Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = main steam pipeline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17998 KB  
Article
Change in the Structural and Mechanical State of Heat-Resistant 15CrMoV5-10 Steel of TPP Steam Pipelines Under the Influence of Operational Factors
by Oleksandra Student, Halyna Krechkovska, Robert Pała and Ivan Tsybailo
Materials 2025, 18(14), 3421; https://doi.org/10.3390/ma18143421 - 21 Jul 2025
Viewed by 343
Abstract
The operational efficiency of the main steam pipelines at thermal power plants is reduced due to several factors, including operating temperature, pressure, service life, and the frequency of process shutdowns, which contribute to the degradation of heat-resistant steels. The study aims to identify [...] Read more.
The operational efficiency of the main steam pipelines at thermal power plants is reduced due to several factors, including operating temperature, pressure, service life, and the frequency of process shutdowns, which contribute to the degradation of heat-resistant steels. The study aims to identify the features of changes in the sizes of grains and carbides along their boundaries, as well as mechanical properties (hardness, strength, plasticity and fracture toughness) along the wall thickness of both pipes in the initial state and after operation with block shutdowns. Preliminary electrolytic hydrogenation of specimens (before tensile tests in air) showed even more clearly the negative consequences of operational degradation of steel. The degradation of steel was also assessed using fracture toughness (JIC). The value of JIC for operated steel with a smaller number of shutdowns decreased by 32–33%, whereas with a larger number of shutdowns, its decrease in the vicinity of the outer and inner surfaces of the pipe reached 65 and 61%, respectively. Fractographic signs of more intense degradation of steel after a greater number of shutdowns were manifested at the stage of spontaneous fracture of specimens by changing the mechanism from transgranular cleavage to intergranular, which indicated a decrease in the cohesive strength of grain boundaries. Full article
(This article belongs to the Special Issue Assessment of the Strength of Materials and Structure Elements)
Show Figures

Figure 1

17 pages, 4199 KB  
Article
Investigation on Optimization of Finite Element Model for Stress Analysis of 12Cr1MoV Main Steam Pipeline Elbow
by Shutao Wang, Renqiang Shi, Jian Wu, Chao Yang and Huan Liu
Crystals 2025, 15(3), 207; https://doi.org/10.3390/cryst15030207 - 22 Feb 2025
Viewed by 891
Abstract
Stress analysis is of great significance for components in thermal power plants, and an inaccurate model could cause inaccuracy in the life assessment of the plant. During the manufacturing process of elbows, issues such as cross-sectional elliptical deformation and uneven wall thickness frequently [...] Read more.
Stress analysis is of great significance for components in thermal power plants, and an inaccurate model could cause inaccuracy in the life assessment of the plant. During the manufacturing process of elbows, issues such as cross-sectional elliptical deformation and uneven wall thickness frequently occur. However, existing studies have not thoroughly investigated these phenomena. In this study, a modified finite element model based on the dimension of an actual elbow was established for stress analysis and compared with that of the ideal uniform model. Subsequently, microstructure characterization and mechanical property tests were conducted on the elbow to validate both models. The stress concentration area in the corrected model has shifted from the inner arc region of the ideal model to the inner wall of the neutral plane region. Both optical microscopy and SEM results indicate that microstructural degradation in the neutral plane region is more pronounced, characterized by non-uniform grains, coarse carbides, and creep cavities. The hardness values of the inner wall in the neutral plane area are significantly lower than that in the inner arc area, and the tensile sample in the neutral plane area fractures rapidly after yielding, exhibiting poorer toughness compared to the samples in the inner arc area. Moreover, the creep resistance in the neutral plane area is much lower than that in the inner arc area. By integrating finite element simulation with experimental validation, the accuracy of the corrected finite element model presented in this paper has been confirmed, providing valuable theoretical and experimental guidance for the life assessment of elbows in thermal power plants. Full article
Show Figures

