Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,830)

Search Parameters:
Keywords = marine resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5270 KB  
Article
Spatiotemporal Modeling of the Total Nitrogen Concentration Fields in a Semi-Enclosed Water Body Using a TCN-LSTM-Hybrid Model
by Xiaohui Yan, Hongyun Cheng, Shenshen Chi, Sidi Liu and Zuhao Zhu
Processes 2025, 13(10), 3262; https://doi.org/10.3390/pr13103262 (registering DOI) - 13 Oct 2025
Abstract
In the field of water process engineering, accurately predicting the total nitrogen (TN) concentration distribution in the Semi-Enclosed Bay area is of great importance for water quality assessment, pollution control, and scientific management. Due to the coupling of multiple influencing factors, the pollution [...] Read more.
In the field of water process engineering, accurately predicting the total nitrogen (TN) concentration distribution in the Semi-Enclosed Bay area is of great importance for water quality assessment, pollution control, and scientific management. Due to the coupling of multiple influencing factors, the pollution process is complex, and traditional monitoring methods struggle to achieve large-scale, long-term real-time observation. Although numerical simulations can reproduce TN transport processes, they are computationally expensive and have low prediction efficiency. To address this, this study develops a deep learning hybrid model that integrates a Temporal Convolutional Network (TCN) and a Long Short-Term Memory (LSTM) network, referred to as the TCN-LSTM-Hybrid Model, to predict the spatiotemporal distribution of TN concentration fields in Shenzhen Bay. Comparative experiments show that this model outperforms traditional models such as TCN, LSTM, GRU, and MLP in terms of prediction accuracy and spatial generalization, offering higher computational efficiency and breaking through the limitations of “point-based prediction” by achieving “field-based prediction,” thereby providing a new path for pollutant simulation in complex ocean environments, supporting more informed decision making in ocean and coastal management. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 23104 KB  
Article
MSAFNet: Multi-Modal Marine Aquaculture Segmentation via Spatial–Frequency Adaptive Fusion
by Guolong Wu and Yimin Lu
Remote Sens. 2025, 17(20), 3425; https://doi.org/10.3390/rs17203425 (registering DOI) - 13 Oct 2025
Abstract
Accurate mapping of marine aquaculture areas is critical for environmental management and sustainable development for marine ecosystem protection and sustainable resource utilization. However, remote sensing imagery based on single-sensor modalities has inherent limitations when extracting aquaculture zones in complex marine environments. To address [...] Read more.
Accurate mapping of marine aquaculture areas is critical for environmental management and sustainable development for marine ecosystem protection and sustainable resource utilization. However, remote sensing imagery based on single-sensor modalities has inherent limitations when extracting aquaculture zones in complex marine environments. To address this challenge, we constructed a multi-modal dataset from five Chinese coastal regions using cloud detection methods and developed Multi-modal Spatial–Frequency Adaptive Fusion Network (MSAFNet) for optical-radar data fusion. MSAFNet employs a dual-path architecture utilizing a Multi-scale Dual-path Feature Module (MDFM) that combines CNN and Transformer capabilities to extract multi-scale features. Additionally, it implements a Dynamic Frequency Domain Adaptive Fusion Module (DFAFM) to achieve deep integration of multi-modal features in both spatial and frequency domains, effectively leveraging the complementary advantages of different sensor data. Results demonstrate that MSAFNet achieves 76.93% mean intersection over union (mIoU), 86.96% mean F1 score (mF1), and 93.26% mean Kappa coefficient (mKappa) in extracting floating raft aquaculture (FRA) and cage aquaculture (CA), significantly outperforming existing methods. Applied to China’s coastal waters, the model generated 2020 nearshore aquaculture distribution maps, demonstrating its generalization capability and practical value in complex marine environments. This approach provides reliable technical support for marine resource management and ecological monitoring. Full article
Show Figures

