Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = maritime decarbonization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 4579 KB  
Review
Hydrogen and Japan’s Energy Transition: A Blueprint for Carbon Neutrality
by Dmytro Konovalov, Ignat Tolstorebrov, Yuhiro Iwamoto and Jacob Joseph Lamb
Hydrogen 2025, 6(3), 61; https://doi.org/10.3390/hydrogen6030061 - 28 Aug 2025
Abstract
This review presents a critical analysis of Japan’s hydrogen strategy, focusing on the broader context of its decarbonization efforts. Japan aims to achieve carbon neutrality by 2050, with intermediate targets including 3 million tons of hydrogen use by 2030 and 20 million tons [...] Read more.
This review presents a critical analysis of Japan’s hydrogen strategy, focusing on the broader context of its decarbonization efforts. Japan aims to achieve carbon neutrality by 2050, with intermediate targets including 3 million tons of hydrogen use by 2030 and 20 million tons by 2050. Unlike countries with abundant domestic renewables, Japan’s approach emphasizes hydrogen imports and advanced storage technologies, driven by limited local renewable capacity. This review not only synthesizes policy and project-level developments but also critically evaluates Japan’s hydrogen roadmap by examining its alignment with global trends, technology maturity, and infrastructure scalability. The review integrates recent policy updates, infrastructure developments, and pilot project results, providing insights into value chain modeling, cost reduction strategies, and demand forecasting. Three policy conclusions emerge. First, Japan’s geography justifies an import-reliant pathway, but it heightens exposure to price, standards, and supply-chain risk; diversification across LH2 and ammonia with robust certification and offtake mechanisms is essential. Second, near-term deployment is most credible in industrial feedstocks (steel, ammonia, methanol) and the maritime sector, while refueling rollout lags materially behind plan and should be recalibrated. Third, cost competitiveness hinges less on electrolyzer CAPEX than on electricity price, liquefaction, transport; policy should prioritize bankable offtake, grid-connected renewables and transmission, and targeted CAPEX support for import terminals, bunkering, and cracking. Japan’s experience offers a pathway in the global hydrogen transition, particularly for countries facing similar geographic and energy limitations. By analyzing both the progress and the limitations of Japan’s hydrogen roadmap, this study contributes to understanding diverse national strategies in the rapidly changing state of implementation of clean energy. Full article
Show Figures

Figure 1

20 pages, 1980 KB  
Article
Methodology for Thermal Analysis in Port Methane Storage
by José Miguel Mahía-Prados, Ignacio Arias-Fernández and Manuel Romero Gómez
Energy Storage Appl. 2025, 2(3), 12; https://doi.org/10.3390/esa2030012 - 20 Aug 2025
Viewed by 198
Abstract
Methane, transported as Liquefied Natural Gas (LNG) at −163 °C, is becoming the leading fuel in the decarbonization of the maritime sector within the low-carbon fuels. More than 30 years of knowledge has allowed the development of an extensive offshore supply network that [...] Read more.
Methane, transported as Liquefied Natural Gas (LNG) at −163 °C, is becoming the leading fuel in the decarbonization of the maritime sector within the low-carbon fuels. More than 30 years of knowledge has allowed the development of an extensive offshore supply network that includes regasification plants to store and supply it to the grid, both onshore and offshore. This article first reviews the current state of the sector. Then, the operation of a typical onshore regasification plant and the heat transfer through the storage tanks that causes the generation of boil-off gas (BOG) are analyzed by means of two different methodologies. Finally, and based on the results obtained, the different improvements that can be implemented in this type of installation to improve its energy efficiency and insulation are established, such as, for example, an improvement of more than 4 W/m2 by reinforcing the thickness of the materials of the tank dome. Full article
Show Figures

Figure 1

18 pages, 1114 KB  
Article
Calibration Procedures for NOx Emissions Model of a High-Speed Marine Diesel Engine Using Optimization Procedures
by Mina Tadros and Evangelos Boulougouris
J. Mar. Sci. Eng. 2025, 13(8), 1585; https://doi.org/10.3390/jmse13081585 - 19 Aug 2025
Viewed by 273
Abstract
Controlling nitrogen oxide (NOx) emissions is a critical priority for the maritime industry, driven by increasingly stringent international maritime organization (IMO) Tier III regulations and the sector’s broader decarbonization efforts. Accurate prediction and minimization of NOx emissions require well-calibrated engine [...] Read more.
Controlling nitrogen oxide (NOx) emissions is a critical priority for the maritime industry, driven by increasingly stringent international maritime organization (IMO) Tier III regulations and the sector’s broader decarbonization efforts. Accurate prediction and minimization of NOx emissions require well-calibrated engine models that reflect real-world operating behavior under varied conditions. This study presents a robust calibration methodology for the NOx emissions model of a high-speed dual-fuel marine engine, using a 1D engine simulation platform (WAVE 2025.1) integrated with a nonlinear optimization algorithm (fmincon in MATLAB R2025a). The calibration focuses on tuning the extended Zeldovich mechanism by empirically adjusting the Arrhenius equation coefficients to achieve a weighted sum of NOx and unburned hydrocarbon (HC) emissions below the 7.2 g/kWh regulatory threshold. The proposed approach reduces the need for extensive experimental data while maintaining high predictive accuracy. Simulation results confirm compliance with IMO regulations across multiple engine loads defined by the E3 test cycle. A sensitivity analysis further revealed that while the pre-exponent multiplier (ARC1) plays a critical role in influencing NOx emissions at high loads, the exponent multiplier (AERC1) has an even more significant impact across the full load range, making its precise calibration essential for robust emissions modeling. The calibrated NOx emissions model not only ensures realistic emissions estimation but also provides a reliable foundation for further research, such as dual-fuel performance studies, and can be effectively integrated into future engine optimization tasks under different operating conditions. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

