Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,513)

Search Parameters:
Keywords = mechanical compressibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3036 KB  
Article
Mechanical Properties of a New Type of Link Slab for Simply Supported Steel–Concrete Composite Bridges
by Liang Xiao, Qingtian Su and Qingquan Wang
Appl. Sci. 2025, 15(19), 10851; https://doi.org/10.3390/app151910851 - 9 Oct 2025
Abstract
This study investigates the mechanical behavior of a new type of link slab through experimental testing and numerical simulation. A full-scale segmental specimen of an I-shaped steel–concrete composite beam was designed, and a vertical active plus horizontal follow-up loading system was employed to [...] Read more.
This study investigates the mechanical behavior of a new type of link slab through experimental testing and numerical simulation. A full-scale segmental specimen of an I-shaped steel–concrete composite beam was designed, and a vertical active plus horizontal follow-up loading system was employed to realistically simulate the stress state of the link slab. In parallel, a nonlinear finite element model was established in ABAQUS to validate and extend the experimental findings. Test results indicate that the link slab exhibits favorable static performance with a ductile flexural tensile failure mode. At ultimate load, tensile reinforcement yielded while compressive concrete remained uncrushed, demonstrating high safety reserves. Cracks propagated primarily in the transverse direction, showing a typical flexural tensile cracking pattern. The maximum crack width was limited to 0.4 mm and remained confined within the link slab region, which is beneficial for long-term durability, maintenance, and repair. The FE model successfully reproduced the experimental process, accurately capturing both the crack development and the ultimate bending capacity of the slab. The findings highlight the reliability of the proposed structural system, demonstrate that maximum crack width can be evaluated as an eccentric tension member, and confirm that bending capacity may be assessed using existing design specifications. Full article
17 pages, 6375 KB  
Article
Utilization of Desulfurization Gypsum in Alkali-Activated Mortar: Performance Enhancement and Microstructural Evolution
by Xiaolong Zhou, Xinyan Wang, Wenjing Yu, Yuhui Zhao and Zhonghao Li
Buildings 2025, 15(19), 3628; https://doi.org/10.3390/buildings15193628 - 9 Oct 2025
Abstract
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and [...] Read more.
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and mechanical properties were systematically investigated. The test included fluidity, setting time, compressive strength, drying shrinkage, water erosion resistance, and sulfate erosion resistance and was combined with microscopic analysis to reveal its phase composition and micro-morphology. The results show that DG can significantly prolong the setting time and reduce the drying shrinkage. With a DG content of 10%, alkali-activated materials exhibited a setting time similar to that of OPC, and the 56-d drying shrinkage of the AAM was reduced by 20.2%. However, the fluidity, water erosion resistance, and sulfate resistance decreased with an increase in DG content. When the DG content was 10%, the fluidity of the AAM reached 126 mm, and its setting time was equivalent to that of OPC. The mechanical properties showed a trend of increasing first and then decreasing. The optimum was reached when the DG content was 6%. The 28-d compressive strength of AAM-6 was 63.25 MPa, and after 60 days of water erosion and sulfate corrosion its residual strength was still higher than that of OPC in the same environment. Microscopic analysis showed that DG promoted the formation of ettringite, which filled pores with age and formed a dense structure, thereby improving mechanical properties and inhibiting shrinkage. This study enhances the engineering applicability of AAM while enabling high-value utilization of industrial solid waste for sustainable construction materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 6017 KB  
Article
From Agricultural Waste to Green Binder: Performance Optimization of Wheat Straw Ash in Sustainable Cement Mortars
by Murat Doğruyol and Senem Yılmaz Çetin
Sustainability 2025, 17(19), 8960; https://doi.org/10.3390/su17198960 (registering DOI) - 9 Oct 2025
Abstract
This study investigates the use of wheat straw ash (WSA) as a sustainable supplementary cementitious material, focusing on its mechanical performance optimization and environmental implications. WSA (ASTM C618, Class F), produced via controlled calcination at 700 °C, was used to replace cement at [...] Read more.