Figure 1

26 pages, 5245 KB  
Article
Sedimentary Environment and Organic Matter Enrichment of the First Member in the Upper Triassic Xujiahe Formation, Southeastern Sichuan Basin
by Hao Huang, Zhongyun Chen, Tingshan Zhang, Xi Zhang and Jingxuan Zhang
Minerals 2025, 15(10), 1071; https://doi.org/10.3390/min15101071 (registering DOI) - 13 Oct 2025
Abstract
The Xujiahe Formation (FM) is a significant source rock layer in the Sichuan Basin. In recent years, a growing number of scholars believe that the shale gas potential of the Xujiahe Formation is equally substantial, with the first member of the formation being [...] Read more.
The Xujiahe Formation (FM) is a significant source rock layer in the Sichuan Basin. In recent years, a growing number of scholars believe that the shale gas potential of the Xujiahe Formation is equally substantial, with the first member of the formation being the richest resource. The deposition of Member (Mbr) 1 of Xujiahe FM represents the first and most extensive transgression event within the entire Xujiahe Formation. This study investigates the sedimentary environment and organic matter (OM) enrichment mechanisms of the dark mud shales in the Mbr1 of Xujiahe FM on the southeastern margin of the Sichuan Basin, utilizing methods such as elemental geochemistry and organic geochemistry analyses. The results indicate that these dark mud shales possess a relatively high OM abundance, averaging 2.20% and reaching a maximum of 6.22%. The OM is primarily Type II2 to Type III. Furthermore, the paleoclimate during the Mbr1 period in the study area was warm and humid with lush aquatic vegetation. Intense weathering and ample precipitation transported large amounts of nutrients into the lacustrine/marine basin, promoting the growth and reproduction of algae and terrestrial plants. Correlation analysis between the Total Organic Carbon (TOC) content and various geochemical proxies in the Mbr1 mud shales suggests that OM enrichment in the study area was primarily controlled by the climate and sedimentation rate; substantial OM accumulation occurred only with abundant terrigenous OM input and a relatively high sedimentation rate. Redox conditions, primarily productivity, and terrigenous detrital input acted as secondary factors, collectively modulating OM enrichment. Event-driven transgressions also played an important role in creating conditions favorable for OM preservation. Synthesizing the influence of these multiple factors on OM enrichment, this study proposes two distinct composite models for OM enrichment, dominated by climate and sedimentation rate. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

24 pages, 14107 KB  
Article
Optimization of EPA-Nattokinase Nanoemulsions Processed by High-Pressure Homogenization to Enhance Stability and Thrombolytic Efficacy
by Jiaxing Wang, Shanshan Xu, Liang Chen, Pingan Zheng, Ru Song, Yan Song, Jipeng Sun and Bin Zhang
Foods 2025, 14(20), 3482; https://doi.org/10.3390/foods14203482 (registering DOI) - 12 Oct 2025
Abstract
This study leverages nanoemulsion technology to engineer a novel liquid formulation combining Eicosapentaenoic acid (EPA) and Nattokinase (NK), aiming to enhance their application potential in functional foods. Both EPA and NK are well recognized for their pronounced anti-thrombotic, anti-inflammatory, and lipid-lowering properties, which [...] Read more.
This study leverages nanoemulsion technology to engineer a novel liquid formulation combining Eicosapentaenoic acid (EPA) and Nattokinase (NK), aiming to enhance their application potential in functional foods. Both EPA and NK are well recognized for their pronounced anti-thrombotic, anti-inflammatory, and lipid-lowering properties, which are critical for the prevention and management of cardiovascular diseases. However, their practical application in functional foods is hampered by inadequate gastrointestinal stability and suboptimal bioavailability. Here, an EPA-NK nanoemulsion was fabricated using high-pressure homogenization technology. We systematically evaluated its environmental stability, anti-thrombotic activity, and intervention efficacy against carrageenan-induced black-tail thrombosis. The results demonstrated that the nanoemulsion not only enhanced the potential for oral bioavailability based on in vitro stability and preliminary in vivo efficacy trends of EPA and NK but also notably potentiated their synergistic anti-thrombotic efficacy, thereby providing robust theoretical and technical support for the development of next-generation health-promoting functional foods targeting thrombotic disorders. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 7495 KB  
Article
Potential Impacts of Climate Change on South China Sea Wind Energy Resources Under CMIP6 Future Climate Projections
by Yue Zhuo and Bo Hong
Energies 2025, 18(20), 5370; https://doi.org/10.3390/en18205370 (registering DOI) - 12 Oct 2025
Abstract
Wind is an important renewable energy source, and even minor variations in wind speed will significantly impact wind power generation. The objective of this study was to systematically assess the impacts of climate change on wind energy resources in the South China Sea [...] Read more.
Wind is an important renewable energy source, and even minor variations in wind speed will significantly impact wind power generation. The objective of this study was to systematically assess the impacts of climate change on wind energy resources in the South China Sea (SCS) under future climate projections. To achieve this, we employed a multi-model ensemble approach based on Coupled Model Intercomparison Project Phase 6 (CMIP6) data under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results demonstrated that, in comparison with scatterometer wind data, the CMIP6 historical results (1995–2014) showed good performance in capturing the spatiotemporal distribution of wind power density (WPD) in the SCS. There were regional discrepancies in the central SCS due to the complex monsoon-driven wind dynamics. Future projections revealed an overall increase in annual mean wind power density (WPD) across the entire SCS by the mid-21st century (2046–2065) and late 21st century (2080–2099). The seasonal analyses indicated significant WPD increases in summer, especially in the northern SCS and the region adjacent to the Kalimantan strait. The increase in summer (>40 × 10−4 m/s/year under SSP5-8.5) is about triple that in winter. In the late 21st century, an increase in WPD exceeding 10% can be generally anticipated under the SSP2-4.5 and SSP5-8.5 scenarios in all seasons. The extreme wind in the northern and central SCS will further increase by 5% under the three scenarios, which will add an extra extreme load to wind turbines and related marine facilities. These assessments are essential for wind farm planning and long-term energy production evaluations in the SCS. Based on the findings in this study, specific areas of concern can be targeted to conduct localized downscaling analyses and risk assessments. Full article
Show Figures

