Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (121)

Search Parameters:
Keywords = manganite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7336 KB  
Article
Impacts of Structural Impurities and Solution pH on Hausmannite Transformation to Birnessite: Environmental Implications for Metal Solubility and Sequestration
by Boyoung Song, Mohammad M. Rashid, Evert J. Elzinga and Bojeong Kim
Minerals 2025, 15(7), 697; https://doi.org/10.3390/min15070697 - 29 Jun 2025
Viewed by 716
Abstract
Spinel-structured hausmannite (Mn(II)Mn(III)2O4) is a vital intermediate in Mn mineralogy and a key player in redox chemistry in the environment. Its transformation into other Mn oxides is a critical factor in controlling its environmental occurrence and reactivity. Yet structural [...] Read more.
Spinel-structured hausmannite (Mn(II)Mn(III)2O4) is a vital intermediate in Mn mineralogy and a key player in redox chemistry in the environment. Its transformation into other Mn oxides is a critical factor in controlling its environmental occurrence and reactivity. Yet structural impurities and solution pH, as well as the fate of impurities during transformation, which influence hausmannite transformation processes and products, remain largely unknown. In the present work, we address this knowledge gap by investigating pristine and metal-substituted hausmannite, specifically nickel (Ni) or cobalt (Co), equilibrated at two time periods (8 h and 30 days) and three different pH levels (4, 5, and 7). Solution chemistry data revealed that both the equilibration period and pH had a significant impact on hausmannite dissolution rates and the concomitant repartitioning of Ni or Co. Hausmannite with Ni or Co substitution exhibited lower dissolution rates than pristine mineral under acidic conditions. Mineralogy and crystal chemistry data indicated that hausmannite was the major host phase after 30-day equilibration, followed by minor transformed products, including birnessite and manganite. Although minor, birnessite became more abundant than manganite at low pHs. Analytical high-resolution transmission electron microscopy (HRTEM) analyses revealed a poorly crystalline, nano-scaled MnO2 formed from hausmannite and the majority of metal impurities remaining in the host hausmannite. Yet Co was associated with both hausmannite and the newly formed birnessite, whereas Ni was only found with hausmannite, indicating the strong sequestration of Co by Mn(II/III) and Mn(IV) mineral phases. This study highlights the significant impacts of metal impurities and pH on the stability of hausmannite and its transformation into birnessite, as well as the control of Mn-oxide minerals on the solubility and sequestration of transition metals in the environment. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

26 pages, 12936 KB  
Article
Heat Capacity and Thermodynamic Characteristics of Sodium and Potassium Nickelite-Manganites of Neodymium of NdNa2NiMnO5 and NdK2NiMnO5
by Shuga Bulatovna Kasenova, Zhenisgul Imangalievna Sagintaeva, Bulat Kunurovich Kasenov, Erbolat Ermekovich Kuanyshbekov, Aigul Tanirbergenovna Ordabaeva and Manara Amangeldievna Isabaeva
Appl. Sci. 2025, 15(12), 6751; https://doi.org/10.3390/app15126751 - 16 Jun 2025
Viewed by 375
Abstract
For the first time, neodymium nickel manganites NdNa2NiMnO5 and NdK2NiMnO5 were synthesized via the solid-state interaction method, and they crystallize in a cubic system. Using experimental dynamic calorimetry in the temperature range of 298.15–673 K, the temperature [...] Read more.
For the first time, neodymium nickel manganites NdNa2NiMnO5 and NdK2NiMnO5 were synthesized via the solid-state interaction method, and they crystallize in a cubic system. Using experimental dynamic calorimetry in the temperature range of 298.15–673 K, the temperature dependences of the heat capacity of NdNa2NiMnO5 and NdK2NiMnO5 were studied. At 423 K, both compounds exhibited anomalous heat capacity jumps on the C0p~f(T) dependency, likely corresponding to second-order phase transitions. Considering the phase transition temperatures, equations for the temperature dependence of heat capacity were derived, accurately describing the experimental data. Based on the experimental C0p(T) data and calculated S0 (298.15) values, temperature dependences of C0p(T) and the thermodynamic functions S0(T), H°(T)–H0(298.15), and Φxx(T) were determined for the studied compounds within the 298.15–673 K range. The analysis of electrophysical data confirmed the semiconducting and metallic nature of the conductivity, as well as identified the band gap and activation energy of conductivity. These results are valuable for the application of these materials in electronics and for controlling conductivity. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 777 KB  
Article
Kondo-like Behavior in Lightly Gd-Doped Manganite CaMnO3
by Tomislav Ivek, Matija Čulo, Nikolina Novosel, Maria Čebela, Bojana Laban, Uroš Čakar and Milena Rosić
Nanomaterials 2025, 15(11), 784; https://doi.org/10.3390/nano15110784 - 23 May 2025
Viewed by 614
Abstract
Manganese oxides (manganites) are among the most studied materials in condensed matter physics due to the famous colossal magnetoresistance and very rich phase diagrams characterized by strong competition between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating phases. One of the key questions that [...] Read more.
Manganese oxides (manganites) are among the most studied materials in condensed matter physics due to the famous colossal magnetoresistance and very rich phase diagrams characterized by strong competition between ferromagnetic (FM) metallic and antiferromagnetic (AFM) insulating phases. One of the key questions that remains open even after more than thirty years of intensive research is the exact conductivity mechanism in insulating as well as in metallic phases and its relation to the corresponding magnetic structure. In order to shed more light on this problem, here, we report magnetotransport measurements on sintered nanocrystalline samples of the very poorly explored manganites Ca1xGdxMnO3 with x=0.05 and x=0.10, in the temperature range 2–300 K, and in magnetic fields up to 16 T. Our results indicate that both compounds at low temperatures exhibit metallic behavior with a peculiar resistivity upturn and a large negative magnetoresistance. We argue that such behavior is consistent with a Kondo-like scattering on Gd impurities coupled with the percolation of FM metallic regions within insulating AFM matrix. Full article
(This article belongs to the Topic Magnetic Nanoparticles and Thin Films)
Show Figures