This study investigates the use of wheat straw ash (WSA) as a sustainable supplementary cementitious material, focusing on its mechanical performance optimization and environmental implications. WSA (ASTM C618, Class F), produced via controlled calcination at 700 °C, was used to replace cement at 2.5, 5, 7.5, 10% by mass. The optimal performance was observed at 5% substitution, achieving a 90-day compressive strength of 48.42 MPa (+4.7%) and a 28-day flexural strength of 7.93 MPa (+6.6%). To contextualize these findings, a multi-technique analytical approach was employed, including scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and ultrasonic pulse velocity (UPV). These methods confirmed that WSA enhances portlandite consumption through pozzolanic reactivity and improves matrix densification via secondary C-S-H gel formation. Additionally, satellite (Sentinel-5P) and ground-based measurements during a severe stubble fire event in Diyarbakir (20–24 June 2024) documented a fourfold increase in PM10 concentrations (157 μg/m3 compared to the June average of ≈35 μg/m3), alongside 23% and 41% rises in NO2 and SO2 levels, respectively. These findings demonstrate that wheat straw ash utilization can mitigate agricultural waste burning, improve air quality, and reduce the carbon footprint of cement production. The study highlights WSA’s potential as a high-performance, eco-efficient construction material aligned with circular economy principles. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
17 pages, 9364 KB  
Article
Experimental Study on Mechanical Properties of Rock Formations After Water Injection and Optimization of High-Efficiency PDC Bit Sequences
by Yusheng Yang, Qingli Zhu, Jingguang Sun, Dong Sui, Shuan Meng and Changhao Wang
Processes 2025, 13(10), 3204; https://doi.org/10.3390/pr13103204 - 9 Oct 2025
Abstract
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism [...] Read more.
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism of water injection on reservoir rocks. Based on an analysis of mechanical experimental characteristics, this study proposes a multi-scale collaborative optimization method: establish a single tooth–rock interaction model at the micro-scale through finite element simulation to optimize geometric cutting parameters; at the macro scale, adopt a differential bit design scheme. By comparing and analyzing the rock-breaking energy consumption characteristics of four-blade and five-blade bits, the most efficient rock-breaking configuration can be optimized. Based on Fluent simulation on the flow field scale, the nozzle configuration can be optimized to improve the bottom hole flow field. The research results provide important theoretical guidance and technical support for the personalized design of drill bits in the later stage of water injection development. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

28 pages, 3179 KB  
Article
Incidence, Risk Factors, and Prevention of Deep Vein Thrombosis in Acute Ischemic Stroke Patients (IRIS-DVT Study): A Systematic Review and Meta-Analysis
by Yuxiang Yang, Darryl Chen and Sonu M. M. Bhaskar
Clin. Transl. Neurosci. 2025, 9(4), 49; https://doi.org/10.3390/ctn9040049 (registering DOI) - 9 Oct 2025
Abstract
Background: Deep vein thrombosis (DVT) is a serious thromboinflammatory complication of acute ischemic stroke (AIS). The true incidence, mechanistic risk factors, and optimal prophylactic strategies remain uncertain, particularly in the era of reperfusion therapy. Methods: This systematic review and meta-analysis (IRIS-DVT) searched PubMed, [...] Read more.