Figure 1

17 pages, 3460 KB  
Article
Integrating Pumped Hydro Storage into Zero Discharge Strategy for Wastewater: The Alicante Case Study
by Miguel Ángel Bofill, Francisco-Javier Sánchez-Romero, Francisco Zapata-Raboso, Helena M. Ramos and Modesto Pérez-Sánchez
Appl. Sci. 2025, 15(20), 10953; https://doi.org/10.3390/app152010953 - 12 Oct 2025
Abstract
The use of reclaimed water is crucial to prevent pollution from wastewater discharges and mitigate the water deficit faced by irrigation districts or other non-potable water users. Therefore, the zero-discharge strategy represents a significant challenge for coastal cities affected by marine pollution from [...] Read more.
The use of reclaimed water is crucial to prevent pollution from wastewater discharges and mitigate the water deficit faced by irrigation districts or other non-potable water users. Therefore, the zero-discharge strategy represents a significant challenge for coastal cities affected by marine pollution from effluents. In regions such as the Mediterranean arc, agricultural areas located near these cities are increasingly exposed to reduced water allocations or rising irrigation demands due to the impacts of climate change. To address this dual challenge, a circular system is proposed through the implementation of hybrid treatment technologies that enable zero wastewater discharge into the sea. This approach would contribute up to 30 hm3 of reclaimed water annually for irrigation, covering approximately 27,000 hectares of cropland in the province of Alicante. The proposed system integrates advanced techniques, such as reverse osmosis, to ensure irrigation water quality, while also considering partial blending strategies to optimize resource use. Additionally, constructed wetlands are incorporated to regulate and treat the reject streams produced by these processes, minimizing their environmental impact. This combined strategy enhances water reuse efficiency, strengthens agricultural resilience, and provides a sustainable model for managing water resources in coastal Mediterranean regions. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

