Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (758)

Search Parameters:
Keywords = mechanical pressure sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4446 KB  
Article
Research on a Soil Mechanical Resistance Detection Device Based on Flexible Thin-Film Pressure Sensors
by Haojie Zhang, Wenyi Zhang, Bing Qi, Yunxia Wang, Youqiang Ding, Yue Deng and Maxat Amantayev
Agronomy 2025, 15(9), 2041; https://doi.org/10.3390/agronomy15092041 - 25 Aug 2025
Viewed by 956
Abstract
Soil compaction is a pivotal factor influencing crop growth and yield, and its accurate assessment is imperative for precision agricultural management. Soil mechanical resistance is the key indicator of soil compaction, with accurate measurement enabling precise assessment. Dynamic soil mechanical resistance measurement outperforms [...] Read more.
Soil compaction is a pivotal factor influencing crop growth and yield, and its accurate assessment is imperative for precision agricultural management. Soil mechanical resistance is the key indicator of soil compaction, with accurate measurement enabling precise assessment. Dynamic soil mechanical resistance measurement outperforms conventional manual fixed-point sampling in data acquisition efficiency. In this paper, a methodology is proposed for the dynamic acquisition of soil mechanical resistance using a flexible thin-film pressure sensor. This study dynamically captures soil mechanical resistance at three depths (5 cm, 10 cm, and 15 cm) under dynamic machinery operating conditions. A device was designed for the detection of soil mechanical resistance, and a prediction model for soil mechanical resistance was developed based on the Kalman filter algorithm. Tests were conducted under steady-state and variable-load conditions, and the predicted values accurately tracked the reference pressure. Soil tank trials showed that at an operating speed of 0.69–0.72 km/h, the average prediction errors for the three soil layers were 2.03%, 1.48%, and 6.27%, with the coefficient of determination (R2) between predicted and measured values reaching 0.96. The system effectively predicts multi-depth soil resistance, providing novel theoretical and technical approaches for dynamic acquisition. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 3218 KB  
Article
Design of a Rapid and Accurate Calibration System for Pressure Sensors with Minimized Temperature Variation
by Juntong Cui, Shubin Zhang and Yanfeng Jiang
Sensors 2025, 25(17), 5288; https://doi.org/10.3390/s25175288 - 25 Aug 2025
Viewed by 1126
Abstract
Miniaturized pressure sensors fabricated via micro-electro-mechanical systems (MEMSs) technology are ubiquitous in modern applications. However, the massively produced MEMS pressure sensors, prior to being practically used, need to be calibrated one by one to eliminate or minimize nonlinearity and zero drift. This paper [...] Read more.
Miniaturized pressure sensors fabricated via micro-electro-mechanical systems (MEMSs) technology are ubiquitous in modern applications. However, the massively produced MEMS pressure sensors, prior to being practically used, need to be calibrated one by one to eliminate or minimize nonlinearity and zero drift. This paper presents a systematic design for the testing and calibration process of MEMS-based absolute pressure sensors. Firstly, a numerical analysis is carried out using finite element method (FEM) simulation, which verifies the accuracy of the temperature control of the physical calibration system. The simulation results reveal a slight non-uniformity of temperature distribution, which is then taken into consideration in the calibration algorithm. Secondly, deploying a home-made calibration system, the MEMS pressure sensors are tested automatically and rapidly. The experimental results show that each batch, which consists of nine sensors, can be calibrated in 80 min. The linearity and temperature coefficient (TC) of the pressure sensors are reduced from 46.5% full-scale (FS) and −1.35 × 10−4 V·K−1 to 1.5% FS and −8.8 × 10−7 V·K−1. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Graphical abstract