Background: Deep vein thrombosis (DVT) is a serious thromboinflammatory complication of acute ischemic stroke (AIS). The true incidence, mechanistic risk factors, and optimal prophylactic strategies remain uncertain, particularly in the era of reperfusion therapy. Methods: This systematic review and meta-analysis (IRIS-DVT) searched PubMed, Embase, Cochrane, Scopus, and Web of Science for studies reporting DVT incidence, risk factors, or prophylaxis in AIS (2004–2025). Random-effects models were used to generate pooled prevalence and effect estimates, and the certainty of evidence was graded using the GRADE framework. Results: Forty-two studies (n = 6,051,729 patients) were included. The pooled prevalence of DVT was 7% (95% CI, 6–9%), approximately seventy-fold higher than in the general population, with wide heterogeneity influenced by screening timing and diagnostic modality. Pathophysiological risk factors included higher stroke severity (NIHSS; SMD 0.41; 95% CI, 0.38–0.43), older age (SMD 0.32; 95% CI, 0.18–0.46), elevated D-dimer (SMD 0.55; 95% CI, 0.38–0.72), female sex (OR 1.33; 95% CI, 1.19–1.50), and malignancy (OR 2.69; 95% CI, 1.56–5.22), supported by moderate-certainty evidence. Respiratory infection and admission hyperglycemia showed weaker, low-certainty associations. Traditional vascular risk factors (hypertension, diabetes, atrial fibrillation, dyslipidemia) were not significantly related to DVT risk. Evidence for prophylaxis with low-molecular-weight heparin, direct oral anticoagulants, or intermittent pneumatic compression was limited and graded very low certainty. Conclusions: DVT complicates approximately one in fourteen AIS cases, reflecting a distinct thromboinflammatory process driven more by acute neurological severity, systemic hypercoagulability, and malignancy than by conventional vascular risk factors. Early systematic screening (≤72 h) and consistent use of mechanical prophylaxis are warranted. Dedicated AIS-specific mechanistic and interventional trials are urgently needed to refine prevention strategies and improve post-stroke outcomes. Full article
(This article belongs to the Topic Neurological Updates in Neurocritical Care)
Show Figures

Figure 1

16 pages, 4308 KB  
Article
Influence of HPMC and VAE on the Properties of Geopolymer Mortar
by Wenjun Ji, Pengfei Chen, Ying Lu, Zeyang Zhang, Baolong Shan, Sha Li, Mengyan Chi and Haifeng Yu
Buildings 2025, 15(19), 3621; https://doi.org/10.3390/buildings15193621 - 9 Oct 2025
Abstract
The delamination of building facades creates a critical demand for inorganic adhesive mortars with high long-term adhesion. Geopolymer (GP) represents an eco-friendly alternative to Portland cement (PC). However, the effect of polymer additives, commonly used in cement-based adhesive mortars, on GP mortar remains [...] Read more.
The delamination of building facades creates a critical demand for inorganic adhesive mortars with high long-term adhesion. Geopolymer (GP) represents an eco-friendly alternative to Portland cement (PC). However, the effect of polymer additives, commonly used in cement-based adhesive mortars, on GP mortar remains insufficiently studied. This study examines the effects of hydroxypropyl methylcellulose (HPMC) and vinyl acetate-ethylene (VAE) polymer on the workability, mechanical properties, durability, and microstructure of GP mortar. Results show that an optimal HPMC content (0.4 wt%) improves the fluidity, compressive strength, and adhesive strength of GP mortar, approximately 6%, 16%, and 20%, respectively. These enhancements are attributed to the incorporation of uniformly distributed microbubbles in the mortar matrix. Beyond this optimal content, however, HPMC impairs flowability and adhesion due to its thickening effect. In contrast, VAE addition significantly enhanced adhesive strength by approximately 28%, albeit at the cost of a 17% reduction in compressive strength, resulting from the retardation of the alkali activation process. This gain in adhesion is associated with the formation of a continuous polymer film that establishes both physical interlocking and chemical bonding with the GP matrix. Furthermore, HPMC improved the durability of the GP mortar, while VAE did not contribute to this aspect. These insights offer valuable guidance for designing high-performance GP-based adhesive mortars suitable for building applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 2349 KB  
Article
Reframing Place Identity for Traditional Village Conservation: A Theoretical Model with Evidence from Dali Dong Village
by Yihan Wang, Mohd Khairul Azhar Mat Sulaiman and Nor Zalina Harun
Heritage 2025, 8(10), 427; https://doi.org/10.3390/heritage8100427 - 9 Oct 2025
Abstract
Rapid socio-spatial change in China’s traditional villages threatens living heritage and weakens locally grounded identity. This paper theorizes place identity as a dynamic, embodied and performative ecology and examines it in Dali Dong Village across four dimensions, emotional attachment, symbolic meaning, continuity and [...] Read more.