17 pages, 3822 KB  
Article
Ecological Suitability Assessment of Larimichthys crocea in Coastal Waters of the East China Sea and Yellow Sea Based on MaxEnt Modeling
by Shuwen Yu, Wei Meng, Hongliang Zhang, Hui Ge, Lei Wu, Yao Qu, Qiuhong Zhang and Yongdong Zhou
J. Mar. Sci. Eng. 2025, 13(10), 1945; https://doi.org/10.3390/jmse13101945 (registering DOI) - 11 Oct 2025
Viewed by 42
Abstract
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources [...] Read more.
The Larimichthys crocea represents a critically important economic marine species in China’s East Yellow Sea. However, its populations have experienced significant decline due to overexploitation. Despite implemented conservation measures—including stock enhancement, spawning ground protection, and seasonal fishing moratoria—the recovery of yellow croaker resources remains markedly slow. To address this, our study employed the Maximum Entropy (MaxEnt) model to evaluate and characterize the habitat selection patterns of Larimichthys crocea, thereby providing a theoretical foundation for scientifically informed stock enhancement and resource recovery strategies. Species occurrence data were compiled from field surveys conducted during April and November (2019–2023), supplemented with records from the GBIF database and peer-reviewed literature. Concurrent environmental variables, including primary productivity, current velocity, depth, temperature, salinity, silicate, nitrate, phosphate, and pH, were obtained from the Copernicus and NOAA databases. After rigorous screening, 136 distribution points (April) and 369 points (November) were retained for analysis. The model performance was robust, with an AUC (Area Under the Curve) value of 0.935 for April (2019–2023) and 0.905 for November (2019–2023), indicating excellent predictive accuracy (AUC > 0.9). April (2019–2023): Nitrate, salinity, phosphate, and silicate were identified as the primary environmental factors influencing habitat suitability. November (2019–2023): Silicate, salinity, nitrate, and primary productivity emerged as the dominant drivers. Spatially, Larimichthys crocea exhibited high-density distributions in offshore regions of Zhejiang and Jiangsu, particularly near the Yangtze River estuary. Populations were also associated with island-reef systems, forming continuous distributions along Zhejiang’s offshore waters. In Jiangsu, aggregations were concentrated between Nantong and Yancheng. This study delineates habitat suitability zones for Larimichthys crocea, offering a scientific basis for optimizing stock enhancement programs, designing targeted conservation measures, and establishing marine protected areas. Our findings enable policymakers to develop sustainable fisheries management strategies, ensuring the long-term viability of this ecologically and economically vital species. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

16 pages, 4595 KB  
Article
AlphaFold-Guided Semi-Rational Engineering of an (R)-Amine Transaminase for Green Synthesis of Chiral Amines
by Xiaole Yang, Xia Tian, Ruizhou Tang, Jiahuan Li, Xuning Zhang and Tingting Li
Biomolecules 2025, 15(10), 1435; https://doi.org/10.3390/biom15101435 - 10 Oct 2025
Viewed by 94
Abstract
Chiral amines are vital structural motifs in pharmaceuticals and agrochemicals, where enantiomeric purity governs bioactivity and environmental behavior. We identified a novel (R)-selective amine transaminase (MwoAT) from Mycobacterium sp. via genome mining, which exhibits activity toward the synthesis of the chiral [...] Read more.
Chiral amines are vital structural motifs in pharmaceuticals and agrochemicals, where enantiomeric purity governs bioactivity and environmental behavior. We identified a novel (R)-selective amine transaminase (MwoAT) from Mycobacterium sp. via genome mining, which exhibits activity toward the synthesis of the chiral amine (R)-1-methyl-3-phenylpropylamine. The enzyme displayed optimal activity at pH 7.0 and 40 °C, with high thermostability and solvent tolerance. Using an AlphaFold3-guided semi-rational engineering strategy integrating molecular docking, alanine scanning, and saturation mutagenesis, residue L175 was pinpointed as critical for substrate binding. The resulting L175G variant exhibited a 2.1-fold increase in catalytic efficiency (kcat/Km) and improved thermal stability. Applied to the asymmetric synthesis of (R)-1-methyl-3-phenylpropylamine—a precursor for the antihypertensive drug dilevalol and potential scaffold for crop protection agents—the mutant achieved 26.4% conversion with ≥99.9% ee. The enzyme also accepted several ketones relevant to agrochemical synthesis, underscoring its versatility. This work delivers an engineered biocatalyst for sustainable chiral amine production and demonstrates an AI-assisted protein engineering framework applicable to both medicinal and agricultural chemistry. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

