Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,500)

Search Parameters:
Keywords = material growth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6983 KB  
Article
Hierarchically Porous Metal–Organic Frameworks-Based Controlled-Release Fertilizer: Improved Nutrient Loading and Rice Growth
by Ruimin Zhang, Gaoqiang Lv, Changwen Du, Fei Ma, Shanshan Liu, Fangqun Gan and Ke Wu
Agronomy 2025, 15(10), 2334; https://doi.org/10.3390/agronomy15102334 (registering DOI) - 4 Oct 2025
Abstract
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently [...] Read more.
Nitrogen (N) and phosphorus (P) play vital roles in crop growth. However, conventional fertilizers exhibit low utilization efficiency, making them prone to causing resource wastage and water eutrophication. Although metal–organic frameworks (MOFs) have shown great potential for application in controlled-release fertilizers (CRFs), currently reported MOF-based CRFs suffer from low nutrient content, which limits their further application. To address this issue, this study synthesized a series of hierarchically porous MOFs, denoted as MIL-156(X), using sodium acetate as a modulator under hydrothermal conditions. These materials were subsequently loaded with urea and phosphate from aqueous solution to form MOFs-based CRFs (N-P-MIL-156(X)). Results indicate that MIL-156(X) retain microporous integrity while incorporating abundant mesopores. Increasing modulator content reduced particle size and average pore diameter but increased specific surface area and adsorption capacity for urea and phosphate. MIL-156-H (with a high modulator content addition) exhibited the highest adsorption capacity, conforming to Langmuir isotherm and pseudo-second-order kinetics. The adsorption mechanisms of urea and phosphate involved hydrogen bonding and the formation of Ca intra-spherical complexes, respectively. N-P-MIL-156-H contained 10.8% N and 16.3% P2O5, with sustained release durations exceeding 42 days (N) and 56 days (P2O5) in an aqueous solution. Pot trials demonstrated significantly higher nutrient use efficiency (N-44.8%, P2O5-16.56%) and a 12.22% yield increase compared to conventional fertilization (N-35.6%, P2O5-13.32%). Thus, N-P-MIL-156-H-based fertilization significantly promotes rice growth and N/P utilization efficiency, offering a promising strategy for developing controlled-release fertilizers and improving nutrient management. Full article
Show Figures

Figure 1

32 pages, 2713 KB  
Review
Quantum and Nonlinear Metamaterials for the Optimization of Greenhouse Covers
by Chrysanthos Maraveas
AgriEngineering 2025, 7(10), 334; https://doi.org/10.3390/agriengineering7100334 (registering DOI) - 4 Oct 2025
Abstract
Background: Greenhouses are pivotal to sustainable agriculture as they provide suitable conditions to support the growth of crops in unusable land such as arid areas. However, conventional greenhouse cover materials such as glass, polycarbonate (PC), and polyethylene (PE) sheets are limited in regulating [...] Read more.
Background: Greenhouses are pivotal to sustainable agriculture as they provide suitable conditions to support the growth of crops in unusable land such as arid areas. However, conventional greenhouse cover materials such as glass, polycarbonate (PC), and polyethylene (PE) sheets are limited in regulating internal conditions in the greenhouses based on environmental changes. Quantum and nonlinear metamaterials are emerging materials with the potential to optimize the covers and ensure appropriate regulation. Objective: This comprehensive review investigated the performance optimization of greenhouse covers through the potential application of nonlinear and quantum metamaterials as nano-additives, examining their effects on electromagnetic radiation management, crop growth enhancement, and temperature regulation within greenhouse systems. Method: The scoping review method was used, where 39 published articles were examined. Results: The review revealed that integrating nano-additives ensured that the greenhouse covers would block harmful near-infrared (NIR) radiation that generated heat while also optimizing for photosynthetically active radiation (PAR) to promote crop yields. Conclusions: The insights also indicated that the high sensitivity of the metamaterials would facilitate the regulation of the internal conditions within the greenhouses. However, challenges such as complex production processes that were not commercially scalable and the recyclability of the metamaterials were identified. Future work should further investigate pathways to produce hybrid greenhouse covers that integrate metamaterials with conventional materials to enhance scalability. Full article
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Green Cores as Architectural and Environmental Anchors: A Performance-Based Framework for Residential Refurbishment in Novi Sad, Serbia
by Marko Mihajlovic, Jelena Atanackovic Jelicic and Milan Rapaic
Sustainability 2025, 17(19), 8864; https://doi.org/10.3390/su17198864 - 3 Oct 2025
Abstract
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems [...] Read more.
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems were reconfigured to embed vegetated zones within the architectural core. Light exposure, ventilation potential and spatial coherence were maximized through data-driven design strategies and structural modifications. Integrated planting modules equipped with PAR-specific LED systems ensure sustained vegetation growth, while embedded environmental infrastructure supports automated irrigation and continuous microclimate monitoring. This plant-centered spatial model is evaluated using quantifiable performance metrics, establishing a replicable framework for optimized indoor ecosystems. Photosynthetically active radiation (PAR)-specific LED systems and embedded environmental infrastructure were incorporated to maintain vegetation viability and enable microclimate regulation. A programmable irrigation system linked to environmental sensors allows automated resource management, ensuring efficient plant sustenance. The configuration is assessed using measurable indicators such as daylight factor, solar exposure, passive thermal behavior and similar elements. Additionally, a post-occupancy expert assessment was conducted with several architects evaluating different aspects confirming the architectural and spatial improvements achieved through the refurbishment. This study not only demonstrates a viable architectural prototype but also opens future avenues for the development of metabolically active buildings, integration with decentralized energy and water systems, and the computational optimization of living infrastructure across varying climatic zones. Full article
(This article belongs to the Special Issue Advances in Ecosystem Services and Urban Sustainability, 2nd Edition)
Show Figures