Figure 1

15 pages, 11326 KB  
Article
Restoration of Properties of Heat-Resistant Steel After Long-Term Operation in Steam Pipeline Bends of TPP by Heat Treatment
by Halyna Krechkovska, Ivan Tsybailo, Ihor Dzioba, Oleksandra Student and Robert Pała
Metals 2025, 15(1), 21; https://doi.org/10.3390/met15010021 - 30 Dec 2024
Cited by 2 | Viewed by 942
Abstract
To improve the microstructure and mechanical properties of heat-resistant 12Kh1MF steel after long-term operation in the stretched bend zone of the main steam pipeline of a thermal power plant, restorative heat treatment (RHT) was proposed. The RHT mode consisted of two normalization stages [...] Read more.
To improve the microstructure and mechanical properties of heat-resistant 12Kh1MF steel after long-term operation in the stretched bend zone of the main steam pipeline of a thermal power plant, restorative heat treatment (RHT) was proposed. The RHT mode consisted of two normalization stages (from temperatures of 1100 and 960 °C, respectively) followed by tempering at a temperature of 740 °C. The RHT mode, regulated for steel in the initial state, was applied only after its normalization from a significantly higher temperature (1100 °C). It was shown that the proportion of fine grains in the steel structure increased to 55% over the entire pipe wall thickness after using RHT. At the same time, the proportion of large grains in the restored steel decreased significantly (to 10%), while in exploited steel, their proportion reached almost 50%. The proposed RHT mode increased the hardness, strength, plasticity, and resistance to brittle fracture of the restored steel relative to the corresponding characteristics of the operated steel. The maximum positive effect of the RHT was obtained during impact testing. The fractographic features of the exploited and restored steel were studied on fractures of samples tested by tension. The main fractographic feature of the operated steel was nanosized particles at the bottom of large dimples. These tiny particles were considered to be fragments of large carbides formed due to their final decohesion from the matrix during tensile testing. However, such nanosized particles were not found on the samples’ fracture surfaces in the steel after restorative heat treatment. In addition, the ductile dimples on the fractures of the restored steel were more prominent, which indicated high energy costs for their formation. Thus, all the obtained research results suggest the possibility of using the proposed RHT mode to extend the service life of long-operated critical elements of a thermal power plant’s steam pipelines. Full article
Show Figures

Figure 1

18 pages, 16417 KB  
Article
Improving the Oxidation Resistance of G115 Martensitic Heat-Resistant Steel by Surface Treatment with Shot Peening
by Pengwen Chen, Jingwen Zhang, Liming Yu, Tianyu Du, Huijun Li, Chenxi Liu, Yongchang Liu, Yuehua Liu and Baoxin Du
Coatings 2024, 14(5), 575; https://doi.org/10.3390/coatings14050575 - 6 May 2024
Cited by 3 | Viewed by 1661
Abstract
G115 steel is a novel martensitic heat-resistant steel, primarily utilized in the main steam pipelines and collectors of ultra-supercritical thermal power units. However, the oxidation resistance of martensitic steels in the high-temperature steam environment is usually suboptimal, significantly affecting the efficiency of power [...] Read more.
G115 steel is a novel martensitic heat-resistant steel, primarily utilized in the main steam pipelines and collectors of ultra-supercritical thermal power units. However, the oxidation resistance of martensitic steels in the high-temperature steam environment is usually suboptimal, significantly affecting the efficiency of power plants. In this paper, shot peening (SP) is employed as a surface treatment method for G115 steel, and the oxidation kinetics, oxide layer thickness, and microstructure of shot-peened G115 samples are compared with those of G115 steel. The results indicate that in the 650 °C steam environment, the oxidation kinetics of the shot-peened samples follow the parabolic law and that the oxidation weight gain is significantly smaller than that of the non-shot-peened samples. The higher the SP intensity, the smaller the oxidation weight gain and the better the oxidation resistance. This can be attributed to the fragmentation of the grains in the surface layer caused by external stress during SP, which creates a multitude of grain boundaries that can provide rapid diffusion pathways for corrosion-resistant Cr atoms, resulting in the accelerated outward diffusion of Cr atoms from the substrate. Simultaneously, a continuous and dense FeCr2O4 protective layer is produced at the interface between the SP layer and the substrate, obstructing the inward diffusion of oxygen and enhancing the oxidation resistance of G115 steel. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