13 pages, 1259 KB  
Article
Effects of Time Interval and Speed Increments on the Critical Swimming Speed of Litopenaeus vannamei
by Yan Duan, Mengyao Li, Ming Sun, Aiyong Wang, Jie Liu and Xiumei Zhang
Fishes 2025, 10(10), 511; https://doi.org/10.3390/fishes10100511 - 10 Oct 2025
Viewed by 151
Abstract
Swimming ability is an important means for shrimp to survive in a water environment. To investigate the effects of different body lengths (L1: 6.5 ± 0.25 cm, L2: 8.8 ± 0.16 cm, and L3: 11.5 ± 0.28 [...] Read more.
Swimming ability is an important means for shrimp to survive in a water environment. To investigate the effects of different body lengths (L1: 6.5 ± 0.25 cm, L2: 8.8 ± 0.16 cm, and L3: 11.5 ± 0.28 cm) and different measurement methods on the measured critical swimming speeds (Ucrit), this study used experimental ecology methods to determine the Ucrit of three body length (BL) groups of whiteleg shrimp (Litopenaeus vannamei) at different time intervals (10, 20, 30, 40, and 50 min) and speed increments (1/2 BL s−1, 3/4 BL s−1, and BL s−1) in a biological swimming channel. The results showed that the time interval and speed increment significantly affected the Ucrit. In the small-body-length group (L1), the Ucrit of the shrimp decreased and then increased as the time interval increased, with no significant difference between time intervals or velocity increments. In the medium-body-length group (L2), at the speed increment of 1/2 BL s−1, the Ucrit of the shrimp under the time interval < 40 min was significantly greater than that in the other treatment groups. At the speed increment of 1/2 BL s−1, the Ucrit of the shrimp decreased as the time interval increased. At the speed increment of 3/4 BL s−1, the Ucrit of the shrimp showed a trend of decreasing and then increasing with increasing time interval, and at a high-speed increment (BL s−1), the time interval had no significant effect on Ucrit. In the large-body-length group (L3), at the speed increment of 1/2 BL s−1, the Ucrit of the shrimp under the time interval < 30 min was significantly higher than that in the other treatment groups. The effect of the time interval on Ucrit was not significant at high-speed increments, and Ucrit decreased with increasing time interval only at the speed increment of 1/2 BL s−1. This study showed that, in the small-body-length group, the time increment has a more significant effect on the critical swimming speed, and, as the body length increases, both the time increment and velocity increment affect the critical swimming speed. When the time interval is 20 min and the speed increment is 1/2 BL s−1, the measured Ucrit is the closest to the appropriate value. Full article
(This article belongs to the Special Issue Biology and Culture of Marine Invertebrates)
Show Figures

Figure 1

33 pages, 7644 KB  
Article
Modeling and Experimental Validation of a Bionic Underwater Robot with Undulating and Flapping Composite Propulsion
by Haisen Zeng, Minghai Xia, Qian Yin, Ganzhou Yao, Zhongyue Lu and Zirong Luo
Biomimetics 2025, 10(10), 678; https://doi.org/10.3390/biomimetics10100678 - 9 Oct 2025
Viewed by 98
Abstract
As the demand for marine resource development escalates, underwater robots have gained prominence as a technological alternative to human participation in deep-sea exploration, resource assessments, and other intricate tasks, underscoring their academic and engineering importance. Traditional underwater robots, however, typically exhibit limited resilience [...] Read more.
As the demand for marine resource development escalates, underwater robots have gained prominence as a technological alternative to human participation in deep-sea exploration, resource assessments, and other intricate tasks, underscoring their academic and engineering importance. Traditional underwater robots, however, typically exhibit limited resilience to environmental disturbances and are readily obstructed or interfered with by aquatic vegetation, sediments, and other physical impediments. This paper examines the biological locomotion mechanisms of black ghostfish, which utilize undulatory fins and flapping wings, and presents a coupled undulatory-flapping propulsion strategy to facilitate rapid movement and precise posture adjustment in underwater robots. A multimodal undulatory-flapping bio-inspired underwater robotic platform is proposed, with a systematic explanation of its structure and motion principles. Additionally, kinematic and dynamic models for coordinated propulsion with multiple actuators are developed, and the robot’s performance under various driving modes is evaluated using computational fluid dynamics simulations. The simulation outcomes confirm the viability of the developed dynamic model. A prototype was constructed, and a PID-based control algorithm was developed to assess the robot’s performance in linear movement, turning, and other behaviors in both undulatory fin and flapping modes. Experimental findings indicate that the robot, functioning in undulatory fin propulsion mode at a frequency of 2.5 Hz, attains a velocity of 0.35 m/s, while maintaining attitude angle fluctuation errors within ±5°. In the flapping propulsion mode, precise posture modifications can be executed. These results validate the feasibility of the proposed multimodal bio-inspired underwater robot design and provide a new approach for the development of high-performance, autonomous bio-inspired underwater robots. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
26 pages, 1244 KB  
Review
Neuroprotective Bioactive Compounds from Marine Algae and Their By-Products Against Cerebral Ischemia–Reperfusion Injury: A Comprehensive Review
by Joon Ha Park
Appl. Sci. 2025, 15(19), 10791; https://doi.org/10.3390/app151910791 - 7 Oct 2025
Viewed by 304
Abstract
Cerebral ischemia–reperfusion (I/R) injury is a leading cause of death and long-term disability worldwide, characterized by a complex interplay of pathophysiological mechanisms and currently limited therapeutic options. This critical unmet need underscores the importance of exploring novel multi-targeted neuroprotective agents. Marine algae represent [...] Read more.
Cerebral ischemia–reperfusion (I/R) injury is a leading cause of death and long-term disability worldwide, characterized by a complex interplay of pathophysiological mechanisms and currently limited therapeutic options. This critical unmet need underscores the importance of exploring novel multi-targeted neuroprotective agents. Marine algae represent a rich and underexplored source of structurally diverse bioactive compounds with promising therapeutic potential against cerebral I/R injury. This comprehensive review systematically summarizes the preclinical evidence on the neuroprotective effects and underlying mechanisms of key bioactive compounds found in marine algae, including polysaccharides (e.g., fucoidan, laminarin, porphyran), carotenoids (e.g., astaxanthin, fucoxanthin, lutein, zeaxanthin), polyphenols (e.g., dieckol, phlorotannins), and sterols (e.g., β-sitosterol). These compounds consistently demonstrate significant efficacy across various in vitro and in vivo models, primarily through multifaceted actions encompassing anti-excitotoxic, antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as the modulation of crucial signaling pathways and preservation of blood–brain barrier integrity. While the existing preclinical evidence is highly promising, successful clinical translation necessitates further rigorous research to overcome challenges related to precise molecular understanding, translational relevance, pharmacokinetics, and safety. Beyond their pharmacological significance, the sustainable utilization of marine by-products as renewable sources of bioactive agents further highlights their dual value, offering not only novel therapeutic avenues for cerebral I/R injury but also contributing to marine resource valorization. Full article
(This article belongs to the Special Issue Utilization of Marine By-Products)
Show Figures