Figure 1

10 pages, 235 KB  
Article
Smoking and Alcohol During Pregnancy: Effects on Fetal and Neonatal Health—A Pilot Study
by Martina Derme, Marco Fiore, Maria Grazia Piccioni, Marika Denotti, Valentina D’Ambrosio, Silvia Francati, Ilenia Mappa and Giuseppe Rizzo
J. Clin. Med. 2025, 14(19), 7023; https://doi.org/10.3390/jcm14197023 - 3 Oct 2025
Abstract
Background/Objectives: Alcohol and smoking during pregnancy may be associated with several complications, but the underlying mechanism is still unclear. The aim of this study was to evaluate the role of oxidative stress induced by smoking and alcohol during pregnancy and their effects [...] Read more.
Background/Objectives: Alcohol and smoking during pregnancy may be associated with several complications, but the underlying mechanism is still unclear. The aim of this study was to evaluate the role of oxidative stress induced by smoking and alcohol during pregnancy and their effects on fetal and neonatal outcomes. Material and methods: We considered pregnant women at term. Validated questionnaires were used to investigate smoking and alcohol habits. Ultrasound was performed to evaluate fetal weight, amniotic fluid index, and maternal-fetal Doppler velocimetry. At the time of delivery, we collected a tuft of maternal hair, maternal venous blood, and cord blood. In these samplings we determined in phase I nicotine, cotinine, and ethyl glucuronide on the maternal keratin matrix with the gas chromatography-mass spectrometry technique. In phase II, the Free Oxygen Radicals Test (FORT) and Free Oxygen Radical Defense (FORD) test were used to assess circulating reactive oxygen species (ROS). Results: 119 pregnant patients were enrolled (n = 62 for smoking and n = 57 for alcohol). Twenty-six patients (42%) out of 62 were active smokers. Three patients (5%) out of 57 were alcoholic consumers. Mean neonatal weight and mean placental weight were significantly lower for active smokers (p = 0.0001). The neonatal weight was in the 1st–2nd percentile for all alcohol abusers. Considering two subgroups (n = 10 non-smokers and n = 10 smokers) for ROS determination, a statistically significant higher oxidative stress in the blood of smoking patients was evidenced (p < 0.0001). In cord blood the differences were not statistically significant (p = 0.2216). Conclusions: Fetal growth restriction was present in the group of active smokers and in patients with alcohol abuse. Oxidative stress was higher in smoking patients than in non-smokers. However, in cord blood, FORT was negative in all cases, suggesting a protective mechanism in utero. Given the limited sample size, the results obtained are preliminary and require future studies. Full article
(This article belongs to the Special Issue Clinical Updates on Prenatal Diagnosis)
16 pages, 1031 KB  
Article
Analysis of Marginal Expansion in Existing Pressurised Water Installations: Analytical Formulation and Practical Application
by Alfonso Arrieta-Pastrana, Oscar E. Coronado-Hernández and Manuel Saba
Sci 2025, 7(4), 140; https://doi.org/10.3390/sci7040140 - 2 Oct 2025
Abstract
Water supply networks in both developed and developing major cities worldwide were constructed many years ago. Currently, these systems face numerous challenges, including population growth, climate change, emerging technologies, and the policies implemented by local governments. Such factors can impact the design life [...] Read more.