30 pages, 3877 KB  
Article
Ship Voyage Route Waypoint Optimization Method Using Reinforcement Learning Considering Topographical Factors and Fuel Consumption
by Juhyang Lee, Youngseo Park, Jeongon Eom, Hungyu Hwang and Sewon Kim
J. Mar. Sci. Eng. 2025, 13(8), 1554; https://doi.org/10.3390/jmse13081554 - 13 Aug 2025
Viewed by 388
Abstract
As the IMO and the EU strengthen carbon emission regulations, eco-friendly voyage planning is increasingly recognized by ship owners as one of the most important performance factors of the vessel fleet. The eco-friendly voyage planning aims to reduce carbon emissions and fuel consumption [...] Read more.
As the IMO and the EU strengthen carbon emission regulations, eco-friendly voyage planning is increasingly recognized by ship owners as one of the most important performance factors of the vessel fleet. The eco-friendly voyage planning aims to reduce carbon emissions and fuel consumption while satisfying voyage constraints. In this study, a novel route waypoint optimization method is proposed, which combines a fuel consumption forecasting model based on the Transformer and a Proximal Policy Optimization (PPO) algorithm for adaptive waypoint planning. The developed framework suggests a multi-objective methodology unlike the traditional approaches where a single objective is sought after, which characterizes fuel efficiency against navigational safety and operational simplicity. The methodology consists of three sequential phases. First, the transformer model is employed to predict ship fuel consumption using navigational and environmental data. Next, the predicted consumption values are utilized as a reward function in a PPO-based reinforcement learning framework to generate fuel-efficient routes. Finally, the number and placement of waypoints are further optimized with respect to terrain and bathymetric constraints, improving the practicality and safety of the navigational plan. The results show that the proposed method could decrease average fuel consumption by up to 11.33% across three real-world case studies: Busan–Rotterdam, Busan–Los Angeles, and Mokpo–Houston, compared to AIS-based routes. The transformer model outperformed Long Short-Term Memory (LSTM) and Random Forest baselines with the highest prediction accuracy, achieving an R2 score of 86.75%. This study is the first to incorporate transformer-based forecasting into reinforcement learning for maritime route planning and demonstrates how the method adaptively controls waypoint density in response to environmental and geographical conditions. These results support the practical application of the approach in smart ship navigation systems aligned with IMO’s decarbonization goals. Full article
(This article belongs to the Special Issue Intelligent Solutions for Marine Operations)
Show Figures

Figure 1

51 pages, 4358 KB  
Systematic Review
Decarbonizing Domestic and Short-Sea Shipping: A Systematic Review and Transdisciplinary Pathway for Emerging Maritime Regions
by Seyedvahid Vakili, Mustafa Insel, Sukhjit Singh and Aykut Ölçer
Sustainability 2025, 17(16), 7294; https://doi.org/10.3390/su17167294 - 12 Aug 2025
Viewed by 468
Abstract
Domestic and short-sea shipping play a crucial role in ensuring food and energy security, employment, and connectivity in Small Island Developing States (SIDSs) and Least Developed Countries (LDCs). Despite accounting for up to 26.2% of global maritime emissions by voyage activity, these sectors [...] Read more.
Domestic and short-sea shipping play a crucial role in ensuring food and energy security, employment, and connectivity in Small Island Developing States (SIDSs) and Least Developed Countries (LDCs). Despite accounting for up to 26.2% of global maritime emissions by voyage activity, these sectors remain underrepresented in policy and academic discussions on greenhouse gas (GHG) reduction. This study presents a structured and transdisciplinary assessment of decarbonization pathways tailored to the unique operational characteristics of domestic fleets. It reviews key operational, technical, and port-based strategies, identifying both opportunities and challenges in the transition to zero-emission shipping. Highlighted measures include the adoption of carbon-neutral fuels, advanced energy-efficiency technologies, and optimized vessel design. The paper emphasizes the pivotal role of ports as clean energy hubs and advocates for integrating domestic shipping into National Action Plans and Nationally Determined Contributions. Coordinated stakeholder engagement, targeted public investment, and supportive regulatory frameworks are essential to unlock decarbonization potential—contributing not only to climate mitigation, but also to sustainable development and energy resilience in emerging maritime regions. Full article
Show Figures