Rapid socio-spatial change in China’s traditional villages threatens living heritage and weakens locally grounded identity. This paper theorizes place identity as a dynamic, embodied and performative ecology and examines it in Dali Dong Village across four dimensions, emotional attachment, symbolic meaning, continuity and behavioural commitment, using a triangulated qualitative design that integrates interviews, spatial observation and visual ethnography. Findings show that identity is enacted around ritual architectures and everyday settings, particularly the Drum Tower, Flower Bridge, and Sa altar. Emotional attachment and symbolic meaning are expressed consistently across sources, whereas continuity and behavioural commitment are uneven, shaped by ritual fatigue (compressed rehearsal windows), symbolic commodification under tourism, and selective continuity in intergenerational transmission. These mechanisms identify where the identity fabric is most fragile and where intervention leverage lies. Conceptually, the study relocates place identity from cognition-centred, urban models to ritualized rural lifeworlds. Practically, it offers a portable framework for community-anchored stewardship that can be adapted to similar settlements and aligned with policy aims for safeguarding living heritage. Full article
Show Figures

Figure 1

21 pages, 12657 KB  
Article
Research on the Mechanical Properties of Mechanically Connected Splices of Prestressing Screw Bars Under Monotonic and Cyclic Loads
by Liangyu Lei, Yue Ma, Bo Xie, Jing Bai, Mei Hu and Zhezhuo Guo
Buildings 2025, 15(19), 3614; https://doi.org/10.3390/buildings15193614 - 9 Oct 2025
Abstract
The mechanical properties of screw-thread steel bars used for prestressing concrete and their threaded ribs’ bearing mechanism have not been quantitatively studied, in contrast to the extensive qualitative research on ordinary steel mechanical connection splices. A quantitative investigation was conducted under various design [...] Read more.
The mechanical properties of screw-thread steel bars used for prestressing concrete and their threaded ribs’ bearing mechanism have not been quantitatively studied, in contrast to the extensive qualitative research on ordinary steel mechanical connection splices. A quantitative investigation was conducted under various design parameters and working conditions to examine the mechanical connection splices of screw-thread steel bars used for prestressing concrete. The splices’ connection performance and their threaded ribs’ bearing mechanism were also examined. Analyzing the force on the threads of the splices under monotonic tensile loading allowed for the theoretical computation of the axial force coefficients for threaded ribs. The validated revised three-dimensional numerical model of splices is based on the findings of the theoretical calculations. Afterwards, rigorous numerical simulations of monotonic tensile loading, repeated tensile and compressive loading with high stress, and repeated tensile and compressive loading with large strain were performed on 45 splices with varying nominal rebar diameters, coupler outer diameters and lengths, and thread rib spacings. The results show that rebar pullout and rebar fracture are the two main ways in which splices might fail. After cyclic loading, the splices’ ultimate bearing capacity changed by 0.83% to 2.81%, and their ductility changed by 2.13% to 4.75% compared to after monotonic tensile loading. Although the splice load-carrying capacity and plastic deformation capacity were reduced by 2.11%~7.48% and 3.98%~25.78%, respectively, when the thread rib spacing was increased from the specified value to 0.6~0.8 times the nominal diameter of the rebar, the splice connection performance was still able to meet the requirements for class I splices. Approximately half of the splices’ load-bearing capability is provided by the 1–2 turns of threads close to the coupler ends; after cyclic loading, their stress rises by between 4.52% and 12.63% relative to monotonic tension. Stresses in all threaded ribs of the splices are increased by 5.49% to 27.76% as the distance between the threaded ribs increases to 1.0 and 1.2 times the nominal diameter of the rebar, which reduces the splice’s load-bearing capacity. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Dynamic Mechanical Properties and Damage Evolution Mechanism of Polyvinyl Alcohol Modified Alkali-Activated Materials
by Feifan Chen, Yunpeng Liu, Yimeng Zhao, Binghan Li, Yubo Zhang, Yen Wei and Kangmin Niu
Buildings 2025, 15(19), 3612; https://doi.org/10.3390/buildings15193612 - 9 Oct 2025
Abstract
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and [...] Read more.