Graphical abstract

15 pages, 2377 KB  
Article
Data-Mining-Aided-Material Design of Doped LaMnO3 Perovskites with Higher Curie Temperature
by Lumin Tian, Wentan Wang, Xiaobo Ji, Zhibin Xu, Wenyan Zhou and Wencong Lu
Materials 2025, 18(11), 2437; https://doi.org/10.3390/ma18112437 - 23 May 2025
Viewed by 430
Abstract
The Curie temperature (Tc) of LaMnO3-based perovskites is one of the most important properties associated with their magnetic and spintronic applications. The search for new perovskites with even higher Tc is a challenging problem in material design. Through the systematic optimization [...] Read more.
The Curie temperature (Tc) of LaMnO3-based perovskites is one of the most important properties associated with their magnetic and spintronic applications. The search for new perovskites with even higher Tc is a challenging problem in material design. Through the systematic optimization of support vector regression (SVR) architecture, we establish a predictive framework for determining the Curie temperature (Tc) of doped LaMnO3 perovskites, leveraging fundamental atomic descriptors. The correlation coefficient (R) between the predicted and experimental Curie temperatures demonstrated high values of 0.9111 when evaluated through the leave-one-out cross-validation (LOOCV) approach, while maintaining a robust correlation of 0.8385 on the independent test set. The subsequent high-throughput screening of perovskite compounds exhibiting higher Curie temperatures was implemented via our online computation platform for materials data mining (OCPMDM), enabling the rapid identification of candidate materials through systematic screening protocols. The findings demonstrate that machine learning exhibits significant efficacy and cost-effectiveness in identifying lanthanum manganite perovskites with elevated Tc, as validated through comparative computational and empirical analyses. Furthermore, a web-based computational infrastructure is implemented for the global dissemination of the predictive framework, enabling the open-access deployment of the validated machine learning model. Full article
(This article belongs to the Special Issue Machine Learning for Materials Design)
Show Figures