Figure 1

29 pages, 2829 KB  
Review
Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
by Rashed Kaiser and Ayesha Munira Chowdhury
Clean Technol. 2025, 7(3), 68; https://doi.org/10.3390/cleantechnol7030068 - 11 Aug 2025
Viewed by 564
Abstract
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged [...] Read more.
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged as promising alternatives to conventional fossil fuels. This review critically examines the potential of hydrogen fuels—including hydrogen fuel cells (HFCs) and hydrogen internal combustion engines (H2ICEs)—for maritime applications. It provides a comprehensive analysis of hydrogen production methods, storage technologies, onboard propulsion systems, and the associated techno-economic and regulatory challenges. A detailed life cycle assessment (LCA) compares the environmental impacts of hydrogen-powered vessels with conventional diesel engines, revealing significant benefits particularly when green or blue hydrogen sources are utilized. Despite notable hurdles—such as high production and retrofitting costs, storage limitations, and infrastructure gaps—hydrogen holds considerable promise in aligning maritime operations with global sustainability goals. The study underscores the importance of coordinated government policies, technological innovation, and international collaboration to realize hydrogen’s potential in decarbonizing the marine sector. Full article
Show Figures

Figure 1

26 pages, 3478 KB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 513
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

18 pages, 6506 KB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 528
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

27 pages, 4687 KB  
Article
EU MRV Data-Based Review of the Ship Energy Efficiency Framework
by Hui Xing, Shengdai Chang, Ranqi Ma and Kai Wang
J. Mar. Sci. Eng. 2025, 13(8), 1437; https://doi.org/10.3390/jmse13081437 - 28 Jul 2025
Viewed by 908
Abstract
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse [...] Read more.
The International Maritime Organization (IMO) has set a goal to reach net-zero greenhouse gas emissions from international shipping by or around 2050. The ship energy efficiency framework has played a positive role over the past decade in improving carbon intensity and reducing greenhouse gas emissions by employing the technical and operational energy efficiency metrics as effective appraisal tools. To quantify the ship energy efficiency performance and review the existing energy efficiency framework, this paper analyzed the data for the reporting year of 2023 extracted from the European Union (EU) monitoring, reporting, and verification (MRV) system, and investigated the operational profiles and energy efficiency for the ships calling at EU ports. The results show that the data accumulated in the EU MRV system could provide powerful support for conducting ship energy efficiency appraisals, which could facilitate the formulation of decarbonization policies for global shipping and management decisions for stakeholders. However, data quality, ship operational energy efficiency metrics, and co-existence with the IMO data collection system (DCS) remain issues to be addressed. With the improvement of IMO DCS system and the implementation of IMO Net-Zero Framework, harmonizing the two systems and avoiding duplicated regulation of shipping emissions at the EU and global levels are urgent. Full article
Show Figures

Figure 1

20 pages, 1475 KB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Viewed by 394
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

2 pages, 130 KB  
Editorial
Special Issue on Advances in Maritime Transport: Sustainability, Contamination and New Technologies
by José A. Orosa and Manuel Vázquez Neira
Appl. Sci. 2025, 15(14), 8087; https://doi.org/10.3390/app15148087 - 21 Jul 2025
Viewed by 201
Abstract
The need to adopt sustainable solutions in the maritime sector has become more urgent in recent years, driven by stricter MARPOL Annex VI regulations, global decarbonization commitments [...] Full article
35 pages, 2044 KB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 1009
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