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and an 80 mm diameter split Hopkinson pressure bar (SHPB). Digital image correlation (DIC) was then utilized to study the surface strain field of the composite material, and the crack propagation process during sample failure was analyzed. The experimental results demonstrate that the compressive strength of AAMs diminishes with higher PVA content, while the flexural strength initially increases before decreasing. It is suggested that the optimal PVA content should not exceed 5%. When the strain rate varies from 25.22 to 130.08 s−1, the dynamic compressive strength, dissipated energy, and dynamic compressive increase factor (DCIF) of the samples all exhibit significant strain rate effects. Furthermore, the logarithmic function model effectively fits the dynamic strength evolution pattern of AAMs. DIC observations reveal that, under high strain rates, the crack mode of the samples gradually transitions from tensile failure to a combined tensile–shear multi-crack pattern. Furthermore, the crack propagation rate rises as the strain rate increases, which demonstrates the toughening effect of PVA on AAMs. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

12 pages, 2841 KB  
Article
Mesoscopic Liquids Emit Thermal Waves Under Shear Strain or Microflow
by Laurence Noirez, Eni Kume and Patrick Baroni
Liquids 2025, 5(4), 27; https://doi.org/10.3390/liquids5040027 - 9 Oct 2025
Abstract
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of [...] Read more.
Liquids like water are not expected to produce a thermal change under shear strain or flow (away from extreme conditions). In this study, we reveal experimental conditions for which the conventional athermal hydrodynamic assumption is no longer valid. We highlight the establishment of non-equilibrium hot and cold thermal states occurring when a mesoscopic confined liquid is set in motion. Two stress situations are considered: low-frequency shear stress at large strain amplitude and microfluidic transport (pressure gradient). Two liquids are tested: water and glycerol at room temperature. In confined conditions (submillimeter scale), these liquids exhibit stress-induced thermal waves. We interpret the emergence of non-equilibrium temperatures as a consequence of the solicitation of the mesoscopic liquid elasticity. In analogy with elastic deformation, the mesoscopic volume decreases or increases slightly, which leads to a change in temperature (thermo-mechanical energy conversion). The energy acquired or released is converted to heat or cold, respectively. To account for these non-equilibrium temperatures, the mesoscopic flow is no longer considered as a complete dissipative process but as a way of propagating shear and thus compressive waves. This conclusion is consistent with recent theoretical developments showing that liquids propagate shear elastic waves at small scales. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

31 pages, 4046 KB  
Article
MSWindD-YOLO: A Lightweight Edge-Deployable Network for Real-Time Wind Turbine Blade Damage Detection in Sustainable Energy Operations
by Pan Li, Jitao Zhou, Jian Zeng, Qian Zhao and Qiqi Yang
Sustainability 2025, 17(19), 8925; https://doi.org/10.3390/su17198925 - 8 Oct 2025
Abstract
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate [...] Read more.
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate real-time inference capabilities. In response to these limitations, we put forward MSWindD-YOLO, a lightweight real-time detection model for wind turbine blade damage. Building upon YOLOv5s, our work introduces three key improvements: (1) the replacement of the Focus module with the Stem module to enhance computational efficiency and multi-scale feature fusion, integrating EfficientNetV2 structures for improved feature extraction and lightweight design, while retaining the SPPF module for multi-scale context awareness; (2) the substitution of the C3 module with the GBC3-FEA module to reduce computational redundancy, coupled with the incorporation of the CBAM attention mechanism at the neck network’s terminus to amplify critical features; and (3) the adoption of Shape-IoU loss function instead of CIoU loss function to facilitate faster model convergence and enhance localization accuracy. Evaluated on the Wind Turbine Blade Damage Visual Analysis Dataset (WTBDVA), MSWindD-YOLO achieves a precision of 95.9%, a recall of 96.3%, an mAP@0.5 of 93.7%, and an mAP@0.5:0.95 of 87.5%. With a compact size of 3.12 MB and 22.4 GFLOPs inference cost, it maintains high efficiency. After TensorRT acceleration on Jetson Orin NX, the model attains 43 FPS under FP16 quantization for real-time damage detection. Consequently, the proposed MSWindD-YOLO model not only elevates detection accuracy and inference efficiency but also achieves significant model compression. Its deployment-compatible performance in edge environments fulfills stringent industrial demands, ultimately advancing sustainable wind energy operations through lightweight lifecycle maintenance solutions for wind farms. Full article
15 pages, 1715 KB  
Article
Fracture Resistance of 3D-Printed Hybrid Abutment Crowns Made from a Tooth-Colored Ceramic Filled Hybrid Composite: A Pilot Study
by Josef Schweiger, Kurt-Jürgen Erdelt, Isabel Lente, Daniel Edelhoff, Tobias Graf and Oliver Schubert
J. Funct. Biomater. 2025, 16(10), 375; https://doi.org/10.3390/jfb16100375 - 8 Oct 2025
Abstract
The aim of this pilot in vitro study is to investigate the fracture strength of hybrid abutment crowns (HACs) made of a 3D-printable, tooth-colored, ceramic-reinforced composite (CRC). Based on an upper first premolar, a crown was designed, and specimens were additively fabricated from [...] Read more.