19 pages, 12064 KB  
Article
Three-Dimensional Printed Stimulating Hybrid Smart Bandage
by Małgorzata A. Janik, Michał Pielka, Petro Kovalchuk, Michał Mierzwa and Paweł Janik
Sensors 2025, 25(16), 5090; https://doi.org/10.3390/s25165090 - 16 Aug 2025
Viewed by 562
Abstract
The treatment of chronic wounds and pressure sores is an important challenge in the context of public health and the effectiveness of patient treatment. Therefore, new methods are being developed to reduce or, in extreme cases, to initiate and conduct the wound healing [...] Read more.
The treatment of chronic wounds and pressure sores is an important challenge in the context of public health and the effectiveness of patient treatment. Therefore, new methods are being developed to reduce or, in extreme cases, to initiate and conduct the wound healing process. This article presents an innovative smart bandage, programmable using a smartphone, which generates small amplitude impulse vibrations. The communication between the smart bandage and the smartphone is realized using BLE. The possibility of programming the smart bandage allows for personalized therapy. Owing to the built-in MEMS sensor, the smart bandage makes it possible to monitor work during rehabilitation and implement an auto-calibration procedure. The flexible, openwork mechanical structure of the dressing was made in 3D printing technology, thanks to which the solution is easy to implement and can be used together with traditional dressings to create hybrid ones. Miniature electronic circuits and actuators controlled by the PWM signal were designed as replaceable elements; thus, the openwork structure can be treated as single-use. The smart bandage containing six actuators presented in this article generates oscillations in the range from about 40 Hz to 190 Hz. The system generates low-amplitude vibrations, below 1 g. The actuators were operated at a voltage of 1.65 V to reduce energy consumption. For comparison, the actuators were also operated at the nominal voltage of 3.17 V, as specified by the manufacturer. Full article
Show Figures

Figure 1

12 pages, 2311 KB  
Communication
Dual-Responsive Starch Hydrogels via Physicochemical Crosslinking for Wearable Pressure and Ultra-Sensitive Humidity Sensing
by Zi Li, Jinhui Zhu, Zixuan Wang, Hao Hu and Tian Zhang
Sensors 2025, 25(16), 5006; https://doi.org/10.3390/s25165006 - 13 Aug 2025
Viewed by 276
Abstract
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile [...] Read more.
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile “one-pot” strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I0, ~2.3) with rapid response (0.1 s). In its dried state (D-SPG), the film leverages the starch’s hygroscopicity for humidity sensing, detecting minute moisture changes (ΔRH = 6.6%) within 120 ms and outputting 0.4~0.5 (ΔI/I0) signal amplitudes. The distinct state-dependent responsiveness enables tailored applications: SPG monitors physiological motions (e.g., pulse waves and joint movements) via conformal skin attachment, while D-SPG integrated into masks quantifies respiratory intensity with 3× signal enhancement during exercise. This work pioneers a sustainable candidate for biodegradable flexible electronics, overcoming trade-off limitations between mechanical integrity, signal stability, and dual responsiveness in starch hydrogels through synergistic network design. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

