Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,252)

Search Parameters:
Keywords = mechanical properties of composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 16095 KB  
Article
Mechanistic Insights into the Non-Monotonic Flame Retardancy of CPVC/ABS Composite
by Long Zhang, Lewen Liu, Shengwen Zou, Peng Qin, Zhengzhu Zhu, Shaoyun Guo and Qining Ke
Polymers 2025, 17(17), 2415; https://doi.org/10.3390/polym17172415 (registering DOI) - 5 Sep 2025
Abstract
The chlorinated polyvinyl chloride (CPVC)/acrylonitrile–butadiene–styrene (ABS) composite represents an important class of engineering thermoplastics, offering a strong balance of flame retardancy, chemical resistance, mechanical properties, processability, and cost efficiency. Despite its widespread application, the flame-retardant mechanism in the CPVC/ABS system remains poorly understood. [...] Read more.
The chlorinated polyvinyl chloride (CPVC)/acrylonitrile–butadiene–styrene (ABS) composite represents an important class of engineering thermoplastics, offering a strong balance of flame retardancy, chemical resistance, mechanical properties, processability, and cost efficiency. Despite its widespread application, the flame-retardant mechanism in the CPVC/ABS system remains poorly understood. This work systematically investigated the non-monotonic flame-retardant behavior of CPVC/ABS composites through comprehensive characterization. The combustion performance, as determined by limiting oxygen index (LOI), UL-94 vertical burning tests, and cone calorimeter tests (CCTs), showed an unexpected pattern of flame retardancy initially improving then decreasing with reduced ABS content, which contradicted conventional expectations. The optimal composition at a CPVC/ABS ratio of 2:3 demonstrated good performance, achieving a UL-94 5VA rating and 47.3% reduction in total heat release (THR) relative to CPVC. A more stable and compact structure was observed from the morphology analysis of the residual char, and the thermogravimetric analysis further revealed a synergistic effect in carbonization behavior. The above flame-retardant mechanism could be interpreted by the combined effects of accelerated char formation during the early decomposition stage and significantly enhanced char crosslinking degree. These findings provided fundamental insights for designing high-performance flame-retardant polymer composites and facilitating their industrial implementation. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

24 pages, 2397 KB  
Article
Carbonation Treatments for Durable Low-Carbon Recycled Aggregate Concrete
by Ruth Saavedra and Miren Etxeberria
Materials 2025, 18(17), 4168; https://doi.org/10.3390/ma18174168 (registering DOI) - 5 Sep 2025
Abstract
The use of supplementary cementitious materials and the CO2 uptake capacity of cementitious materials—including recycled concrete aggregates—not only promotes the circular economy but may also present an opportunity to increase their ecoefficiency, thus improving the shrinkage and durability properties of concretes. This [...] Read more.
The use of supplementary cementitious materials and the CO2 uptake capacity of cementitious materials—including recycled concrete aggregates—not only promotes the circular economy but may also present an opportunity to increase their ecoefficiency, thus improving the shrinkage and durability properties of concretes. This study analyses the impact of carbonated recycled aggregates and CO2 curing on improving the properties of commercial structural self-compacting concrete. Recycled aggregate concretes (RACs) were produced using 50% and 60% coarse recycled concrete aggregate (RCA), in carbonated and uncarbonated forms, and two types of cement—ordinary Portland cement (CEM I) and CEM II/B-M Portland composite cement containing 24% less clinker than CEM I—all with similar compressive strengths. After evaluating the CO2 curing process, the physical, mechanical, shrinkage, and durability properties (including suction and carbonation resistance) of the concretes were assessed. The properties of the RACs were compared with those achieved by conventional concrete, to generate insights for developing a highly sustainable concrete manufacturing process. Taking all the assessed properties into account, the CO2 curing process improved concrete’s properties. In addition, RAC-C50-I concrete (using CEM I with carbonated RCA) and RAC50-II (using CEM IIB and uncarbonated RCA) exhibited the greatest durability, resulting in reductions in sorptivity values of 40% and 45%, and decreases in the carbonation coefficient of 16% and 21%, respectively, compared to concrete without CO2 curing. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