The aim of this pilot in vitro study is to investigate the fracture strength of hybrid abutment crowns (HACs) made of a 3D-printable, tooth-colored, ceramic-reinforced composite (CRC). Based on an upper first premolar, a crown was designed, and specimens were additively fabricated from a composite material (VarseoSmile Crown plus) (N = 32). The crowns were bonded to standard abutments using a universal resin cement. Half (n = 16) of the samples were subjected to artificial aging, during which three samples suffered minor damage. All specimens were mechanically loaded at an angle of 30° to the implant axis. In addition, an FEM simulation was computed. Statistical analysis was performed at a significance level of p < 0.05. The mean fracture load without aging was 389.04 N (SD: 101.60 N). Two HACs suffered screw fracture, while the crowns itself failed in all other specimens. In the aged specimens, the mean fracture load was 391.19 N (SD: 143.30 N). The failure mode was predominantly catastrophic crown fracture. FEM analysis showed a maximum compressive stress of 39.79 MPa, a maximum tensile stress of 173.37 MPa and a shear stress of 60.29 MPa when loaded with 389 N. Within the limitations of this pilot study, the tested 3D-printed hybrid abutment crowns demonstrated fracture resistance above a clinically acceptable threshold, suggesting promising potential for clinical application. However, further investigations with larger sample sizes, control groups, and clinical follow-up are required. Full article
28 pages, 7904 KB  
Article
Optimising Rice Straw Bale Quality Through Vibration-Assisted Compression
by Fudong Xu, Wenlong Xu, Changsu Xu, Jinwu Wang and Han Tang
Agriculture 2025, 15(19), 2094; https://doi.org/10.3390/agriculture15192094 - 8 Oct 2025
Abstract
This study focuses on enhancing the comprehensive utilisation of rice straw by proposing a vibration-assisted compression technology, with the aim of resolving inherent issues in traditional baling, such as uneven compression and low density. This study designed a multi-point vibration-assisted compression test rig [...] Read more.
This study focuses on enhancing the comprehensive utilisation of rice straw by proposing a vibration-assisted compression technology, with the aim of resolving inherent issues in traditional baling, such as uneven compression and low density. This study designed a multi-point vibration-assisted compression test rig and established a vibration-enhanced compression mechanical model based on the physical properties of rice straw. By integrating discrete element method (DEM) simulations with bench testing, the optimal length-to-width ratio of 1:1 was identified for achieving superior compaction quality. A systematic analysis was conducted to evaluate the effects of vibration point configuration, frequency, and amplitude control on straw bale integrity. The results of the DEM simulations demonstrated that vibration-assisted compression significantly enhanced the compaction uniformity and stability of rice straw. The dimensional stability coefficient and pressure transmission rates of the straw bales reached 88.25% and 58.04%, respectively, validating the efficacy of the vibration-assisted compression technique. This study provides innovative concepts and theoretical foundations for optimising the design of straw baling and in-field collection equipment. It holds critical significance for advancing the resource-efficient utilisation of agricultural residues and promoting sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 4121 KB  
Article
Stress Distribution and Mechanical Modeling of Double-Layer Pipelines Coupled with Temperature Stress and Internal Pressure
by Guoxing Li, Huali Ding and Mingmng Sun
Processes 2025, 13(10), 3193; https://doi.org/10.3390/pr13103193 - 8 Oct 2025
Abstract
In deepwater oil and gas transportation, Pipe-in-Pipe (PIP) systems are an effective solution for mitigating external loads while preserving internal thermal integrity. A finite element model with ITT elements and nonlinear spring contacts was developed in ABAQUS to simulate thermal expansion and contraction [...] Read more.