15 pages, 2038 KB  
Article
Experimental and Mechanistic Study of Geometric Asymmetry Effects on Gas–Coal Dust Coupling Explosions in Turning Pipelines
by Shaoshuai Guo, Yuansheng Wang, Guoxun Jing and Yue Sun
Symmetry 2025, 17(8), 1301; https://doi.org/10.3390/sym17081301 - 12 Aug 2025
Viewed by 240
Abstract
The geometric symmetry of the pipeline constitutes a critical determinant in regulating the energy propagation dynamics during the explosion process. In the present study, a transparent plexiglass pipe experimental system incorporating a range of angles (30° to 150°) was meticulously constructed. Leveraging high-frequency [...] Read more.
The geometric symmetry of the pipeline constitutes a critical determinant in regulating the energy propagation dynamics during the explosion process. In the present study, a transparent plexiglass pipe experimental system incorporating a range of angles (30° to 150°) was meticulously constructed. Leveraging high-frequency pressure sensors in conjunction with high-speed camera technology, this investigation examines the influence of the pipe angle, which disrupts geometric symmetry, on the coupling explosion of gas and coal dust. The experimental findings illustrate that an increase in the pipeline turning angle significantly enhances the velocity of the explosion flame front (with the maximum velocity escalating from 97.92 m/s to 361.28 m/s) and concurrently reduces the total propagation time (from 71 ms to 56.5 ms). Moreover, there is a notable reduction in the duration of the explosion flame, decreasing from 240.5 ms to 64.17 ms at the coal dust deposition point. The peak overpressure of the shock wave exhibits a significant increase with the augmentation of the turning angle (rising from 7.07 kPa at 30° to 88.40 kPa at 150°). Furthermore, the overpressure in the fore section of the turning is amplified, attributable to the superimposition of reflected waves and turbulent effects. This study elucidates critical mechanisms including turbulence-enhanced combustion, secondary dust generation from coal dust, and energy dissipation resulting from abrupt alterations in pipeline geometry, thereby offering a theoretical framework for the prevention and effective emergency management of coal mine explosion disasters. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 15264 KB  
Article
Experimental Study on Grouting Seepage Characteristics in Rough Single Microfissure Under Triaxial Stress States
by Minghao Yang, Shuai Zhang, Mingbin Wang, Junling Qin, Wenhan Fan and Yue Wu
Materials 2025, 18(16), 3746; https://doi.org/10.3390/ma18163746 - 11 Aug 2025
Viewed by 299
Abstract
The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of [...] Read more.
The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of slurry properties and grouting simulations. Through systematic analysis of ultrafine cement grout performance across water–cement (W/C) ratios, this study establishes optimal injectable mix proportions. Through dedicated molds, sandstone-like microfissures with 0.2 mm apertures and controlled roughness (JRC = 0–2, 4–6, 10–12) were fabricated, and instrumented with fiber Bragg grating (FBG) sensors for real-time strain monitoring. Triaxial stress-permeation experiments under 6 and 7 MPa confining pressures quantify the coupled effects of fissure roughness, grouting pressure, and confining stress on volumetric flow rate and fissure deformation. Key findings include: (1) Slurry viscosity decreased monotonically with higher W/C ratios, while bleeding rate exhibited a proportional increase. At a W/C ratio = 1.6, the 2 h bleeding rate reached 7.8%, categorizing the slurry as unstable. (2) Experimental results demonstrate that increased surface roughness significantly enhances particle deposition–aggregation phenomena at grouting inlets, thereby reducing the success rate of grouting simulations. (3) The volumetric flow rate of ultrafine cement grout decreases with elevated roughness but increases proportionally with applied grouting pressure. (4) Under identical grouting pressure conditions, the relative variation in strain values among measurement points becomes more pronounced with increasing roughness of the specimen’s microfissures. This research resolves critical challenges in material selection, injectability, and seepage–deformation mechanisms for microfissure grouting, establishing that the W/C ratio governs grout performance while surface roughness dictates grouting efficacy. These findings provide theoretical guidance for water-blocking grouting engineering in microfissures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 1563 KB  
Article
Tough Hydrogel Reinforced by Meta-Aramid Nanofibers for Flexible Sensors
by Zhiwen Hou, Yongzheng Li, Donghao Zhang, Cun Peng, Yan Wang and Kunyan Sui
Polymers 2025, 17(16), 2179; https://doi.org/10.3390/polym17162179 - 9 Aug 2025
Viewed by 501
Abstract
Hydrogels exhibit significant promise for advanced flexible sensing applications owing to their intrinsic softness, biocompatibility, and customizable functionalities. Nevertheless, their limited mechanical strength poses a critical barrier to practical implementation. In this study, we engineered a mechanically robust alginate/chitosan (SA/CS) hydrogel reinforced with [...] Read more.
Hydrogels exhibit significant promise for advanced flexible sensing applications owing to their intrinsic softness, biocompatibility, and customizable functionalities. Nevertheless, their limited mechanical strength poses a critical barrier to practical implementation. In this study, we engineered a mechanically robust alginate/chitosan (SA/CS) hydrogel reinforced with meta-aramid (PMIA) nanofibers. The resulting composite hydrogel achieves a tensile strength of 16.8 MPa, substantially exceeding the performance of conventional biomass-derived hydrogels. When employed as a flexible sensor, the hydrogel demonstrates exceptional pressure-sensing capabilities, featuring high sensitivity (178.41 MΩ/MPa below 5 kPa), rapid response kinetics (0.4–0.8 s), and sustained stability (>200 cycles). Leveraging these properties, we successfully monitored vocal cord vibrations and finger motion trajectories, highlighting their potential for biomechanical sensing applications. Full article
Show Figures