11 pages, 6562 KB  
Article
Prediction of the Residual Creep Life of SA335-P22 Steel Main Steam Pipelines
by Zhicheng Wang, Youjun Ye, Lingjian Dong and Bumei Wang
Processes 2023, 11(1), 162; https://doi.org/10.3390/pr11010162 - 4 Jan 2023
Viewed by 2495
Abstract
In this study, the comprehensive properties of a P22 high-temperature steam pipeline with moderate spheroidization were evaluated after more than 11,700 h of operation through a series of physico-chemical properties testing, especially for a creep test. The remaining life of the P22 high-temperature [...] Read more.
In this study, the comprehensive properties of a P22 high-temperature steam pipeline with moderate spheroidization were evaluated after more than 11,700 h of operation through a series of physico-chemical properties testing, especially for a creep test. The remaining life of the P22 high-temperature steam pipeline was analyzed and predicted by the θ parameter method, to guide the normal operation of the P22 high-temperature steam pipeline. Full article
Show Figures

Figure 1

18 pages, 2648 KB  
Article
Research and Development of Hybrid Power Units Heat Flow Diagrams with Cooled High-Temperature Steam Turbines
by Nikolay Rogalev, Daria Kharlamova, Andrey Vegera, Vladimir Naumov and Timofey Karev
Inventions 2022, 7(3), 64; https://doi.org/10.3390/inventions7030064 - 27 Jul 2022
Cited by 2 | Viewed by 2938
Abstract
Fossil fuel thermal power plants account for almost 60% of Russian electricity and heat. Steam turbine units make almost 80% of this amount. The main method for steam turbine unit efficiency improvement is the increase in the initial steam parameters’ temperature and pressure. [...] Read more.
Fossil fuel thermal power plants account for almost 60% of Russian electricity and heat. Steam turbine units make almost 80% of this amount. The main method for steam turbine unit efficiency improvement is the increase in the initial steam parameters’ temperature and pressure. This reduces fossil fuel consumption and harmful emissions but requires the application of heat-resistant steel. The improvement in steel’s heat resistance leads to a non-linear price increase, and the larger the temperature increase, the more the steel costs. One of the methods of improving efficiency without a significant increase in the capital cost of equipment is an external combustion chamber. These allow an increase in the steam temperature outside the boiler without the need to use heat-resistant alloys for boiler superheaters and steam pipelines between the boiler and the steam turbine. The most promising is hydrogen–oxygen combustion chambers, which produce steam with high purity and parameters. To reduce the cost of high-temperature steam turbines, it is possible to use a cooling system with the supply of a steam coolant to the most thermally stressed elements. According to the calculations, the efficiency reduction of a power unit due to the turbine cooling is 0.6–1.27%. The steam superheating up to 720 °C in external combustion chambers instead of a boiler unit improves the unit efficiency by 0.27%. At the initial steam temperatures of 800 °C, 850 °C, and 900 °C, the unit efficiency reduction caused by cooling is 4.09–5.68%, 7.47–9.73%, and 8.28–10.04%, respectively. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 2))
Show Figures