17 pages, 2662 KB  
Article
Tensile and Dynamic Toughness of Kenaf Fiber-Reinforced Epoxy Composites
by Thuane Teixeira da Silva, Matheus Pereira Ribeiro, Lucas de Mendonça Neuba, Pedro Henrique Poubel Mendonça da Silveira, Noan Tonini Simonassi, Sergio Neves Monteiro and Lucio Fabio Cassiano Nascimento
Fibers 2025, 13(9), 120; https://doi.org/10.3390/fib13090120 (registering DOI) - 5 Sep 2025
Abstract
The environmental impact of petroleum-based materials in driving climate change has stimulated growing interest in natural lignocellulosic fibers (NLFs) as reinforcements for polymeric matrices. NLFs exhibit specific mechanical properties that, in some cases, rival those of synthetic fibers such as aramid, carbon, and [...] Read more.
The environmental impact of petroleum-based materials in driving climate change has stimulated growing interest in natural lignocellulosic fibers (NLFs) as reinforcements for polymeric matrices. NLFs exhibit specific mechanical properties that, in some cases, rival those of synthetic fibers such as aramid, carbon, and glass. Among the wide variety of NLFs, kenaf has been extensively investigated in applications including textiles, construction, and furniture, owing to its long-established global cultivation. Previous studies have also demonstrated its potential as a reinforcement in polymeric matrices for engineering applications, including ballistic protection. In this context, the present work reports, for the first time, on the tensile and dynamic impact toughness of epoxy matrix composites reinforced with 10, 20, and 30 vol% kenaf fibers. The tensile toughness, defined as the area under the stress–strain curve up to fracture, ranged from 9.36 kJ/m2 at 10 vol% to 52.30 kJ/m2 at 30 vol% fiber content—representing a three- to tenfold increase compared to the neat epoxy matrix. In Izod impact tests, the composites containing 30 vol% kenaf fibers absorbed 22 times more energy than the neat epoxy, rising from 1.8 to 38.8 kJ/m2. On average, the tensile toughness values exceeded those of the corresponding dynamic impact toughness. Scanning electron microscopy revealed the fracture morphology and highlighted the influence of the fibers under both toughness conditions. Full article
Show Figures

Figure 1

30 pages, 12288 KB  
Article
Experimental Investigation of Four-Point Bending Test Results of GFRP and CFRP Composites Used in Wind Turbine Blades
by Senai Yalçinkaya, Mehmet Fatih Yoldaş and Dudu Mertgenç Yoldaş
Polymers 2025, 17(17), 2412; https://doi.org/10.3390/polym17172412 - 5 Sep 2025
Abstract
The depletion of fossil fuels and the rise of environmental concerns have increased the importance of renewable energy sources, positioning wind energy as a key alternative. Modern wind turbine blades are predominantly manufactured from composite materials due to their light weight, high strength, [...] Read more.
The depletion of fossil fuels and the rise of environmental concerns have increased the importance of renewable energy sources, positioning wind energy as a key alternative. Modern wind turbine blades are predominantly manufactured from composite materials due to their light weight, high strength, and resistance to corrosion. In offshore applications, approximately 95% of the composite content is glass fiber-reinforced polymer (GFRP), while the remaining 5% is carbon fiber-reinforced polymer (CFRP). GFRP is favored for its low cost and fatigue resistance, whereas CFRP offers superior strength and stiffness but is limited by high production costs. This study investigates the durability of adhesively bonded GFRP and CFRP joints under marine exposure. Seven-layer GFRP and eight-layer CFRP laminates were produced using a 90° unidirectional twill weave and prepared in accordance with ASTM D5868-01. Specimens were immersed in natural Aegean Sea water (21 °C, salinity 3.3–3.7%) for 1, 2, and 3 months. Measurements revealed that GFRP absorbed significantly more moisture (1.02%, 2.97%, 3.78%) than CFRP (0.49%, 0.76%, 0.91%). Four-point bending tests conducted according to ASTM D790 showed reductions in Young’s modulus of up to 9.45% for GFRP and 3.48% for CFRP. Scanning electron microscopy (SEM) confirmed that moisture-induced degradation was more severe in GFRP joints compared to CFRP. These findings highlight the critical role of environmental exposure in the mechanical performance of marine composite joints. Full article
Show Figures