Graphical abstract

16 pages, 6178 KB  
Article
Negative Temperature Coefficient of Resistance (NTCR) of Bismuth Manganite Nanoparticles: Polypyrrole Conductivity Enhancement
by Meti Bharathi, Sharanappa Chapi, Nagaraj Nandihalli and M. V. Murugendrappa
J. Compos. Sci. 2025, 9(5), 224; https://doi.org/10.3390/jcs9050224 - 30 Apr 2025
Viewed by 673
Abstract
Polypyrrole (PPy)-doped bismuth calcium manganite (BCM) nanocomposites were synthesized by chemical polymerization. The amorphous nature of the polypyrrole and the monoclinic crystal structure of the BCM particles (35–65 nm) were confirmed by various microstructural, X-ray powder, and spectroscopy techniques. The DC conductivity analysis [...] Read more.
Polypyrrole (PPy)-doped bismuth calcium manganite (BCM) nanocomposites were synthesized by chemical polymerization. The amorphous nature of the polypyrrole and the monoclinic crystal structure of the BCM particles (35–65 nm) were confirmed by various microstructural, X-ray powder, and spectroscopy techniques. The DC conductivity analysis via the correlated barrier-hopping (CBH) model and Mott’s variable-range hopping (MVRH) model showed that the nanocomposites exhibited ionic conduction. Activation energies, evaluated from the Arrhenius plots, showed that PPy/BCM-30 (30 wt.% of BCM) had the minimum value of 0.09 eV, indicating maximum conductivity and normal NTCR behavior, with resistance decreasing with temperature. The CBH model described the conduction process, and the AC conductivity measurements indicated that the conductivity was frequency-independent at lower frequencies but became dispersive and frequency-dependent at higher frequencies, conforming to Jonscher’s power law. The study revealed that the transport of electrical charge in the material followed the correlated barrier-hopping (CBH) model. These results demonstrate how promising PPy/BCM nanocomposites are for energy storage, sensors, and electronic materials. Full article
(This article belongs to the Special Issue Composite Materials Containing Conjugated and Conductive Polymers)
Show Figures

Figure 1

16 pages, 3806 KB  
Article
Tunable Magnetic Heating in La0.51Sr0.49MnO3 and La0.51Dy0.045Sr0.445MnO3 Nanoparticles: Frequency- and Amplitude-Dependent Behavior
by Mourad Smari, Monica Viorica Moisiuc, Mohammad Y. Al-Haik, Iordana Astefanoaei, Alexandru Stancu, Fedor Shelkovyi, Radel Gimaev, Julia Piashova, Vladimir Zverev and Yousef Haik
Nanomaterials 2025, 15(9), 642; https://doi.org/10.3390/nano15090642 - 23 Apr 2025
Cited by 1 | Viewed by 546
Abstract
The use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-dependent magnetic heating [...] Read more.
The use of perovskite manganite nanoparticles in magnetic hyperthermia has attracted significant attention due to their tunable magnetic properties and high specific absorption rate (SAR). In this work, we present a combined experimental and theoretical investigation of the frequency- and amplitude-dependent magnetic heating behavior of La0.51Sr0.49MnO3 (LSMO) and Dy-doped La0.51Dy0.045Sr0.445MnO3 (DLSMO) nanoparticles. The nanoparticles were synthesized via the sol–gel method and characterized by XRD and SEM, while SAR values were experimentally evaluated under varying magnetic field strengths (60–120 Oe) and frequencies (150–300 kHz). In parallel, theoretical modeling based on Néel and Brownian relaxation mechanisms was employed to predict SAR behavior as a function of particle size, magnetic anisotropy, and fluid viscosity. The results reveal that Dy doping enhances magnetic anisotropy, which modifies the relaxation dynamics and leads to a reduction in SAR. The model identifies the optimal nanoparticle size (~18–20 nm) and ferrofluid viscosity to maximize heating efficiency. This combined approach provides a comprehensive framework for designing and optimizing perovskite-based nanoparticles for magnetic hyperthermia applications. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

