Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = magnocellular pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2182 KB  
Article
Visual Neuroplasticity: Modulating Cortical Excitability with Flickering Light Stimulation
by Francisco J. Ávila
J. Imaging 2025, 11(7), 237; https://doi.org/10.3390/jimaging11070237 - 14 Jul 2025
Viewed by 1074
Abstract
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular [...] Read more.
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular (M) and parvocellular (P) pathways, which provide a useful model to study cortical excitability using non-invasive visual flicker stimulation. We present an Arduino-driven non-image forming system to deliver controlled flickering light stimuli at different frequencies and wavelengths. By triggering the critical flicker fusion (CFF) frequency, we attempt to modulate the M-pathway activity and attenuate P-pathway responses, in parallel with induced optical scattering. EEG recordings were used to monitor cortical excitability and oscillatory dynamics during visual stimulation. Visual stimulation in the CFF, combined with induced optical scattering, selectively enhanced magnocellular activity and suppressed parvocellular input. EEG analysis showed a modulation of cortical oscillations, especially in the high frequency beta and gamma range. Our results support the hypothesis that visual flicker in the CFF, in addition to spatial degradation, initiates detectable neuroplasticity and regulates cortical excitation and inhibition. These findings suggest new avenues for therapeutic manipulation through visual pathways in diseases such as Alzheimer’s disease, epilepsy, severe depression, and schizophrenia. Full article
Show Figures

Figure 1

14 pages, 3130 KB  
Article
Neural Substrates for Early Data Reduction in Fast Vision: A Psychophysical Investigation
by Serena Castellotti and Maria Michela Del Viva
Brain Sci. 2024, 14(8), 753; https://doi.org/10.3390/brainsci14080753 - 26 Jul 2024
Cited by 1 | Viewed by 1278
Abstract
To ensure survival, the visual system must rapidly extract the most important elements from a large stream of information. This necessity clashes with the computational limitations of the human brain, so a strong early data reduction is required to efficiently process information in [...] Read more.
To ensure survival, the visual system must rapidly extract the most important elements from a large stream of information. This necessity clashes with the computational limitations of the human brain, so a strong early data reduction is required to efficiently process information in fast vision. A theoretical early vision model, recently developed to preserve maximum information using minimal computational resources, allows efficient image data reduction by extracting simplified sketches containing only optimally informative, salient features. Here, we investigate the neural substrates of this mechanism for optimal encoding of information, possibly located in early visual structures. We adopted a flicker adaptation paradigm, which has been demonstrated to specifically impair the contrast sensitivity of the magnocellular pathway. We compared flicker-induced contrast threshold changes in three different tasks. The results indicate that, after adapting to a uniform flickering field, thresholds for image discrimination using briefly presented sketches increase. Similar threshold elevations occur for motion discrimination, a task typically targeting the magnocellular system. Instead, contrast thresholds for orientation discrimination, a task typically targeting the parvocellular system, do not change with flicker adaptation. The computation performed by this early data reduction mechanism seems thus consistent with magnocellular processing. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

22 pages, 2663 KB  
Article
Looming Angry Faces: Preliminary Evidence of Differential Electrophysiological Dynamics for Filtered Stimuli via Low and High Spatial Frequencies
by Zhou Yu, Eleanor Moses, Ada Kritikos and Alan J. Pegna
Brain Sci. 2024, 14(1), 98; https://doi.org/10.3390/brainsci14010098 - 19 Jan 2024
Viewed by 1820
Abstract
Looming motion interacts with threatening emotional cues in the initial stages of visual processing. However, the underlying neural networks are unclear. The current study investigated if the interactive effect of threat elicited by angry and looming faces is favoured by rapid, magnocellular neural [...] Read more.
Looming motion interacts with threatening emotional cues in the initial stages of visual processing. However, the underlying neural networks are unclear. The current study investigated if the interactive effect of threat elicited by angry and looming faces is favoured by rapid, magnocellular neural pathways and if exogenous or endogenous attention influences such processing. Here, EEG/ERP techniques were used to explore the early ERP responses to moving emotional faces filtered for high spatial frequencies (HSF) and low spatial frequencies (LSF). Experiment 1 applied a passive-viewing paradigm, presenting filtered angry and neutral faces in static, approaching, or receding motions on a depth-cued background. In the second experiment, broadband faces (BSF) were included, and endogenous attention was directed to the expression of faces. Our main results showed that regardless of attentional control, P1 was enhanced by BSF angry faces, but neither HSF nor LSF faces drove the effect of facial expressions. Such findings indicate that looming motion and threatening expressions are integrated rapidly at the P1 level but that this processing relies neither on LSF nor on HSF information in isolation. The N170 was enhanced for BSF angry faces regardless of attention but was enhanced for LSF angry faces during passive viewing. These results suggest the involvement of a neural pathway reliant on LSF information at the N170 level. Taken together with previous reports from the literature, this may indicate the involvement of multiple parallel neural pathways during early visual processing of approaching emotional faces. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