Figure 1

31 pages, 10340 KB  
Article
Silencing the cyp314a1 and cyp315a1 Genes in the Aedes albopictus 20E Synthetic Pathway for Mosquito Control and Assessing Algal Blooms Induced by Recombinant RNAi Microalgae
by Xiaodong Deng, Changhao He, Chunmei Xue, Dianlong Xu, Juncai Li and Xiaowen Fei
Insects 2025, 16(10), 1033; https://doi.org/10.3390/insects16101033 - 7 Oct 2025
Viewed by 404
Abstract
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and [...] Read more.
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and used double-stranded RNA (dsRNA) expression vectors targeting the cyp314a1 and cyp315a1 genes of Ae. albopictus to transform Chlamydomonas reinhardtii and Chlorella vulgaris, achieving RNA interference (RNAi)-mediated gene silencing. The efficacy of the RNAi recombinant algal strain biocide against Ae. albopictus was evaluated by administering it to Ae. albopictus larvae. The results showed that the oral administration of the cyp314a1 and cyp315a1 RNAi recombinant C. reinhardtii/C. vulgaris strains was lethal to Ae. albopictus larvae and severely affected their pupation and emergence. The recombinant algal strains triggered a burst of ROS (Reactive Oxygen Species) in the mosquitoes’ bodies, resulting in significant increases in the activities of the superoxide dismutase (SOD), peroxiredoxin (POD) and catalase (CAT), as well as significant upregulation of the mRNA levels of the CME pathway genes in larvae. In the simulated field experiment, the number of Ae. albopictus was reduced from 1000 to 0 in 16 weeks by the RNAi recombinant Chlorella, which effectively controlled the population of mosquitoes. Meanwhile, the levels of nitrogen (N), phosphorus (P), nitrate, nitrite, ammonia and COD (Chemical Oxygen Demand) in the test water decreased significantly. High-throughput sequencing analyses of 18S rDNA and 16S rDNA showed that, with the release of RNAi recombinant Chlorella into the test water, the biotic community restructuring dominated by resource competition caused by algal bloom, as well as the proliferation of anaerobic bacteria and the decline of aerobic bacteria triggered by anaerobic conditions, are the main trends in the changes in the test water. This study is an important addition to the use of RNAi recombinant microalgae as a biocide. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