Figure 1

19 pages, 2856 KB  
Article
Technological Solutions in the Field of Production and Use of Hydrogen Fuel to Increase the Thermal Efficiency of Steam Turbine TPPs
by Ivan Komarov, Nikolay Rogalev, Andrey Rogalev, Vladimir Kindra, Evgeny Lisin and Sergey Osipov
Inventions 2022, 7(3), 63; https://doi.org/10.3390/inventions7030063 - 26 Jul 2022
Cited by 6 | Viewed by 2894
Abstract
The paper discusses technological solutions in the field of production and use of hydrogen fuel, the combustion of which, in a steam-oxygen environment, can significantly increase the initial parameters of the steam turbine cycle and, thus, increase the thermal efficiency of traditional steam [...] Read more.
The paper discusses technological solutions in the field of production and use of hydrogen fuel, the combustion of which, in a steam-oxygen environment, can significantly increase the initial parameters of the steam turbine cycle and, thus, increase the thermal efficiency of traditional steam turbine thermal power plants. A study of technologies for the industrial production of hydrogen has been carried out. An analysis of the technical and economic features of hydrogen production technologies for use in the electric power industry showed that the most promising method is electrolysis, which makes it possible to obtain inexpensive hydrogen during hours of low demand for electricity or cogeneration of heat and electricity when electricity is a by-product. It is shown that in order to increase the power and efficiency of steam turbine TPPs, it is important to use external steam superheating from an external source of thermal energy, thus providing intermediate overheating of the working fluid by connecting an additional cycle with a higher equivalent initial temperature to the main steam turbine cycle. We have established that if we use hydrogen as a thermal energy source, the absolute efficiency of the steam turbine cycle can be increased up to 54%, taking into account the regenerative heating of feed water. In this case, at an overheating temperature equal to tnn = 760 °C, the absolute efficiency of the cycle is virtually equal to that of a CCGT unit operating at the initial gas temperature t0 = 1350 °C. At the same time, while maintaining the boiler performance, the rated capacity of the steam turbine power unit is increased by 12%. In addition, the study pays attention to the problem of increasing the power consumption of TPPs for the auxiliaries, as required to compress hydrogen and oxygen up to a pressure higher than that in the steam pipeline where the combustion chamber is installed. Our calculations have allowed us to conclude that, for the case of installing the combustion chamber in live steam, the share of additional power spent for auxiliaries should be 7%, whereas the main share of power is consumed for compressing hydrogen—94%. Despite the identified shortcomings, an economic analysis of the process of hydrogen production at TPP by electrolysis and its further use for intermediate overheating in steam turbines in order to increase their efficiency showed the effectiveness of this solution. Full article
Show Figures

Figure 1

15 pages, 5079 KB  
Article
Methods for Competitiveness Improvement of High-Temperature Steam Turbine Power Plants
by Andrey Rogalev, Nikolay Rogalev, Ivan Komarov, Vladimir Kindra and Sergey Osipov
Inventions 2022, 7(2), 44; https://doi.org/10.3390/inventions7020044 - 16 Jun 2022
Cited by 6 | Viewed by 3482
Abstract
The paper is concerned with the problem of the development of high-temperature steam turbine power plants with ultra-supercritical (USC) initial parameters. One of the main disadvantages of the USC power unit’s creation is high price due to the application of expensive heat-resistant materials [...] Read more.
The paper is concerned with the problem of the development of high-temperature steam turbine power plants with ultra-supercritical (USC) initial parameters. One of the main disadvantages of the USC power unit’s creation is high price due to the application of expensive heat-resistant materials for boiler, live and reheat steam pipelines in turbines. To solve this problem, the following technical improvements to reduce the application of the heat-resistant materials and equipment metal consumption are proposed: horizontal boiler layout, high temperature steam turbine with a cooling system, oxy-hydrogen combustion chambers, and two-tier low-pressure turbine. The influence of the above-mentioned solutions on the high-temperature steam turbine power plant efficiency was estimated using thermodynamic analysis. The promising equipment design was developed based on the results of numerical and experimental research. The analysis of the proposed solutions’ influence upon the economic parameters of a high-temperature power facility was investigated based on the developed cost analysis model, which included the equipment metal and manufacturing expenses. The introduction of all the mentioned cost reduction methods led to a decrease in the facility’s price by RUB 10.5 billion or 15%. The discounted payback period was reduced from 27.5 to 10 years and the net present value increased by RUB 9.6 billion or 16 times. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 2))
Show Figures