15 pages, 2695 KB  
Article
A Pilot Investigation of Visual Pathways in Patients with Mild Traumatic Brain Injury
by Paul Harris and Mark H. Myers
Neurol. Int. 2023, 15(1), 534-548; https://doi.org/10.3390/neurolint15010032 - 20 Mar 2023
Cited by 3 | Viewed by 2655
Abstract
In this study, we examined visual processing within primary visual areas (V1) in normal and visually impaired individuals who exhibit significant visual symptomology due to sports-related mild traumatic brain injury (mTBI). Five spatial frequency stimuli were applied to the right, left and both [...] Read more.
In this study, we examined visual processing within primary visual areas (V1) in normal and visually impaired individuals who exhibit significant visual symptomology due to sports-related mild traumatic brain injury (mTBI). Five spatial frequency stimuli were applied to the right, left and both eyes in order to assess the visual processing of patients with sports-related mild traumatic brain injuries who exhibited visual abnormalities, i.e., photophobia, blurriness, etc., and controls. The measurement of the left/right eye and binocular integration was accomplished via the quantification of the spectral power and visual event-related potentials. The principal results have shown that the power spectral density (PSD) measurements display a distinct loss in the alpha band-width range, which corresponded to more instances of medium-sized receptive field loss. Medium-size receptive field loss may correspond to parvocellular (p-cell) processing deprecation. Our major conclusion provides a new measurement, using PSD analysis to assess mTBI conditions from primary V1 areas. The statistical analysis demonstrated significant differences between the mTBI and control cohort in the Visual Evoked Potentials (VEP) amplitude responses and PSD measurements. Additionally, the PSD measurements were able to assess the improvement in the mTBI primary visual areas over time through rehabilitation. Full article
(This article belongs to the Special Issue Recent Advances in Traumatic Brain Injury)
Show Figures

Figure 1

23 pages, 4025 KB  
Article
A Wireless EEG System for Neurofeedback Training
by Tsvetalin Totev, Tihomir Taskov and Juliana Dushanova
Appl. Sci. 2023, 13(1), 96; https://doi.org/10.3390/app13010096 - 21 Dec 2022
Cited by 4 | Viewed by 3781
Abstract
This paper presents a mobile, easy-to-maintain wireless electroencephalograph (EEG) system designed for work with children in a school environment. This EEG data acquisition platform is a small-sized, battery-powered system with a high sampling rate that is scalable to different channel numbers. The system [...] Read more.
This paper presents a mobile, easy-to-maintain wireless electroencephalograph (EEG) system designed for work with children in a school environment. This EEG data acquisition platform is a small-sized, battery-powered system with a high sampling rate that is scalable to different channel numbers. The system was validated in a study of live z-score neurofeedback training for quantitative EEG (zNF-qEEG) for typical-reading children and those with developmental dyslexia (DD). This system reads and controls real-time neurofeedback (zNF) signals, synchronizing visual stimuli (low spatial frequency (LSF) illusions) with the alpha/theta (z-α/θ) score neural oscillations. The NF sessions were applied during discrimination of LSF illusions with different contrasts. Visual feedback was provided with color cues to remodulate neural activity in children with DD and their cognitive abilities. The combined zNF-qEEG and training with different visual magnocellular and parvocellular tasks (VTs) compensated for the deficits in the temporal areas affecting the occipitotemporal pathway more in the left-hemispheric ventral brain areas of the post-training children with dyslexia in the low-contrast LSF illusion and dorsal dysfunction in the high-contrast LSF illusion. The better α/θ scores for postD in the temporoparietal and middle occipital regions can be associated with an improvement in special frequency processing, while the better scores in the precentral and parietal cortices were due to an advancement in the temporal processing of the illusion. The improvements in the reading speeds were twice as high after 4 months of qEEG z-NF-VT training, with three times fewer omitted words and errors. Full article
(This article belongs to the Special Issue Advances in Biomedical Image Processing and Diagnostic Techniques)
Show Figures