26 pages, 7559 KB  
Article
A Meta-Frontier Approach to Evaluating the Environmental Efficiency of Coastal Ports: Implications for Port Sustainability
by Gaofeng Gu, Jiewei Zhang and Xiaofeng Pan
J. Mar. Sci. Eng. 2025, 13(7), 1272; https://doi.org/10.3390/jmse13071272 - 30 Jun 2025
Viewed by 473
Abstract
As pivotal nodes in maritime logistics networks, ports face mounting pressure to reconcile economic growth with environmental sustainability. Although the SBM-Undesirable model has been extensively applied to assess port environmental efficiency (PEE), most applications assume strong disposability and disregard heterogeneity in technological capacities [...] Read more.
As pivotal nodes in maritime logistics networks, ports face mounting pressure to reconcile economic growth with environmental sustainability. Although the SBM-Undesirable model has been extensively applied to assess port environmental efficiency (PEE), most applications assume strong disposability and disregard heterogeneity in technological capacities across different port scales, potentially biasing the assessments. To overcome these limitations, coastal ports are initially categorized into three subgroups based on operational scale criteria. A meta-frontier SBM-Undesirable model incorporating weak disposability is then developed to evaluate PEE. Dynamic characteristics are further explored via the Global Malmquist Index. Results indicate substantial disparities between subgroup frontiers and the meta-frontier. The average group PEE (0.732) exceeded the meta PEE (0.570), implying potential overestimation under homogeneity assumptions. Large-sized ports, with a mean technology gap ratio (TGR) of 0.956, operated near the meta-frontier, whereas medium-sized and small-sized ports, with TGRs of 0.770 and 0.600 respectively, exhibited substantial technological gaps. Total factor productivity (TFP) demonstrated a volatile upward trend, averaging 6.8% annual growth. In large-sized and medium-sized ports, TFP growth was primarily driven by technological innovation, whereas in small-sized ports, it stemmed from combined improvements in technical efficiency and technological level. These insights underscore the necessity of differentiated decarbonization strategies for port management. Full article
(This article belongs to the Special Issue Maritime Transport and Port Management)
Show Figures

Figure 1

46 pages, 7883 KB  
Article
Energy Transition Framework for Nearly Zero-Energy Ports: HRES Planning, Storage Integration, and Implementation Roadmap
by Dimitrios Cholidis, Nikolaos Sifakis, Alexandros Chachalis, Nikolaos Savvakis and George Arampatzis
Sustainability 2025, 17(13), 5971; https://doi.org/10.3390/su17135971 - 29 Jun 2025
Viewed by 546
Abstract
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of [...] Read more.
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of ports through the phased integration of hybrid renewable energy systems (HRES) and energy storage systems (ESS). Emphasizing a systems-level approach, the framework addresses key aspects such as energy demand assessment, resource potential evaluation, HRES configuration, and ESS sizing, while incorporating load characterization protocols and decision-making thresholds for technology deployment. Special consideration is given to economic performance, particularly the minimization of the Levelized Cost of Energy (LCOE), alongside efforts to meet energy autonomy and operational resilience targets. In parallel, the framework integrates digital tools, including smart grid infrastructure and digital shadow technologies, to enable real-time system monitoring, simulation, and long-term optimization. It also embeds mechanisms for regulatory compliance and continuous adaptation to evolving standards. To validate its applicability, the framework is demonstrated using a representative case study based on a generic port profile. The example illustrates the transition process from conventional energy models to a sustainable port ecosystem, confirming the framework’s potential as a decision-making tool for port authorities, engineers, and policymakers aiming to achieve effective, compliant, and future-proof energy transitions in maritime infrastructure. Full article
Show Figures

Figure 1

18 pages, 1109 KB  
Article
Economic Feasibility and Operational Performance of Rotor Sails in Maritime Transport
by Kristine Carjova, Olli-Pekka Hilmola and Ulla Tapaninen
Sustainability 2025, 17(13), 5909; https://doi.org/10.3390/su17135909 - 26 Jun 2025
Viewed by 861
Abstract
The maritime sector is under pressure to increase ship energy efficiency and reduce greenhouse gas (GHG) emissions as a part of global decarbonization goals. Various innovative technologies are being adopted in recent years, raising concerns not only about technological feasibility but also about [...] Read more.
The maritime sector is under pressure to increase ship energy efficiency and reduce greenhouse gas (GHG) emissions as a part of global decarbonization goals. Various innovative technologies are being adopted in recent years, raising concerns not only about technological feasibility but also about the economic viability of such technologies in the context of sustainable maritime practices. This study evaluates the operational performance, potential to increase energy efficiency, and economic feasibility of wind-assisted propulsion technologies such as rotor sails across different vessel types and operational profiles. As a contribution to cleaner and more efficient shipping, energy savings produced by rotor thrust were analyzed in relation to vessel dimensions and rotor configuration. The results derived from publicly available industry data including shipowner reports, manufacturer case studies, and classification society publications on 25 confirmed rotor sail installations between 2010 and 2025 indicate that savings typically range between 4% and 15%, with isolated cases reporting up to 25%. A simulation model was developed to assess payback time based on varying fuel consumption, investment cost, CO2 pricing, and operational parameters. Monte Carlo analysis confirmed that under typical assumptions rotor sail investments can reach payback in three to six years (as the ship is also liable for CO2 payments). These findings offer practical guidance for shipowners and operators evaluating wind-assisted propulsion under current and emerging environmental regulations and contribute to advancing sustainability in maritime transport. The research contributes to bridging the gap between simulation-based and real-world performance evaluations of rotor sail technologies. Full article
Show Figures

Figure 1

Back to TopTop