Water supply networks in both developed and developing major cities worldwide were constructed many years ago. Currently, these systems face numerous challenges, including population growth, climate change, emerging technologies, and the policies implemented by local governments. Such factors can impact the design life of water infrastructure, leading to service pressure deficiencies. Consequently, water infrastructure must be reinforced to ensure an adequate and reliable service. This research presents the development of an analytical formulation for hydraulic installations with a pumping station, enabling the calculation of requirements for a new parallel pipeline within an existing water system without altering the current pipe resistance class. To implement the proposed solution, it is essential to maintain the initial pump head by adjusting the impeller size. A construction cost assessment is also undertaken to identify the most cost-effective reinforcement strategy, acknowledging that pipe costs vary significantly with diameter and material, and are proportional to the square of the diameter. The proposed methodology is applied to a 30 km pipeline with a 10% increase in demand, showing that a new parallel pipe of the same diameter as the existing hydraulic installation must be installed to minimise construction costs. A multi-parametric analysis was conducted employing machine learning presets with 309 dataset points. Full article
21 pages, 1640 KB  
Review
Advances in Ulva Linnaeus, 1753 Research: From Structural Diversity to Applied Utility
by Thanh Thuy Duong, Hang Thi Thuy Nguyen, Hoai Thi Nguyen, Quoc Trung Nguyen, Bach Duc Nguyen, Nguyen Nguyen Chuong, Ha Duc Chu and Lam-Son Phan Tran
Plants 2025, 14(19), 3052; https://doi.org/10.3390/plants14193052 - 2 Oct 2025
Abstract
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These [...] Read more.
The green macroalgae Ulva Linnaeus, 1753, also known as sea lettuce, is one of the most ecologically and economically significant algal genera. Its representatives occur in marine, brackish, and freshwater environments worldwide and show high adaptability, rapid growth, and marked biochemical diversity. These traits support their ecological roles in nutrient cycling, primary productivity, and habitat provision, and they also explain their growing relevance to the blue bioeconomy. This review summarizes current knowledge of Ulva biodiversity, taxonomy, and physiology, and evaluates applications in food, feed, bioremediation, biofuel, pharmaceuticals, and biomaterials. Particular attention is given to molecular approaches that resolve taxonomic difficulties and to biochemical profiles that determine nutritional value and industrial potential. This review also considers risks and limitations. Ulva species can act as hyperaccumulators of heavy metals, microplastics, and organic pollutants, which creates safety concerns for food and feed uses and highlights the necessity of strict monitoring and quality control. Technical and economic barriers restrict large-scale use in energy and material production. By presenting both opportunities and constraints, this review stresses the dual role of Ulva as a promising bioresource and a potential ecological risk. Future research must integrate molecular genetics, physiology, and applied studies to support sustainable utilization and ensure safe contributions of Ulva to biodiversity assessment, environmental management, and bioeconomic development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