Figure 1

25 pages, 3509 KB  
Article
Noninvasive Characterization of Functional Pathways in Layer-Specific Microcircuits of the Human Brain Using 7T fMRI
by Gopikrishna Deshpande and Yun Wang
Brain Sci. 2022, 12(10), 1361; https://doi.org/10.3390/brainsci12101361 - 7 Oct 2022
Cited by 2 | Viewed by 3135
Abstract
Layer-specific cortical microcircuits have been explored through invasive animal studies, yet it is not possible to reliably characterize them functionally and noninvasively in the human brain. However, recent advances in ultra-high-field functional magnetic resonance imaging (fMRI) have made it feasible to reasonably resolve [...] Read more.
Layer-specific cortical microcircuits have been explored through invasive animal studies, yet it is not possible to reliably characterize them functionally and noninvasively in the human brain. However, recent advances in ultra-high-field functional magnetic resonance imaging (fMRI) have made it feasible to reasonably resolve layer-specific fMRI signals with sub-millimeter resolution. Here, we propose an experimental and analytical framework that enables the noninvasive functional characterization of layer-specific cortical microcircuits. Specifically, we illustrate this framework by characterizing layer-specific functional pathways in the corticogeniculate network of the human visual system by obtaining sub-millimeter fMRI at 7T using a task which engages the magnocellular pathway between the lateral geniculate nucleus (LGN) and the primary visual cortex. Our results demonstrate that: (i) center-surround inhibition in magnocellular neurons within LGN is detectable using localized fMRI responses; (ii) feedforward (LGN → layers VI/IV, layer IV → layer VI) and feedback (layer VI → LGN) functional pathways, known to exist from invasive animal studies, can be inferred using dynamic directional connectivity models of fMRI and could potentially explain the mechanism underlying center-surround inhibition as well as gain control by layer VI in the human visual system. Our framework is domain-neutral and could potentially be employed to investigate the layer-specific cortical microcircuits in other systems related to cognition, memory and language. Full article
(This article belongs to the Special Issue Cortical Connectivity Pattern: Neuroimaging Advances with MRI)
Show Figures

Figure 1

15 pages, 3018 KB  
Article
Color Variability Constrains Detection of Geometrically Perfect Mirror Symmetry
by Birgitta Dresp-Langley
Computation 2022, 10(6), 99; https://doi.org/10.3390/computation10060099 - 16 Jun 2022
Cited by 2 | Viewed by 2591
Abstract
Symmetry in nature is a result of biological self-organization, driven by evolutionary processes. Detected by the visual systems of various species, from invertebrates to primates, symmetry determines survival relevant choice behaviors and supports adaptive function by reducing stimulus uncertainty. Symmetry also provides a [...] Read more.
Symmetry in nature is a result of biological self-organization, driven by evolutionary processes. Detected by the visual systems of various species, from invertebrates to primates, symmetry determines survival relevant choice behaviors and supports adaptive function by reducing stimulus uncertainty. Symmetry also provides a major structural key to bio-inspired artificial vision and shape or movement simulations. In this psychophysical study, local variations in color covering the whole spectrum of visible wavelengths are compared to local variations in luminance contrast across an axis of geometrically perfect vertical mirror symmetry. The chromatic variations are found to delay response time to shape symmetry to a significantly larger extent than achromatic variations. This effect depends on the degree of variability, i.e., stimulus complexity. In both cases, we observe linear increase in response time as a function of local color variations across the vertical axis of symmetry. These results are directly explained by the difference in computational complexity between the two major (magnocellular vs. parvocellular) visual pathways involved in filtering the contrast (luminance vs. luminance and color) of the shapes. It is concluded that color variability across an axis of symmetry proves detrimental to the rapid detection of symmetry, and, presumably, other structural shape regularities. The results have implications for vision-inspired artificial intelligence and robotics exploiting functional principles of human vision for gesture and movement detection, or geometric shape simulation for recognition systems, where symmetry is often a critical property. Full article
Show Figures

