coefficient, the greater the fluctuations in the thickness and pressure of the liquefied layer. (2) The falling edge of the current fluctuation leads to a decrease in the hydraulic pressure of the liquefied layer, which results in the instability of the liquefied layer between the armature and rails. (3) As the ripple coefficient increases, the time taken for the liquefied layer to reach a stable state increases. In addition, a launching experiment was also conducted in this paper, and the results showed that, at the falling edge of the current fluctuation, the liquefied layer is unstable, and a phenomenon such as the ejection of molten armature and transition may occur. The results of the experiment and simulations mutually confirm that the impact of current fluctuations on the armature–rail interface increases with increases in the ripple coefficient. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

30 pages, 5545 KB  
Article
Design of Ricker Wavelet Neural Networks for Heat and Mass Transport in Magnetohydrodynamic Williamson Nanofluid Boundary-Layer Porous Medium Flow with Multiple Slips
by Zeeshan Ikram Butt, Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Muhammad Shoaib, Rajesh Kumar and Syed Ibrar Hussain
Magnetochemistry 2025, 11(5), 40; https://doi.org/10.3390/magnetochemistry11050040 - 9 May 2025
Cited by 1 | Viewed by 963
Abstract
In the current paper, an analysis of magnetohydrodynamic Williamson nanofluid boundary layer flow is presented, with multiple slips in a porous medium, using a newly designed human-brain-inspired Ricker wavelet neural network solver. The solver employs a hybrid approach that combines genetic algorithms, serving [...] Read more.
In the current paper, an analysis of magnetohydrodynamic Williamson nanofluid boundary layer flow is presented, with multiple slips in a porous medium, using a newly designed human-brain-inspired Ricker wavelet neural network solver. The solver employs a hybrid approach that combines genetic algorithms, serving as a global search method, with sequential quadratic programming, which functions as a local optimization technique. The heat and mass transportation effects are examined through a stretchable surface with radiation, thermal, and velocity slip effects. The primary flow equations, originally expressed as partial differential equations (PDEs), are changed into a dimensionless nonlinear system of ordinary differential equations (ODEs) via similarity transformations. These ODEs are then numerically solved with the proposed computational approach. The current study has significant applications in a variety of practical engineering and industrial scenarios, including thermal energy systems, biomedical cooling devices, and enhanced oil recovery techniques, where the control and optimization of heat and mass transport in complex fluid environments are essential. The numerical outcomes gathered through the designed scheme are compared with reference results acquired through Adam’s numerical method in terms of graphs and tables of absolute errors. The rapid convergence, effectiveness, and stability of the suggested solver are analyzed using various statistical and performance operators. Full article
Show Figures

Figure 1

17 pages, 1712 KB  
Article
Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container
by Julien Moussa H. Barakat, Zaher Al Barakeh and Raymond Ghandour
Eng 2025, 6(5), 92; https://doi.org/10.3390/eng6050092 - 30 Apr 2025
Viewed by 757
Abstract
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the [...] Read more.
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the cylinder than on the surrounding fluid. The mathematical model incorporates essential factors involving mixed conventions, thermal layers, heat absorption/generation, geometry curvature, fluid properties, magnetic field intensity, and Prandtl number. Partial differential equations govern the process and are transformed into coupled nonlinear ordinary differential equations with proper changes of variables. Datasets are generated for two cases: a flat plate (zero curving) and a cylinder (non-zero curving). The applicability of the LMA-ANN solver is presented by solving the MHD-MCBLF problem using regression analysis, mean squared error evaluation, histograms, and gradient analysis. It presents an affordable computational tool for predicting multicomponent reactive and non-reactive thermofluid phase interactions. This study introduces an application of Levenberg–Marquardt algorithm-based artificial neural networks (LMA-ANNs) to solve complex magnetohydrodynamic mixed convection boundary layer flows of Eyring–Powell fluids over inclined stretching cylinders. This approach efficiently approximates solutions to the transformed nonlinear differential equations, demonstrating high accuracy and reduced computational effort. Such advancements are particularly beneficial in industries like polymer processing, biomedical engineering, and thermal management systems, where modeling non-Newtonian fluid behaviors is crucial. Full article
Show Figures

Figure 1

18 pages, 4636 KB  
Article
Aerodynamic Characteristics of the Opposing Jet Combined with Magnetohydrodynamic Control in Hypersonic Nonequilibrium Flows
by Wenqing Zhang, Zhijun Zhang and Weifeng Gao
Aerospace 2025, 12(4), 308; https://doi.org/10.3390/aerospace12040308 - 3 Apr 2025
Viewed by 609
Abstract
To improve the thermal protection effect of an opposing jet, a novel thermal protection technology (i.e., an opposing jet combined with magnetohydrodynamic (MHD) control technology) is proposed in this study. Considering the flight conditions of an ELECTRE vehicle and the unsteady state of [...] Read more.
To improve the thermal protection effect of an opposing jet, a novel thermal protection technology (i.e., an opposing jet combined with magnetohydrodynamic (MHD) control technology) is proposed in this study. Considering the flight conditions of an ELECTRE vehicle and the unsteady state of the opposing jet, we employed the time-accurate nonequilibrium N-S equations coupled with a low-magnetic-Reynolds-number model to explore the jet characteristics, thermal protection effects, and aerodynamic drag characteristics of this novel technology. Two jet conditions (PR2.53 and PR5.07) and four magnetic field conditions (no-MHD, B0 = 1 T, 2 T, and 4 T) were employed. The results show that the introduction of a magnetic field can guide the flow of the opposing jet by reconstructing the shock, where the reattachment shock is pushed away from the surface and the shock standoff distance (SSD) increases. Compared with the opposing jet and the MHD control technologies, this novel technology can provide a better thermal protection effect. In particular, it enables a long penetration mode (LPM) jet, which aggravates the aerodynamic heating environment around the vehicle at lower flow rates to provide effective thermal protection for the vehicle. Moreover, this novel technology can achieve effective thermal protection without increasing the aerodynamic drag at an appropriate jet mass flow rate and a magnetic field strength. For example, under the B0 = 2 T magnetic field, the ratios of peak wall heat flux for the two technologies (the MHD control technology and the PR2.53 jet combined MHD control technology) are 0.908 and 0.820, respectively, whereas the ratios of average drags for the two technologies are 1.235 and 0.993, respectively. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

Back to TopTop