Figure 1

22 pages, 4651 KB  
Review
Potential Issues and Optimization Solutions for High-Compression-Ratio Utilization in Hybrid-Dedicated Gasoline Engines
by Qiuyu Liu, Baitan Ma, Zhiqiang Zhang, Chunyun Fu and Zhe Kang
Energies 2025, 18(15), 4204; https://doi.org/10.3390/en18154204 - 7 Aug 2025
Viewed by 414
Abstract
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical [...] Read more.
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical constraints, including intensified knock propensity, increased heat transfer (HTR) losses, reduced combustion stability, augmented dissociation losses, and cold-start misfire risks. The feasibility and necessity of CR enhancement in hybrid systems were comprehensively evaluated based on these factors, with fundamental mechanisms of the detrimental effects elucidated. To address these challenges, optimized countermeasures were synthesized: knock suppression via high-octane fuels, EGR technology, lean combustion, and in-cylinder water injection; heat transfer reduction through thermal barrier coatings and independent CR/expansion-ratio control; misfire risk monitoring using ion current or cylinder pressure sensors. These approaches provide viable pathways to overcome high-CR limitations and optimize engine performance. Nevertheless, current research remains confined to isolated solutions, warranting future focus on integrated optimization mechanisms investigating synergistic interactions of multiple strategies under high-CR conditions. Full article
Show Figures

Figure 1

27 pages, 2361 KB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Viewed by 588
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

15 pages, 2440 KB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 - 1 Aug 2025
Viewed by 446
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
Show Figures

Figure 1

20 pages, 3582 KB  
Article
Design and Development of a Real-Time Pressure-Driven Monitoring System for In Vitro Microvasculature Formation
by Gayathri Suresh, Bradley E. Pearson, Ryan Schreiner, Yang Lin, Shahin Rafii and Sina Y. Rabbany
Biomimetics 2025, 10(8), 501; https://doi.org/10.3390/biomimetics10080501 - 1 Aug 2025
Viewed by 520
Abstract
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost [...] Read more.
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization in vitro. In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered in vitro platforms for organoid vascularization in regenerative medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

16 pages, 4484 KB  
Article
Microscale Flow Simulation of Resin in RTM Process for Optical Fiber-Embedded Composites
by Tianyou Lu, Bo Ruan, Zhanjun Wu and Lei Yang
Polymers 2025, 17(15), 2076; https://doi.org/10.3390/polym17152076 - 29 Jul 2025
Viewed by 321
Abstract
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product [...] Read more.
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product is highly dependent on the resin flow and impregnation effects. The embedding of optical fibers can affect the microscopic flow and impregnation behavior of the resin; therefore, it is necessary to investigate the specific impact of optical fiber embedding on the resin flow and impregnation of fiber bundles. Due to the difficulty of directly observing this process at the microscopic scale through experiments, numerical simulation has become a key method for studying this issue. This paper focuses on the resin micro-flow in RTM processes for intelligent composites with embedded optical fibers. Firstly, a steady-state analysis of the resin flow and impregnation process was conducted using COMSOL 6.0 obtaining the velocity and pressure field distribution characteristics under different optical fiber embedding conditions. Secondly, the dynamic process of resin flow and impregnation of fiber bundles at the microscopic scale was simulated using Fluent 2022R2. This study comprehensively analyzes the impact of different optical fiber embedding configurations on resin flow and impregnation characteristics, determining the impregnation time and porosity after impregnation under different optical fiber embedding scenarios. Additionally, this study reveals the mechanisms of pore formation and their distribution patterns. The research findings provide important theoretical guidance for optimizing the RTM molding process parameters for intelligent composite materials. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