Figure 1

31 pages, 648 KB  
Review
Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment?
by Reinhard Werth
Brain Sci. 2021, 11(10), 1313; https://doi.org/10.3390/brainsci11101313 - 2 Oct 2021
Cited by 13 | Viewed by 7033
Abstract
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular [...] Read more.
It is a widely held belief that developmental dyslexia (DD) is a phonological disorder in which readers have difficulty associating graphemes with their corresponding phonemes. In contrast, the magnocellular theory of dyslexia assumes that DD is a visual disorder caused by dysfunctional magnocellular neural pathways. The review explores arguments for and against these theories. Recent results have shown that DD is caused by (1) a reduced ability to simultaneously recognize sequences of letters that make up words, (2) longer fixation times required to simultaneously recognize strings of letters, and (3) amplitudes of saccades that do not match the number of simultaneously recognized letters. It was shown that pseudowords that could not be recognized simultaneously were recognized almost without errors when the fixation time was extended. However, there is an individual maximum number of letters that each reader with DD can recognize simultaneously. Findings on the neurobiological basis of temporal summation have shown that a necessary prolongation of fixation times is due to impaired processing mechanisms of the visual system, presumably involving magnocells and parvocells. An area in the mid-fusiform gyrus also appears to play a significant role in the ability to simultaneously recognize words and pseudowords. The results also contradict the assumption that DD is due to a lack of eye movement control. The present research does not support the assumption that DD is caused by a phonological disorder but shows that DD is due to a visual processing dysfunction. Full article
(This article belongs to the Special Issue Neurobiological Basis of Developmental Dyslexia)
Show Figures

Figure 1

20 pages, 3875 KB  
Article
Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning
by Sara Mascheretti, Denis Peruzzo, Chiara Andreola, Martina Villa, Tommaso Ciceri, Vittoria Trezzi, Cecilia Marino and Filippo Arrigoni
Brain Sci. 2021, 11(6), 722; https://doi.org/10.3390/brainsci11060722 - 28 May 2021
Cited by 10 | Viewed by 3602
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they [...] Read more.
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the “dorsal stream vulnerability” underlying DD. Full article
(This article belongs to the Special Issue Neurobiological Basis of Developmental Dyslexia)
Show Figures

Figure 1

17 pages, 2126 KB  
Article
Beyond Reading Modulation: Temporo-Parietal tDCS Alters Visuo-Spatial Attention and Motion Perception in Dyslexia
by Giulia Lazzaro, Sara Bertoni, Deny Menghini, Floriana Costanzo, Sandro Franceschini, Cristiana Varuzza, Luca Ronconi, Andrea Battisti, Simone Gori, Andrea Facoetti and Stefano Vicari
Brain Sci. 2021, 11(2), 263; https://doi.org/10.3390/brainsci11020263 - 19 Feb 2021
Cited by 21 | Viewed by 5854
Abstract
Dyslexia is a neurodevelopmental disorder with an atypical activation of posterior left-hemisphere brain reading networks (i.e., temporo-occipital and temporo-parietal regions) and multiple neuropsychological deficits. Transcranial direct current stimulation (tDCS) is a tool for manipulating neural activity and, in turn, neurocognitive processes. While studies [...] Read more.
Dyslexia is a neurodevelopmental disorder with an atypical activation of posterior left-hemisphere brain reading networks (i.e., temporo-occipital and temporo-parietal regions) and multiple neuropsychological deficits. Transcranial direct current stimulation (tDCS) is a tool for manipulating neural activity and, in turn, neurocognitive processes. While studies have demonstrated the significant effects of tDCS on reading, neurocognitive changes beyond reading modulation have been poorly investigated. The present study aimed at examining whether tDCS on temporo-parietal regions affected not only reading, but also phonological skills, visuo-spatial working memory, visuo-spatial attention, and motion perception in a polarity-dependent way. In a within-subjects design, ten children and adolescents with dyslexia performed reading and neuropsychological tasks after 20 min of exposure to Left Anodal/Right Cathodal (LA/RC) and Right Anodal/Left Cathodal (RA/LC) tDCS. LA/RC tDCS compared to RA/LC tDCS improved text accuracy, word recognition speed, motion perception, and modified attentional focusing in our group of children and adolescents with dyslexia. Changes in text reading accuracy and word recognition speed—after LA/RC tDCS compared to RA/LC—were related to changes in motion perception and in visuo-spatial working memory, respectively. Our findings demonstrated that reading and domain-general neurocognitive functions in a group of children and adolescents with dyslexia change following tDCS and that they are polarity-dependent. Full article
(This article belongs to the Special Issue Multiple Neurocognitive Deficits and Dyslexia)
Show Figures