16 pages, 5813 KB  
Article
Unlocking the Potential of Mg-Doped Rare Earth Manganites: Machine Learning-Guided Synthesis and Insights into Structural and Optical Properties
by Chikh Lakhdar Ben Messaoud, Zoulikha Hebboul, Ibn Khaldoun Lefkaier, Ahmed Draoui, Ahmed Lamine Ben Kamri, Souraya Goumri-Said, Mohammed Benali Kanoun, Romualdo S. Silva, José A. Alonso and Sophie Laurent
Nanomaterials 2025, 15(7), 561; https://doi.org/10.3390/nano15070561 - 6 Apr 2025
Viewed by 914
Abstract
By leveraging machine learning insights from prior perovskite studies and employing the sol–gel method, we successfully synthesized two novel perovskite nanoceramics—M0.5 Ca0.25Mg0.25MnO3 (M = La, Pr)—as multifunctional nanomaterials. X-ray diffraction (XRD) confirmed their orthorhombic Pnma crystal structure. [...] Read more.
By leveraging machine learning insights from prior perovskite studies and employing the sol–gel method, we successfully synthesized two novel perovskite nanoceramics—M0.5 Ca0.25Mg0.25MnO3 (M = La, Pr)—as multifunctional nanomaterials. X-ray diffraction (XRD) confirmed their orthorhombic Pnma crystal structure. The Williamson–Hall method estimated average particle sizes of 59.5 nm for PCMMO and 21.8 nm for LCMMO, while the Scherrer method provided corresponding values of 32.59 nm and 20.43 nm. SEM, UV-Vis, and FTIR analyses validated the chemical composition, homogeneity, and optical properties of the synthesized compounds, revealing band gaps of 3.25 eV (LCMMO) and 3.71 eV (PCMMO) with Urbach energies of 0.29 eV and 0.26 eV, respectively. These findings provide valuable insights into the structural and optical properties of LCMMO and PCMMO, highlighting their potential as multifunctional materials for advanced device applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 6962 KB  
Article
Magnetic Field Meter Based on CMR-B-Scalar Sensor for Measurement of Microsecond Duration Magnetic Field Pulses
by Pavel Piatrou, Voitech Stankevic, Nerija Zurauskiene, Skirmantas Kersulis, Mindaugas Viliunas, Algirdas Baskys, Martynas Sapurov, Vytautas Bleizgys, Darius Antonovic, Valentina Plausinaitiene, Martynas Skapas, Vilius Vertelis and Borisas Levitas
Sensors 2025, 25(6), 1640; https://doi.org/10.3390/s25061640 - 7 Mar 2025
Viewed by 855
Abstract
This study presents a system for precisely measuring pulsed magnetic fields with high amplitude and microsecond duration with minimal interference. The system comprises a probe with an advanced magnetic field sensor and a measurement unit for signal conversion, analysis, and digitization. The sensor [...] Read more.
This study presents a system for precisely measuring pulsed magnetic fields with high amplitude and microsecond duration with minimal interference. The system comprises a probe with an advanced magnetic field sensor and a measurement unit for signal conversion, analysis, and digitization. The sensor uses a thin nanostructured manganite La-Sr-Mn-O film exhibiting colossal magnetoresistance, which enables precise magnetic field measurement independent of its orientation. Films with different compositions were optimized and tested in pulsed magnetic fields. The measurement unit includes a pulsed voltage generator, an ADC, a microcontroller, and an amplifier unit. Two versions of the measurement unit were developed: one with a separate amplifier unit configured for the sensor positioned more than 1 m away from the measurement unit, and the other with an integrated amplifier for the sensor positioned at a distance of less than 0.5 m. A bipolar pulsed voltage supplying the sensor minimized the parasitic effects of the electromotive force induced in the probe circuit. The data were transmitted via a fiber optic cable to a PC equipped with a special software for processing and recording. Tests with 20–30 μs pulses up to 15 T confirmed the effectiveness of the system for measuring high pulsed magnetic fields. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

14 pages, 2568 KB  
Article
Charge-Ordering and Magnetic Transitions in Nanocrystalline Half-Doped Rare Earth Manganite Ho0.5Ca0.5MnO3
by Giuseppe Muscas, Francesco Congiu, Alessandra Geddo Lehmann and Giorgio Concas
Nanomaterials 2025, 15(3), 203; https://doi.org/10.3390/nano15030203 - 27 Jan 2025
Viewed by 855
Abstract
This work investigates nanostructured Ho0.5Ca0.5MnO3, considered a model system of the Ln0.5Ca0.5MnO3 series of manganites with perovskite structures featuring small lanthanide (Ln) ions half-substituted by Ca ions. Here, we propose a modified [...] Read more.
This work investigates nanostructured Ho0.5Ca0.5MnO3, considered a model system of the Ln0.5Ca0.5MnO3 series of manganites with perovskite structures featuring small lanthanide (Ln) ions half-substituted by Ca ions. Here, we propose a modified hybrid sol–gel–solid-state approach to produce multiple samples with a single batch, obtaining very high crystalline quality and ensuring the same chemical composition, with an average particle size in the range 39–135 nm modulated on-demand by a controlled calcination process. Our findings evidence that, provided the crystalline structure is preserved, the charge-ordering transition can be observed even at the nanoscale. Additionally, this research explores the presence of glassy phenomena, which are commonly seen in this class of materials, to enhance our understanding beyond simplistic qualitative observations. Comprehensive characterization using DC and AC magnetometry, along with relaxation and aging measurements, reveals that the complex dynamics typical of glassy phenomena emerge only at the nanoscale and are not visible in the bulk counterpart. Nevertheless, the analysis confirms that even the sample with the smallest nanoparticles cannot be intrinsically classified as canonical spin glass. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