32 pages, 3558 KB  
Review
Thermoelectric Materials for Spintronics: From Physical Principles to Innovative Half Metallic Ferromagnets, Devices, and Future Perspectives
by Alessandro Difalco and Alberto Castellero
Inorganics 2025, 13(10), 332; https://doi.org/10.3390/inorganics13100332 - 2 Oct 2025
Abstract
Over the last century, improvements in computational power resulting from the exponential growth of microelectronics have been the driving force of outstanding global economic growth as well as of deep changes in society and ethical values. Manufacturing of silicon-based memory cells has, as [...] Read more.
Over the last century, improvements in computational power resulting from the exponential growth of microelectronics have been the driving force of outstanding global economic growth as well as of deep changes in society and ethical values. Manufacturing of silicon-based memory cells has, as a matter of fact, become an industry of strategic importance also from a geopolitical perspective. Despite such advancements, a lot of concern has recently aroused as physical limitations such as tunnel-effect phenomena, current leakage, and high power consumption are increasingly hindering further improvements in dynamic random-access memory. Spintronic technologies are promising alternatives to overcome such issues, being considered no longer merely an academic subject of interest, but increasingly becoming an industrial reality. In this review work, the history and the physical principles of spintronic devices are presented, focussing on new, groundbreaking materials. Concepts are exposed step by step and in an easy-to-understand manner, allowing even researchers who are not specialized in the fields of spintronics, microelectronics, and hardware engineering to understand the fundamentals and gain initial insight into the topic. Special attention is paid to half-metallic ferromagnets and Heusler alloys, which are considered among the most promising materials for the future of spintronics. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

10 pages, 1021 KB  
Review
Albumin Nanoparticles in Cancer Therapeutics: Clinical Status, Challenges, and Future Directions
by Hachemi Kadri, Mesk Alshatfa, Feras Z Alsalloum, Abdelbary Elhissi, Anis Daou and Mouhamad Khoder
Pharmaceutics 2025, 17(10), 1290; https://doi.org/10.3390/pharmaceutics17101290 - 2 Oct 2025
Abstract
Cancer, a global health burden, is characterized by uncontrolled cell growth and metastasis, often resulting in debilitating treatments and mortality. While conventional therapeutic strategies have improved survival rates, they are limited by challenges such as off-target toxicity and drug resistance. With their design [...] Read more.
Cancer, a global health burden, is characterized by uncontrolled cell growth and metastasis, often resulting in debilitating treatments and mortality. While conventional therapeutic strategies have improved survival rates, they are limited by challenges such as off-target toxicity and drug resistance. With their design to enable targeted drug delivery, nanoparticles have presented a promising avenue to overcome these limitations. Protein-based nanoparticles, particularly those based on albumin, are notable for their biocompatibility, stability, and ease of modification. The approval of Abraxane, an albumin-based nanoparticle formulation of paclitaxel, for metastatic breast cancer marked a significant milestone. However, further approvals have been slow to materialize until the recent approval of Fyarro® in 2021. This focused review highlights the potential of albumin-based nanoparticles, emphasizing their advantages, current state, and progress in clinical use as anticancer therapeutics. We also discuss challenges impeding new approvals and future directions for unlocking the full potential of this technology. Full article
18 pages, 2457 KB  
Article
The Potential for Reusing Superabsorbent Polymer from Baby Diapers for Water Retention in Agriculture
by Kamilla B. Shishkhanova, Vyacheslav S. Molchanov, Ilya V. Prokopiv, Alexei R. Khokhlov and Olga E. Philippova
Gels 2025, 11(10), 795; https://doi.org/10.3390/gels11100795 - 2 Oct 2025
Abstract
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and [...] Read more.
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and water retention properties of SAP gels from three different types of diapers were compared to those of an agricultural gel, Aquasorb. Sand was used as a model for soil. When mixed with sand, diaper gels have a swelling degree of ca. 100 g per gram of dried polymer, and a swelling pressure of 12–26 kPa, which are similar to those of Aquasorb gel. Using a synthesized poly(acrylamide-co-sodium acrylate) gel as an example, the correlation between the swelling pressure and the compression modulus of the swollen gel was demonstrated. Soil-hydrological constants were estimated from water retention curves obtained by equilibrium centrifugation of gel/sand mixtures. It was observed that adding 0.3 vol% of diaper gels to sand leads to a 3–4-fold increase in water range available to plants, which is close to that provided by agricultural gel Aquasorb. The water-holding properties were shown to be maintained during several swelling/deswelling cycles in the sand medium. The addition of diaper gels to soil had a significant positive impact on mustard (Brassica juncea L.) seed germination and seedling growth, similar to the agricultural gel Aquasorb. This suggests high potential for the reuse of SAPs from diaper waste to improve soil water retention and water accessibility to plants. This would provide both economic and environmental benefits, conserving energy and raw materials to produce new agricultural gels and limiting the amount of waste. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