Figure 1

18 pages, 4842 KB  
Article
Study on the Hybrid Effect of Basalt and Polypropylene Fibers on the Mechanical Properties of Concrete
by Lianying Ding, Zhenan Lin, Cundong Xu, Hui Xu, Bofei Li and Jiaxing Shen
Buildings 2025, 15(17), 3197; https://doi.org/10.3390/buildings15173197 (registering DOI) - 4 Sep 2025
Abstract
Hybrid fiber-reinforced concrete (HFRC), renowned for its significantly enhanced mechanical properties and structural integrity, is widely used in infrastructure construction and has become a key avenue of modern high-performance concrete development. The hybrid application of basalt fiber (BF) and polypropylene fiber (PPF) at [...] Read more.
Hybrid fiber-reinforced concrete (HFRC), renowned for its significantly enhanced mechanical properties and structural integrity, is widely used in infrastructure construction and has become a key avenue of modern high-performance concrete development. The hybrid application of basalt fiber (BF) and polypropylene fiber (PPF) at optimized ratios generates synergistic effects, improving both mechanical performance and material service reliability. To explore and evaluate the synergistic mechanism of BF-PPF hybrid fibers on concrete’s mechanical properties and performance, this study employs an orthogonal experimental design and mechanical testing methods, measuring the materials’ static compressive strength (loading rate: 0.6 mm/min), splitting tensile strength (loading rate: 0.12–0.14 MPa/s), dynamic elastic modulus (measured by the ultrasonic method), and dynamic compressive strength (loading rates: 0.6 mm/min, 6 mm/min, and 60 mm/min). For these tests, we prepared 100 mm × 100 mm × 100 mm cubic specimens (for static compressive, dynamic compressive, and splitting tensile tests) and 400 mm × 100 mm × 100 mm prismatic specimens (for dynamic elastic modulus tests), with three parallel specimens in each test group. In addition, the microstructure was characterized by scanning electron microscopy (SEM) to observe the fiber-matrix interaction. The results show that when the BF/PPF volume ratio is 1:2 (BF0.05PPF0.1), the concrete’s compressive strength, splitting tensile strength, and elastic modulus increase by 13.7%, 76.3%, and 116.0%, respectively, with corresponding synergistic effect indices (Q) of 0.057, 0.213, and 0.241, indicating obvious positive synergy. Under dynamic loading, hybrid combinations with higher PPF content (e.g., BF0.05PPF0.1) exhibit strain-rate-dependent enhancements in compressive strength and better impact resistance. SEM analysis reveals that fibers inhibit microcrack propagation through fiber bridging, network distribution, and pull-out resistance, while also improving the interfacial transition zone’s structure. These findings provide theoretical support for the engineering application of composite fiber-reinforced concrete materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