23 pages, 3584 KB  
Review
Recent Advances of Colossal Magnetoresistance in Versatile La-Ca-Mn-O Material-Based Films
by Navjyoti Boora, Rafiq Ahmad, Shafaque Rahman, Nguyen Quoc Dung, Akil Ahmad, Mohammed B. Alshammari and Byeong-Il Lee
Magnetochemistry 2025, 11(1), 5; https://doi.org/10.3390/magnetochemistry11010005 - 16 Jan 2025
Cited by 3 | Viewed by 2240
Abstract
Hole-doped manganese oxides exhibit a gigantic negative magnetoresistance, referred to as colossal magnetoresistance (CMR), owing to the interplay between double-exchange (DE) ferromagnetic metal and charge-ordered antiferromagnetic insulator/semiconductor phases. Magnetoresistive manganites display a sharp resistivity drop at the metal–insulator transition temperature (TMI). [...] Read more.
Hole-doped manganese oxides exhibit a gigantic negative magnetoresistance, referred to as colossal magnetoresistance (CMR), owing to the interplay between double-exchange (DE) ferromagnetic metal and charge-ordered antiferromagnetic insulator/semiconductor phases. Magnetoresistive manganites display a sharp resistivity drop at the metal–insulator transition temperature (TMI). CMR effects in perovskite manganites, specifically La0.67Ca0.33MnO3 (La-Ca-Mn-O or LCMO), have been extensively investigated. This review paper provides a comprehensive introduction to the crystallographic structure, as well as the electronic and magnetic properties, of LCMO films. Furthermore, we delve into a detailed discussion of the effects of epitaxial strain induced by different substrates on LCMO films. Additionally, we review the early findings and diverse applications of LCMO thin films. Finally, we outline potential challenges and prospects for achieving superior LCMO film properties. Full article
(This article belongs to the Special Issue Magnetic Materials, Thin Films and Nanostructures—2nd Edition)
Show Figures

Figure 1

23 pages, 6021 KB  
Article
Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20)
by Mansour Mohamed, A. Sedky, Abdullah S. Alshammari, Z. R. Khan, M. Bouzidi and Marzook S. Alshammari
Crystals 2024, 14(11), 981; https://doi.org/10.3390/cryst14110981 - 14 Nov 2024
Cited by 1 | Viewed by 1138
Abstract
Here, we report the structural, optical, magnetic, and dielectric properties of La0.67Sr0.33Mn1-x-yZnxCoyO3 manganite with various x and y values (0.025 < x + y < 0.20). The pure and co-doped samples are [...] Read more.
Here, we report the structural, optical, magnetic, and dielectric properties of La0.67Sr0.33Mn1-x-yZnxCoyO3 manganite with various x and y values (0.025 < x + y < 0.20). The pure and co-doped samples are called S1, S2, S3, S4, and S5, with (x + y) = 0.00, 0.025, 0.05, 0.10, and 0.20, respectively. The XRD confirmed a monoclinic structure for all the samples, such that the unit cell volume and the size of the crystallite and grain were generally decreased by increasing the co-doping content (x + y). The opposite was true for the behaviors of the porosity, the Debye temperature, and the elastic modulus. The energy gap Eg was 3.85 eV for S1, but it decreased to 3.82, 3.75, and 3.65 eV for S2, S5, and S3. Meanwhile, it increased and went to its maximum value of 3.95 eV for S4. The values of the single and dispersion energies (Eo, Ed) were 9.55 and 41.88 eV for S1, but they were decreased by co-doping. The samples exhibited paramagnetic behaviors at 300 K, but they showed ferromagnetic behaviors at 10 K. For both temperatures, the saturated magnetizations (Ms) were increased by increasing the co-doping content and they reached their maximum values of 1.27 and 15.08 (emu/g) for S4. At 300 K, the co-doping changed the magnetic material from hard to soft, but it changed from soft to hard at 10 K. In field cooling (FC), the samples showed diamagnetic regime behavior (M < 0) below 80 K, but this behavior was completely absent for zero field cooling (ZFC). In parallel, co-doping of up to 0.10 (S4) decreased the dielectric constant, AC conductivity, and effective capacitance, whereas the electric modulus, impedance, and bulk resistance were increased. The analysis of the electric modulus showed the presence of relaxation peaks for all the samples. These outcomes show a good correlation between the different properties and indicate that co-doping of up to 0.10 of Zn and Co in place of Mn in La:113 compounds is beneficial for elastic deformation, optoelectronics, Li-batteries, and spintronic devices. Full article
(This article belongs to the Special Issue Crystal Structures and Magnetic Interactions of Magnetic Materials)
Show Figures