16 pages, 5605 KB  
Article
Crystal Morphology Prediction of LTNR in Different Solvents by Molecular Dynamics Simulation
by Da Li, Liang Song, Yin Yu, Yan Li and Xue-Hai Ju
Chemistry 2025, 7(5), 161; https://doi.org/10.3390/chemistry7050161 - 1 Oct 2025
Abstract
Molecular dynamics simulations were conducted using the attachment energy (AE) model to investigate the growth morphology of lead 2,4,6-trinitrororesorcinate (LTNR, lead styphnate) under vacuum and different solvents. The adsorption energy of LTNR on (001), (110), (011), (020), (111), (200), and (201) crystal planes [...] Read more.
Molecular dynamics simulations were conducted using the attachment energy (AE) model to investigate the growth morphology of lead 2,4,6-trinitrororesorcinate (LTNR, lead styphnate) under vacuum and different solvents. The adsorption energy of LTNR on (001), (110), (011), (020), (111), (200), and (201) crystal planes were calculated. Meanwhile, the crystal morphology in solvents of ethanol, toluene, dichloromethane, acetone, dimethyl sulfoxide (DMSO), and water at 298 K was predicted by calculating the interaction energies between the solvents and crystal planes. The calculated results show that the morphology of LTNR crystals in different solvents is significantly different. In toluene, LTNR crystal morphologies are flat, while in pure solvents of ethanol, acetone, and DMSO, the number of crystal planes increases, and the crystal thickness is larger. In the water, LTNR tends to form tabular crystals, which is similar to the experimental results. Both radial distribution function (RDF) and mean squared displacement (MSD) analyses reveal that hydrogen bonding dominates the interactions between LTNR and solvent molecules. Solvent molecules with higher diffusion coefficients exhibit increased desorption tendencies from crystal surfaces, which may reduce their inhibitory effects on specific crystallographic planes. However, no direct correlation exists between solvent diffusion coefficients and crystal plane growth rates, suggesting that surface attachment kinetics or interfacial energy barriers play a more critical role in crystal growth. Full article
Show Figures