28 pages, 6651 KB  
Article
Effects of Lysolecithin on Growth Performance, Antioxidant Capacity, and Lipid Metabolism of Litopenaeus vannamei
by Yun Wang, Hailiang Yan, Hong Liang, Yafei Duan, Jun Wang, Chuanpeng Zhou and Zhong Huang
Antioxidants 2025, 14(10), 1209; https://doi.org/10.3390/antiox14101209 - 6 Oct 2025
Viewed by 426
Abstract
Lysolecithin, characterized by its superior emulsifying and stabilizing properties, facilitates nutrient absorption and is extensively utilized in aquatic feed formulation. Nevertheless, its precise function in shrimp nutrition and physiology remains inadequately understood. This study aimed to evaluate the feasibility and optimal dosage of [...] Read more.
Lysolecithin, characterized by its superior emulsifying and stabilizing properties, facilitates nutrient absorption and is extensively utilized in aquatic feed formulation. Nevertheless, its precise function in shrimp nutrition and physiology remains inadequately understood. This study aimed to evaluate the feasibility and optimal dosage of replacing 2% soybean lecithin with varying levels of soybean lysolecithin (0–2%) in the diet of Litopenaeus vannamei. Growth performance, antioxidant indices, and lipid metabolism were assessed. The results demonstrated that dietary supplementation with 0.1% lysolecithin had the best growth performance, significantly improved lipid retention and apparent crude fat digestibility, while reducing malondialdehyde (MDA) levels in the hepatopancreas and alleviating endoplasmic reticulum (ER) stress. The 0.1% group also exhibited better hepatopancreatic tissue structure and lipid metabolic homeostasis. In contrast, higher inclusion levels (≥1.5%) led to increased lipid accumulation and enhanced activities of lipid metabolic enzymes but were associated with a risk of oxidative stress and less favorable tissue morphology. No significant differences in antioxidant enzyme activities were observed among groups. It is hypothesized that lysolecithin may regulate lipid metabolism and homeostasis via the Ca2+/CaMKKβ/AMPK signaling pathway; further studies are required to confirm this mechanism. In conclusion, 0.1% soybean lysolecithin is recommended as the optimal dietary level for L. vannamei, supporting its feasibility as a substitute for 2% soybean lecithin in shrimp feed. Full article
Show Figures

Figure 1

32 pages, 4143 KB  
Article
Aspects of Biology and Machine Learning for Age Prediction in the Large-Eye Dentex Dentex macrophthalmus (Bloch, 1791)
by Dimitris Klaoudatos, Alexandros Theocharis, Chrysoula Vardaki, Elpida Pachi, Dimitris Politikos and Alexis Conides
Fishes 2025, 10(10), 500; https://doi.org/10.3390/fishes10100500 - 6 Oct 2025
Viewed by 338
Abstract
The large-eye dentex (Dentex macrophthalmus) is a relatively small sparid fish with increasing potential as a supplementary fishery resource in the Mediterranean Sea, particularly as traditional stocks face overexploitation. Despite its widespread distribution, biological data on this species, especially from Greek [...] Read more.
The large-eye dentex (Dentex macrophthalmus) is a relatively small sparid fish with increasing potential as a supplementary fishery resource in the Mediterranean Sea, particularly as traditional stocks face overexploitation. Despite its widespread distribution, biological data on this species, especially from Greek waters, remain scarce. This study presents the first comprehensive biological assessment of D. macrophthalmus in the Pagasitikos Gulf, focusing on population structure, growth, mortality, and the application of machine learning (ML) for age prediction. A total of 305 individuals were collected, revealing a female-biased sex ratio and negative allometric growth in both somatic and otolith dimensions. The von Bertalanffy growth parameters indicated a slow growth rate (k = 0.16 year−1), with an estimated asymptotic length (L∞) of 25.97 cm. The population was found to be underexploited (E = 0.41), suggesting resilience to current fishing pressure. Stepwise regression and ML models were employed to predict age from otolith morphometrics. A linear model identified otolith weight and aspect ratio as the most significant predictors of age (R2 = 0.8). Among the ML algorithms tested, the Neural Network model achieved the highest performance (R2 = 0.764, MAPE = 14.10%), demonstrating its potential for accurate and efficient age estimation. These findings provide crucial baseline data for the sustainable management of D. macrophthalmus and highlight the value of integrating advanced ML techniques into fisheries biology. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Graphical abstract

18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 - 4 Oct 2025
Viewed by 858
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

Back to TopTop