Figure 1

18 pages, 1283 KB  
Article
Action Video Games Enhance Attentional Control and Phonological Decoding in Children with Developmental Dyslexia
by Sara Bertoni, Sandro Franceschini, Giovanna Puccio, Martina Mancarella, Simone Gori and Andrea Facoetti
Brain Sci. 2021, 11(2), 171; https://doi.org/10.3390/brainsci11020171 - 29 Jan 2021
Cited by 55 | Viewed by 10396
Abstract
Reading acquisition is extremely difficult for about 5% of children because they are affected by a heritable neurobiological disorder called developmental dyslexia (DD). Intervention studies can be used to investigate the causal role of neurocognitive deficits in DD. Recently, it has been proposed [...] Read more.
Reading acquisition is extremely difficult for about 5% of children because they are affected by a heritable neurobiological disorder called developmental dyslexia (DD). Intervention studies can be used to investigate the causal role of neurocognitive deficits in DD. Recently, it has been proposed that action video games (AVGs)—enhancing attentional control—could improve perception and working memory as well as reading skills. In a partial crossover intervention study, we investigated the effect of AVG and non-AVG training on attentional control using a conjunction visual search task in children with DD. We also measured the non-alphanumeric rapid automatized naming (RAN), phonological decoding and word reading before and after AVG and non-AVG training. After both video game training sessions no effect was found in non-alphanumeric RAN and in word reading performance. However, after only 12 h of AVG training the attentional control was improved (i.e., the set-size slopes were flatter in visual search) and phonological decoding speed was accelerated. Crucially, attentional control and phonological decoding speed were increased only in DD children whose video game score was highly efficient after the AVG training. We demonstrated that only an efficient AVG training induces a plasticity of the fronto-parietal attentional control linked to a selective phonological decoding improvement in children with DD. Full article
(This article belongs to the Special Issue Multiple Neurocognitive Deficits and Dyslexia)
Show Figures

Figure 1

14 pages, 708 KB  
Article
Exploring the Moderation Effect of Educational Stage on Visual Magnocellular Functioning Linked to Reading: A Study in French Primary School Children
by Stéphanie Bellocchi and Virginie Leclercq
Children 2021, 8(2), 68; https://doi.org/10.3390/children8020068 - 21 Jan 2021
Cited by 5 | Viewed by 2231
Abstract
Many studies have investigated the visual magnocellular system functioning in dyslexia. However, very little is known on the relationship between the visual magnocellular system functioning and reading abilities in typical developing readers. In this study, we aimed at studying this relationship and more [...] Read more.
Many studies have investigated the visual magnocellular system functioning in dyslexia. However, very little is known on the relationship between the visual magnocellular system functioning and reading abilities in typical developing readers. In this study, we aimed at studying this relationship and more specifically the moderation effect of educational stage on this link. We thus tested 82 French typical developing readers (40 beginning readers—Grade 1 and 42 advanced readers—Grade 5) with reading tests and a coherent dot motion task measuring the visual magnocellular functioning. Results indicate positive correlations between visual magnocellular functioning and reading for beginning readers but not for advanced readers. Moreover, moderation analyses confirm that reading proficiency moderates the relationship between magnocellular system functioning and reading outcomes. We concluded that the relationship between visual magnocellular pathway functioning and reading abilities in typical developing readers could depend on reading proficiency. Full article
Show Figures