Figure 1

23 pages, 7087 KB  
Article
An Unprecedented Tridentate-Bridging Coordination Mode of Permanganate Ions: The Synthesis of an Anionic Coordination Polymer—[CoIII(NH3)6]n[(K(κ1-Cl)22,2′,2″-(κ3-O,O′,O″-MnO4)2)n]—Containing Potassium Central Ion and Chlorido and Permanganato Ligands
by László Kótai, Kende Attila Béres, Attila Farkas, Berta Barta Holló, Vladimir M. Petruševski, Zoltán Homonnay, László Trif, Fernanda Paiva Franguelli and Laura Bereczki
Molecules 2024, 29(18), 4443; https://doi.org/10.3390/molecules29184443 - 19 Sep 2024
Cited by 1 | Viewed by 1898
Abstract
A unique compound (compound 1) with structural features including an unprecedented tridentate-bridging coordination mode of permanganate ions and an eight-coordinated (rhombohedral) κ1-chlorido and tridentate permanganato ligand in a potassium complex containing coordination polymer (CoIII(NH3)6] [...] Read more.
A unique compound (compound 1) with structural features including an unprecedented tridentate-bridging coordination mode of permanganate ions and an eight-coordinated (rhombohedral) κ1-chlorido and tridentate permanganato ligand in a potassium complex containing coordination polymer (CoIII(NH3)6]n[(K(κ1-Cl)22,2′,2″-(κ3-O,O′,O″-MnO4)2)n) with isolated regular octahedral hexamminecobalt(III) cation was synthesized with a yield of >90%. The structure was found to be stabilized by mono and bifurcated N-H∙∙∙Cl and N-H∙∙∙O (bridging and non-bridging) hydrogen bonds. Detailed spectroscopic (IR, far-IR, and Raman) studies and correlation analysis were performed to assign all vibrational modes. The existence of a resonance Raman effect of compound 1 was also observed. The thermal decomposition products at 500 °C were found to be tetragonal nano-CoMn2O4 spinel with 19–25 nm crystallite size and KCl. The decomposition intermediates formed in toluene at 110 °C showed the presence of a potassium- and chloride-containing intermediates combined into KCl during aqueous leaching, together with the formation of cobalt(II) nitrate hexahydrate. This means that the CoIII–CoII redox reaction and the complete decomposition of the permanganate ions occurred in the first decomposition step, with a partial oxidation of ammonia into nitrate ions. Full article
Show Figures

Figure 1

23 pages, 1856 KB  
Review
Charge Transport in the Presence of Correlations and Disorder: Organic Conductors and Manganites
by Emil Tafra, Mario Basletić, Tomislav Ivek, Marko Kuveždić, Nikolina Novosel, Silvia Tomić, Bojana Korin-Hamzić and Matija Čulo
Materials 2024, 17(7), 1524; https://doi.org/10.3390/ma17071524 - 27 Mar 2024
Viewed by 1517
Abstract
One of the most fascinating aspects of condensed matter is its ability to conduct electricity, which is particularly pronounced in conventional metals such as copper or silver. Such behavior stems from a strong tendency of valence electrons to delocalize in a periodic potential [...] Read more.
One of the most fascinating aspects of condensed matter is its ability to conduct electricity, which is particularly pronounced in conventional metals such as copper or silver. Such behavior stems from a strong tendency of valence electrons to delocalize in a periodic potential created by ions in the crystal lattice of a given material. In many advanced materials, however, this basic delocalization process of the valence electrons competes with various processes that tend to localize these very same valence electrons, thus driving the insulating behavior. The two such most important processes are the Mott localization, driven by strong correlation effects among the valence electrons, and the Anderson localization, driven by the interaction of the valence electrons with a strong disorder potential. These two localization processes are almost exclusively considered separately from both an experimental and a theoretical standpoint. Here, we offer an overview of our long-standing research on selected organic conductors and manganites, that clearly show the presence of both these localization processes. We discuss these results within existing theories of Mott–Anderson localization and argue that such behavior could be a common feature of many advanced materials. Full article
(This article belongs to the Special Issue New Insights into Metal–Insulator Transitions)
Show Figures