Figure 1

12 pages, 2053 KB  
Article
Nano-Emulsification Potentiates Tea Tree Oil Bioactivity: High-Stability Formulation for Dual Antimicrobial and Antioxidant Food Preservation
by Congnan Cen, Xinxuan Wang, Huan Li, Song Miao, Jian Chen and Yanbo Wang
Foods 2025, 14(19), 3405; https://doi.org/10.3390/foods14193405 - 1 Oct 2025
Abstract
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to [...] Read more.
Essential oils play important roles in the modern food industry as additives and spices. At the same time, most essential oils have broad-spectrum bacteriostatic properties and can be used as natural antimicrobial materials. However, the application of essential oils is limited due to their strong volatility and insolubility in aqueous substrates. In this study, we used ultrasonic emulsification, carboxymethyl chitosan, and Tween 80 to formulate tea tree essential oil (TTO) nanoemulsions with high stability. With a minimum diameter of about 51 nm (PDI = 0.236 ± 0.021) post-emulsification, the TTO nanoemulsions disperse effectively in the drainage system and exhibit good stability after 14 days of storage. In addition, the bioactivity (antibacterial and antioxidant) of TTO nanoemulsions was significantly enhanced following emulsification, as evidenced by MIC and DPPH assays, indicating that nano-emulsification is beneficial to the development of various essential oils. TTO nanoemulsions can be used as a new food preservative to control the growth of bacteria and prevent the deterioration of food via oxidation. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 568 KB  
Article
Modeling the Effect of the Biological Control of Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae) on Grapevine Leafroll Virus Spread
by Katia Vogt-Geisse, Margarita C. G. Correa, Juan Pablo Gutiérrez-Jara and Kent M. Daane
Plants 2025, 14(19), 3043; https://doi.org/10.3390/plants14193043 - 1 Oct 2025
Abstract
Grapevineleafroll disease (GLD) is one of the more severe and persistent diseases in grapevines worldwide and is caused by several species of grape leafroll-associated viruses (GLRaVs). GLRaVs enter vines mainly by infected plant material or insect vectors. Mealybugs (Hemiptera: Pseudococcidae) are important vectors [...] Read more.
Grapevineleafroll disease (GLD) is one of the more severe and persistent diseases in grapevines worldwide and is caused by several species of grape leafroll-associated viruses (GLRaVs). GLRaVs enter vines mainly by infected plant material or insect vectors. Mealybugs (Hemiptera: Pseudococcidae) are important vectors of GLRaVs and, among them, Pseudococcus viburni is the primary key vector in many regions. To reduce GLRaV spread, acquiring vines from virus-free certified nurseries, removing infected vines, and controlling insect vectors are crucial control tools. Sustainable mealybug control relies on eco-friendly products, cultural practices that limit mealybug population growth, and biological control by natural enemies. For P. viburni, biological control is primarily based on the action of predators and parasitoids, such as Cryptolaemus montrouzieri Mulsant and Acerophagus flavidulus Brethes, respectively, which will obviously have a different mode of action than chemical insecticides. However, the long-term effect of biological control on GLRaV spread within vineyards has rarely been studied. With the aim of better predicting the impact of biological control on insect vectors, such as mealybugs, we developed a mathematical model to predict the GLRaV spread. The results highlight the importance of establishing vineyards with virus-free material and having a pest management program that reduces the vector population to reduce the economic loss from GLRaVs. Full article
Show Figures

Figure 1

20 pages, 6534 KB  
Systematic Review
Acute Kidney Injury Biomarkers in Marathon Runners: Systematic Review and Meta-Analysis
by Daniel-Corneliu Leucuța, Loredana-Ioana Trif, Oana Almășan, Ștefan Lucian Popa and Abdulrahman Ismaiel
Medicina 2025, 61(10), 1775; https://doi.org/10.3390/medicina61101775 - 1 Oct 2025
Abstract
Background and Objectives: The objectives of this review were as follows: to measure changes in renal biomarker levels before, immediately after, and 24 h post-marathon; to identify promising biomarkers for the diagnosis of acute kidney injury; and to describe the temporal patterns [...] Read more.
Background and Objectives: The objectives of this review were as follows: to measure changes in renal biomarker levels before, immediately after, and 24 h post-marathon; to identify promising biomarkers for the diagnosis of acute kidney injury; and to describe the temporal patterns of biomarker dynamics in relation to the marathon. Materials and Methods: Studies of marathon runners reporting AKI-related biomarkers were included. Four databases (PubMed, EMBASE, Web of Science, and LILACS) were searched. Data on study design, participant characteristics, and biomarker values (pre-, post-, and 24 h post-race) were extracted, and a random effects meta-analysis was performed. Risk of bias was assessed with the National Heart, Lung, and Blood Institute pre–post tool. Results: The study showed significant increases in most biomarkers immediately after the marathon compared to baseline values. The largest increases were observed in Tissue Inhibitor of Metalloproteinases-2* Insulin-like Growth Factor Binding Protein-7 (TIMP-2*IGFBP), copeptin, urinary Liver-type Fatty Acid Binding Protein (L-FABP), urinary Monocyte Chemoattractant Protein-1 (MCP-1), IGFBP-7, urinary Chitinase 3-like Protein 1 (YKL-40), and TIMP-2, suggesting that these biomarkers are promising candidates for future research. Several patterns of biomarker evolution were observed: some increased without decreasing even at 24 h after the marathon; others increased post-marathon and decreased at 24 h while remaining above baseline; some increased after the marathon and then fell below baseline at 24 h. Conclusions: Marathon running causes significant increases in kidney injury biomarkers, with different patterns of evolution. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