Figure 1

8 pages, 1397 KB  
Article
The Dominant Eye: Dominant for Parvo- But Not for Magno-Biased Stimuli?
by Brian K. Foutch and Carl J. Bassi
Vision 2020, 4(1), 19; https://doi.org/10.3390/vision4010019 - 12 Mar 2020
Cited by 7 | Viewed by 5631
Abstract
Eye dominance is often defined as a preference for the visual input of one eye to the other. Implicit in this definition is the dominant eye has better visual function. Several studies have investigated the effect of visual direction or defocus on ocular [...] Read more.
Eye dominance is often defined as a preference for the visual input of one eye to the other. Implicit in this definition is the dominant eye has better visual function. Several studies have investigated the effect of visual direction or defocus on ocular dominance, but there is less evidence connecting ocular dominance and monocular visual thresholds. We used the classic “hole in card” method to determine the dominant eye for 28 adult observers (11 males and 17 females). We then compared contrast thresholds between the dominant and non-dominant eyes using grating stimuli biased to be processed more strongly either by the magnocellular (MC) or parvocellular (PC) pathway. Using non-parametric mean rank tests, the dominant eye was more sensitive overall than the non-dominant eye to both stimuli (z = −2.54, p = 0.01). The dominant eye was also more sensitive to the PC-biased stimulus (z = −2.22, p = 0.03) but not the MC-biased stimulus (z = −1.16, p = 0.25). We discuss the clinical relevance of these results as well as the implications for parallel visual pathways. Full article
Show Figures

Graphical abstract

9 pages, 630 KB  
Perspective
Illuminating the Neural Circuits Underlying Orienting of Attention
by Michael I. Posner and Cristopher M. Niell
Vision 2019, 3(1), 4; https://doi.org/10.3390/vision3010004 - 24 Jan 2019
Cited by 5 | Viewed by 5175
Abstract
Human neuroimaging has revealed brain networks involving frontal and parietal cortical areas as well as subcortical areas, including the superior colliculus and pulvinar, which are involved in orienting to sensory stimuli. Because accumulating evidence points to similarities between both overt and covert orienting [...] Read more.
Human neuroimaging has revealed brain networks involving frontal and parietal cortical areas as well as subcortical areas, including the superior colliculus and pulvinar, which are involved in orienting to sensory stimuli. Because accumulating evidence points to similarities between both overt and covert orienting in humans and other animals, we propose that it is now feasible, using animal models, to move beyond these large-scale networks to address the local networks and cell types that mediate orienting of attention. In this opinion piece, we discuss optogenetic and related methods for testing the pathways involved, and obstacles to carrying out such tests in rodent and monkey populations. Full article
(This article belongs to the Special Issue Visual Orienting and Conscious Perception)
Show Figures

Figure 1

18 pages, 1030 KB  
Article
Apparent Motion Perception in the Praying Mantis: Psychophysics and Modelling
by Ghaith Tarawneh, Lisa Jones, Vivek Nityananda, Ronny Rosner, Claire Rind and Jenny C. A. Read
Vision 2018, 2(3), 32; https://doi.org/10.3390/vision2030032 - 10 Aug 2018
Viewed by 5522
Abstract
Apparent motion is the perception of motion created by rapidly presenting still frames in which objects are displaced in space. Observers can reliably discriminate the direction of apparent motion when inter-frame object displacement is below a certain limit, Dmax . Earlier studies of [...] Read more.
Apparent motion is the perception of motion created by rapidly presenting still frames in which objects are displaced in space. Observers can reliably discriminate the direction of apparent motion when inter-frame object displacement is below a certain limit, Dmax . Earlier studies of motion perception in humans found that Dmax is lower-bounded at around 15 arcmin, and thereafter scales with the size of the spatial elements in the images. Here, we run corresponding experiments in the praying mantis Sphodromantis lineola to investigate how Dmax scales with the element size. We use random moving chequerboard patterns of varying element and displacement step sizes to elicit the optomotor response, a postural stabilization mechanism that causes mantids to lean in the direction of large-field motion. Subsequently, we calculate Dmax as the displacement step size corresponding to a 50% probability of detecting an optomotor response in the same direction as the stimulus. Our main findings are that the mantis Dmax scales roughly as a square-root of element size and that, in contrast to humans, it is not lower-bounded. We present two models to explain these observations: a simple high-level model based on motion energy in the Fourier domain and a more-detailed one based on the Reichardt Detector. The models present complementary intuitive and physiologically-realistic accounts of how Dmax scales with the element size in insects. We conclude that insect motion perception is limited by only a single stage of spatial filtering, reflecting the optics of the compound eye. In contrast, human motion perception reflects a second stage of spatial filtering, at coarser scales than imposed by human optics, likely corresponding to the magnocellular pathway. After this spatial filtering, mantis and human motion perception and Dmax are qualitatively very similar. Full article
(This article belongs to the Special Issue Visual Perception and Its Neural Mechanisms)
Show Figures

Figure 1

Back to TopTop