In deepwater oil and gas transportation, Pipe-in-Pipe (PIP) systems are an effective solution for mitigating external loads while preserving internal thermal integrity. A finite element model with ITT elements and nonlinear spring contacts was developed in ABAQUS to simulate thermal expansion and contraction under extreme conditions. The coupled mechanical response of double-layer pipelines under non-uniform temperature fields and internal pressure was analyzed, focusing on stress distribution and deformation coordination between the inner and outer pipes. The inner pipe primarily sustains compressive or tensile stress depending on the thermal load direction, while the outer pipe experiences opposing stresses due to mechanical coupling. Distinct stress transfer zones are present near the pipe ends, governed by pipe-soil interaction and internal bending moments. The proposed model for double-layer pipelines under coupled thermal and internal pressure loads demonstrates a prediction accuracy within 5% as compared with benchmark numerical solutions. The simulations capture axial stress variations of up to 68% between extreme thermal expansion and contraction scenarios, with radial deformation ranging from 0.9 mm to 3.4 mm. These findings provide valuable insights into the safe and efficient design of subsea PIP systems, particularly for optimizing material selection and structural configuration in high-temperature, high-pressure environments. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

27 pages, 5815 KB  
Article
A Study on the Mechanical Properties of an Asphalt Mixture Skeleton Meso-Structure Based on Computed Tomography Images and the Discrete Element Method
by Hehao Liang, Liwan Shi, Yuechan Wang, Peixian Li and Jiajian Huang
Appl. Sci. 2025, 15(19), 10799; https://doi.org/10.3390/app151910799 - 8 Oct 2025
Abstract
Current understanding of the load-transfer mechanism in the skeletal contact state of asphalt mixtures and its influence on macroscopic mechanical properties remains insufficient. This knowledge gap leads to difficulties in accurately predicting the performance of designed mixtures, thereby restricting the service life of [...] Read more.
Current understanding of the load-transfer mechanism in the skeletal contact state of asphalt mixtures and its influence on macroscopic mechanical properties remains insufficient. This knowledge gap leads to difficulties in accurately predicting the performance of designed mixtures, thereby restricting the service life of asphalt pavements and the sustainable development of road engineering. This study investigated the skeletal contact characteristics, coarse aggregate movement, and crack propagation of three asphalt mixture types—Stone Mastic Asphalt (SMA), Asphalt Concrete (AC), and Open-Graded Friction Course (OGFC)—under loading. The methodology incorporated Computed Tomography (CT) technology, a Voronoi diagram-based skeletal contact evaluation method, and discrete element numerical simulation. The research aimed to elucidate the influence mechanisms of different skeletal structures on macroscopic performance and to validate the efficacy of the skeletal contact evaluation method. The findings revealed that under splitting load, the tensile stress contact force chains within the asphalt mixture’s skeleton were predominantly distributed along both sides of the specimen’s central axis. For all three gradations, compressive stress contact force chains (points) accounted for over 65% of the total, indicating that the asphalt mixture skeleton primarily bore and transmitted compressive stresses. The interlocking structure formed by coarse aggregates significantly enhanced the stability of the asphalt mixture skeleton, reduced its displacement under load, and improved the mixture’s resistance to cracking. In the three gradations, shear stress-induced cracks outnumbered those caused by tensile stress, with shear stress cracks accounting for over 55% of the total cracks. This suggests that under splitting load, cracks resulting from shear failure were more prevalent than those from tensile failure. SMA-20 demonstrated the best crack resistance, followed by AC-20, while OGFC-20 performed the poorest. These conclusions are consistent with the results of the Voronoi diagram-based skeletal contact evaluation, confirming the correlation between the contact conditions of the asphalt mixture skeleton and its mechanical performance. Specifically, inadequate skeletal contact leads to a significant deterioration in mechanical properties. The research results elucidate the influence of skeletal contact characteristics with different gradations on both mesoscopic features and macroscopic mechanical behavior, providing a crucial basis for optimizing asphalt mixture design. Full article
Show Figures

Figure 1

Back to TopTop