Figure 1

15 pages, 6708 KB  
Article
Pressure Drop Optimization of the Main Steam and Reheat Steam System of a 1000 MW Secondary Reheat Unit
by Yanfeng Li, Jingru Liu and Guohe Huang
Energies 2022, 15(9), 3279; https://doi.org/10.3390/en15093279 - 29 Apr 2022
Cited by 5 | Viewed by 3228
Abstract
The pressure drop of a main steam and reheat steam system should be optimized during the design and operation of a thermal power plant to minimize operation costs. In this study, the pressure drop of the main steam pipe and reheat steam pipe [...] Read more.
The pressure drop of a main steam and reheat steam system should be optimized during the design and operation of a thermal power plant to minimize operation costs. In this study, the pressure drop of the main steam pipe and reheat steam pipe of a 1000 MW secondary reheat unit are optimized by modulating the operation parameters and the cost of operation is explored. Optimal pipe specifications were achieved by selecting a bend pipe and optimizing the pipe specifications. The pressure loss of the main steam pipeline was optimized to 2.61% compared with the conventional pressure drop (5%), the heat consumption of steam turbine was reduced by about 0.63 kJ/(kW·h), the standard coal consumption was minimized by about 0.024 g/(kW·h), and the total income in 20 years is approximated to be CNY 217,700. The primary reheat system was optimized to 4.88%, the steam turbine heat consumption was reduced by about 7.13 kJ/(kW·h), the standard coal consumption decreased by about 0.276 g/(kW·h), and the total income in 20 years is projected to be CNY 20.872 million after the optimization of the pressure drop. The secondary reheat system was optimized to 8.13%, the steam turbine heat consumption was reduced by about 7.86 kJ/(kW·h), the standard coal consumption decreased by about 0.304 g/(kW·h), and the total income in 20 years is projected to be CNY 22.7232 million after the optimization of the pressure drop. The research results of the present study provide a guide for the design and operation of secondary reheat units to achieve an effective operation and minimize costs. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

15 pages, 9088 KB  
Article
Numerical Analysis of Aerodynamic Characteristics of Exhaust Passage with Consideration of Wet Steam Effect in a Supercritical Steam Turbine
by Qing Xu, Aqiang Lin, Yuhang Cai, Naseem Ahmad, Yu Duan and Chen Liu
Energies 2020, 13(7), 1560; https://doi.org/10.3390/en13071560 - 27 Mar 2020
Cited by 3 | Viewed by 3964
Abstract
To investigate the aerodynamic performance of exhaust passage under multi-phase flow, an actual case is conducted in the low-pressure double exhaust passages of 600 MW steam turbine. Then, the flow field is compared and analyzed with and without the built-in extraction pipelines based [...] Read more.
To investigate the aerodynamic performance of exhaust passage under multi-phase flow, an actual case is conducted in the low-pressure double exhaust passages of 600 MW steam turbine. Then, the flow field is compared and analyzed with and without the built-in extraction pipelines based on the Eulerian–Eulerian homogenous medium multiphase method. Results show that the upstream swirling flow and downstream mixed swirling flow are the main causes to induce the entropy-increase in the exhaust passage. Moreover, the flow loss and static-pressure recovery ability in the exhaust hood are greater than those in the condenser neck. Compared with the flow field without the steam extraction pipelines, the entropy-increase increases, the static pressure recovery coefficient decreases, and the spontaneous condensation rates of wet steam decrease in the downstream area of the pipelines. With the increase of steam turbine loads, an increment in entropy-increase in the exhaust passage is 0.98 J/(kg·K) lower than that without steam extraction pipelines. Moreover, the incrementing range of uniformity coefficient is increased from 14.5% to 40.9% at the condenser neck outlet. It can be concluded that the built-in exhaustion pipeline can improve the aerodynamic performance of exhaust passage and better reflect the real state of the flow field. These research results can serve as a reference for turbine passage design. Full article
Show Figures

Figure 1

9 pages, 583 KB  
Article
Development of On-Line Monitoring Systems for High Temperature Components in Power Plants
by Hongcai Zhang, Jiuhong Jia, Ning Wang, Xiaoyin Hu, Shan-Tung Tu, Shaoping Zhou and Zhengdong Wang
Sensors 2013, 13(11), 15504-15512; https://doi.org/10.3390/s131115504 - 13 Nov 2013
Cited by 18 | Viewed by 7230
Abstract
To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a [...] Read more.
To accurately detect deformation and extend the component life beyond the original design limits, structural safety monitoring techniques have attracted considerable attention in the power and process industries for decades. In this paper an on-line monitoring system for high temperature pipes in a power plant is developed. The extension-based sensing devices are amounted on straight pipes, T-Joints and elbows of a main steam pipeline. During on-site monitoring for more than two years, most of the sensors worked reliably and steadily. However, the direct strain gauge could not work for long periods because of the high temperature environment. Moreover, it is found that the installation and connection of the extensometers can have a significant influence on the measurement results. The on-line monitoring system has a good alarming function which is demonstrated by detecting a steam leakage of the header. Full article
(This article belongs to the Special Issue Sensors for Harsh-Environment Applications)
Show Figures

Back to TopTop