Figure 1

11 pages, 2595 KB  
Article
Nanocrystalline FeMnO3 Powder as Catalyst for Combustion of Volatile Organic Compounds
by Corneliu Doroftei
Nanomaterials 2024, 14(6), 521; https://doi.org/10.3390/nano14060521 - 14 Mar 2024
Cited by 3 | Viewed by 1488
Abstract
The paper shows the obtaining of nanocrystalline iron manganite (FeMnO3) powders and their investigation in terms of catalytic properties for a series of volatile organic compounds. The catalyst properties were tested in the catalytic combustion of air-diluted vapors of ethanol, methanol, [...] Read more.
The paper shows the obtaining of nanocrystalline iron manganite (FeMnO3) powders and their investigation in terms of catalytic properties for a series of volatile organic compounds. The catalyst properties were tested in the catalytic combustion of air-diluted vapors of ethanol, methanol, toluene and xylene at moderate temperatures (50–550 °C). Catalytic combustion of the alcohols starts at temperatures between 180 °C and 230 °C. In the case of ethanol vapors, the conversion starts at 230 °C and increases rapidly reaching a value of around 97% at 300 °C. For temperatures higher than 300 °C, the degree of conversion is kept at the same value. In the case of methanol vapors, the conversion starts at a slightly lower temperature (180 °C), and the degree of conversion reaches the value of 97% at a higher temperature (440 °C) than in the case of ethanol, and it also remains constant as the temperature increases. Catalytic combustion of the hydrocarbons starts at lower temperatures (around 50 °C), the degree of conversion is generally lower, and it increases proportionally with the temperature, with the exception of toluene, which shows an intermediate behavior, reaching values of over 97% at 430 °C. The studied iron manganite can be recommended to achieve catalysts that operate at moderate temperatures for the combustion of some alcohols and, especially, ethanol. The performance of this catalyst with regard to ethanol is close to that of a catalyst that uses noble metals in its composition. Full article
(This article belongs to the Special Issue Advances in Nano-Enhanced Thermal Functional Materials)
Show Figures

Figure 1

11 pages, 3193 KB  
Article
Revealing the Impact of Ga and Y Doping on Thermal and Electrical Behavior of LaMnO3 Ceramic Materials
by Paulina Vlazan, Catalin Nicolae Marin, Iosif Malaescu, Gabriela Vlase, Titus Vlase, Maria Poienar and Paula Sfirloaga
Appl. Sci. 2024, 14(4), 1546; https://doi.org/10.3390/app14041546 - 15 Feb 2024
Cited by 3 | Viewed by 1589
Abstract
The synthesis, thermal behavior and electrical properties of a series of undoped and 1% Ga- or Y-doped lanthanum manganite compounds, obtained via the sol–gel technique, are reported. Scanning electron microscopy (SEM/EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses were performed [...] Read more.
The synthesis, thermal behavior and electrical properties of a series of undoped and 1% Ga- or Y-doped lanthanum manganite compounds, obtained via the sol–gel technique, are reported. Scanning electron microscopy (SEM/EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses were performed on all synthesized samples. The XRD results confirmed a good crystallinity for all studied samples, and a change in the crystal structure of Ga- or Y-doped lanthanum manganite (Pm-3m space group) was observed compared to the pristine sample (R-3c space group). Thermal analysis highlighted a different behavior of the doped samples compared to the undoped sample, observed by the different mass losses in the analyzed temperature range. For these materials, it is shown for the first time that the static electrical conductivity, σDC, of Ga- or Y-doped LaMnO3 compounds increases compared to the σDC of the pristine sample, and the thermal activation energy of the process of electrical conduction, EA,cond, increases linearly with the temperature for all three studied samples. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

Back to TopTop