14 pages, 4052 KB  
Article
ZnO/PVDF Nanogenerators with Hemisphere-Patterned PDMS for Enhanced Piezoelectric Performance
by Kibum Song and Keun-Young Shin
Polymers 2025, 17(15), 2041; https://doi.org/10.3390/polym17152041 - 26 Jul 2025
Viewed by 574
Abstract
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of [...] Read more.
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of ZnO-dispersed PVDF nanofibers. Varying the ZnO concentration from 0.6 to 1.4 wt% allowed us to evaluate its effect on structural, dielectric, and piezoelectric properties. The nanogenerator containing 0.8 wt% ZnO exhibited the thinnest fibers (371 nm), the highest β-phase fraction (85.6%), and the highest dielectric constant (35.8). As a result, it achieved the maximum output voltage of 7.30 V, with excellent signal consistency under an applied pressure of 5 N. Comparisons with pristine PVDF- and ZnO/PVDF-only devices demonstrated the synergistic effect of ZnO loading and patterned PDMS on the enhancement of piezoelectric output. The hemisphere-patterned PDMS substrate improved the mechanical strain distribution, interfacial contact, and charge collection efficiency. These results highlight the potential of ZnO/PVDF/PDMS hybrid nanogenerators for use in wearable electronics and self-powered sensor systems. Full article
(This article belongs to the Special Issue Recent Advances in Applied Polymers in Renewable Energy)
Show Figures

Graphical abstract

20 pages, 3903 KB  
Article
High-Performance Barium Titanate, Carbon Nanotube, and Styrene–Butadiene Rubber-Based Single Composite TENG for Energy Harvesting and Handwriting Recognition
by Md Najib Alam, Vineet Kumar, Youjung Kim, Dong-Joo Lee and Sang-Shin Park
Polymers 2025, 17(15), 2016; https://doi.org/10.3390/polym17152016 - 23 Jul 2025
Viewed by 447
Abstract
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. [...] Read more.
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. The energy harvesting efficiency depends on the type and amount of fillers, as well as their dispersion within the matrix. Stearic acid modification of BT enables near-nanoscale filler distribution, resulting in high energy conversion efficiencies. The composite achieved power efficiency, power density, charge efficiency, and charge density values of 1.127 nW/N, 8.258 mW/m3, 0.146 nC/N, and 1.072 mC/m3, respectively, under only 2% cyclic compressive strain at 0.85 Hz. The material performs better at low stress–strain ranges, exhibiting higher charge efficiency. The generated charge in the TENG composite is well correlated with the compressive stress, which provides a minimum activation pressure of 0.144 kPa, making it suitable for low-pressure sensing applications. A flat composite with dimensions of 0.02 × 6 × 5 cm3 can produce a power density of 26.04 W/m3, a charge density of 0.205 mC/m3, and an output voltage of 10 V from a single hand pat. The rubber composite also demonstrates high accuracy in handwriting recognition across different individuals, with clear differences in sensitivity curves. Repeated attempts by the same person show minimal deviation (<5%) in writing time. Additionally, the presence of reinforcing fillers enhances mechanical strength and durability, making the composite suitable for long-term cyclic energy harvesting and wearable sensor applications. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 4494 KB  
Article
A Fault Detection Method for Multi-Sensor Data of Spring Circuit Breakers Based on the RF-Adaboost Algorithm
by Chuang Wang, Peijie Cong, Sifan Yu, Jing Yuan, Nian Lv, Yu Ling, Zheng Peng, Haoyan Zhang and Hongwei Mei
Energies 2025, 18(14), 3890; https://doi.org/10.3390/en18143890 - 21 Jul 2025
Viewed by 1250
Abstract
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost [...] Read more.
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost algorithm for spring-operated circuit breakers. By integrating pressure, speed, coil current, and energy storage motor sensors into the mechanism, multi-source operational data are acquired and processed via denoising and feature extraction techniques. A fault detection model is then constructed using the RF-Adaboost classifier. The experimental results demonstrate that the proposed method achieves over 96% accuracy in identifying typical fault states such as coil voltage deviation, reset spring fatigue, and closing spring degradation, outperforming conventional approaches. These results validate the model’s effectiveness and robustness in diagnosing complex mechanical failures in circuit breakers. Full article
(This article belongs to the Special Issue Advanced Control and Monitoring of High Voltage Power Systems)
Show Figures

Figure 1

Back to TopTop