25 pages, 1507 KB  
Review
Biochemical Programming of the Fungal Cell Wall: A Synthetic Biology Blueprint for Advanced Mycelium-Based Materials
by Víctor Coca-Ruiz
BioChem 2025, 5(4), 33; https://doi.org/10.3390/biochem5040033 - 1 Oct 2025
Abstract
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has [...] Read more.
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has been predominantly driven by empirical screening of fungal species and substrates. To unlock their full potential, a paradigm shift from empirical screening to rational design is required. This review introduces a conceptual framework centered on the biochemical programming of the fungal cell wall. Viewed through a materials science lens, the cell wall is a dynamic, hierarchical nanocomposite whose properties can be deliberately tuned. We analyze the contributions of its principal components—the chitin–glucan structural scaffold, the glycoprotein functional matrix, and surface-active hydrophobins—to the bulk characteristics of mycelium-derived materials. We then identify biochemical levers for controlling these properties. External factors such as substrate composition and environmental cues (e.g., pH) modulate cell wall architecture through conserved signaling pathways. Complementing these, an internal synthetic biology toolkit enables direct genetic and chemical intervention. Strategies include targeted engineering of biosynthetic and regulatory genes (e.g., CHS, AGS, GCN5), chemical genetics to dynamically adjust synthesis during growth, and modification of surface chemistry for specialized applications like tissue engineering. By integrating fungal cell wall biochemistry, materials science, and synthetic biology, this framework moves the field from incidental discovery toward the intentional creation of smart, functional, and sustainable mycelium-based materials—aligning material innovation with the imperatives of the circular bioeconomy. Full article
Show Figures

Figure 1

16 pages, 8499 KB  
Article
Wharton’s Jelly Hydrogel: An Innovative Artificial Ovary for Xenotransplantation of Isolated Human Ovarian Follicles
by Farnaz Tajbakhsh, Somayeh Tavana, Mohammad Kazemi Ashtiani, Ashraf Moini, Christiani Andrade Amorim and Rouhollah Fathi
Biology 2025, 14(10), 1340; https://doi.org/10.3390/biology14101340 - 1 Oct 2025
Abstract
Background: An artificial ovary has emerged as a novel alternative approach to prevent the reintroduction of cancerous cells after ovarian tissue autotransplantation. This study evaluates the ability of decellularized Wharton’s jelly (dWJ) to facilitate human ovarian follicle growth in a xenotransplantation model. Materials [...] Read more.
Background: An artificial ovary has emerged as a novel alternative approach to prevent the reintroduction of cancerous cells after ovarian tissue autotransplantation. This study evaluates the ability of decellularized Wharton’s jelly (dWJ) to facilitate human ovarian follicle growth in a xenotransplantation model. Materials and Methods: Two transplanted groups were established; one consisted of a decellularized Wharton’s jelly/alginate (dWJ/Alg) composite, and an alginate (Alg) group was used as the control group. Each artificial ovary received approximately 20 partially isolated viable human ovarian follicles, subsequently undergoing xenotransplantation into ovariectomized, non-immunodeficient NMRI mice. Grafts were extracted at 1, 2, 4, or 5 weeks for comprehensive histological and immunohistochemical evaluations. Additionally, mouse blood serum was collected for hormonal analysis. Results: H&E staining confirmed granulosa cell proliferation and follicle growth in dWJ/Alg after 1 week of grafting. While human ovarian-like structures and cell proliferation were visible in other grafts, follicles were not observed. Conversely, immunohistochemical staining for Vimentin, Ki67, and CD45 confirmed the presence of human cells, proliferative cells, and inflammatory cells, respectively. However, hormonal assays revealed no significant difference in estrogen or progesterone levels between the experimental groups. Conclusions: It seems that Wharton’s jelly/alginate hydrogel can be used as an artificial niche for simulating the ovarian environment, effectively supporting the growth of xenotransplants of isolated human follicles. Full article
Show Figures

Figure 1

Back to TopTop