39 pages, 1179 KB  
Review
A Review of Natural Fibers: Classification, Composition, Extraction, Treatments, and Applications
by Telmo Eleutério, Maria João Trota, Maria Gabriela Meirelles and Helena Cristina Vasconcelos
Fibers 2025, 13(9), 119; https://doi.org/10.3390/fib13090119 - 4 Sep 2025
Abstract
This review provides a comprehensive analysis of natural fibers, addressing their classification, chemical composition, extraction methods, treatments, and diverse applications. It categorizes natural fibers into plant-based (cellulose-rich), animal-based (protein-based), and mineral-based types, detailing their unique structural and chemical properties. The paper examines traditional [...] Read more.
This review provides a comprehensive analysis of natural fibers, addressing their classification, chemical composition, extraction methods, treatments, and diverse applications. It categorizes natural fibers into plant-based (cellulose-rich), animal-based (protein-based), and mineral-based types, detailing their unique structural and chemical properties. The paper examines traditional and advanced extraction techniques—including dew, water, enzymatic, chemical retting, and mechanical decortication—highlighting their impact on fiber quality and environmental sustainability. Furthermore, it reviews various chemical and biopolymer treatments designed to enhance fiber performance, reduce hydrophilicity, and improve adhesion in composite materials. The discussion extends to the multifaceted applications of natural fibers across industries such as textiles, automotive, construction, and packaging, underscoring their role in reducing reliance on synthetic materials and promoting eco-friendly innovations. The review synthesizes recent market trends and emerging fiber classifications, emphasizing the potential of natural fibers to drive sustainable development and informing future research in extraction efficiency, treatment optimization, and lifecycle analysis. Full article
Show Figures

Figure 1

18 pages, 1709 KB  
Article
Formation of Improved Metallurgical Properties and Carbon Structure of Coke by Optimizing the Composition of Petrographically Heterogeneous Interbasin Coal Batches
by Denis Miroshnichenko, Kateryna Shmeltser, Maryna Kormer, Leonid Bannikov, Serhii Nedbailo, Mykhailo Miroshnychenko, Natalya Mukina and Mariia Shved
C 2025, 11(3), 69; https://doi.org/10.3390/c11030069 - 4 Sep 2025
Abstract
Given the multi-basin raw material base for coking that has been formed at most industry enterprises, there is an urgent need to optimize the component composition and improve the basic technological methods of coal raw material preparation, taking into account the petrographic characteristics [...] Read more.
Given the multi-basin raw material base for coking that has been formed at most industry enterprises, there is an urgent need to optimize the component composition and improve the basic technological methods of coal raw material preparation, taking into account the petrographic characteristics of coal batches. A comprehensive study of the components included in a coke chemical enterprise’s coking raw material base was carried out. The work used standardized methods for studying coal and coal batches’ technological and plastic–viscous properties. The qualitative characteristics of coke were determined using physical–mechanical and thermochemical methods of studying standardized indicators: crushability (M25), abrasion (M10), reactivity (CRI), post-reaction strength (CSR), and specific electrical resistance (ρ). The results were analyzed using the licensed Microsoft Excel computer program. Based on the results of proximate, plastometric, and petrographic analyses of the studied coal samples and data from experimental industrial coking, proposals were made to optimize the component composition, properties of the coal batch, and technology for its preparation for coking. The established inverse dependence of Gibbs free energy (ΔGf,total) on the reaction capacity of coke CRI and its direct reliance on its post-reaction strength CSR confirmed the feasibility of using ΔGf,total as a thermodynamic predictive parameter for optimizing and compiling coal batches that produce less reactive, stronger coke. This made it possible to improve the quality indicators of metallurgical coke. Thus, according to the M25 crushability index, the mechanical strength increased by 0.6%, and the M10 abrasion decreased by 0.4%. Significant improvements in thermochemical properties and an increase in the orderliness of the carbon structure were recorded: the CRI reactivity decreased by 3.1%, the CSR post-reaction strength increased by 8.3%, and the specific resistance decreased by 8.4%. Full article
(This article belongs to the Topic Advances in Carbon-Based Materials)
Show Figures

Figure 1

16 pages, 3623 KB  
Article
A New Microstructural Concept and Water-Free Manufacturing of an Al2O3-Based Refractory Material for Auxiliary Equipment of Sintering Furnaces
by Monika Spyrka, Piotr Kula and Sebastian Miszczak
Materials 2025, 18(17), 4144; https://doi.org/10.3390/ma18174144 - 4 Sep 2025
Abstract
This study presents the development of a novel alumina-based ceramic composite designed for refractory applications in auxiliary components of sintering furnaces. The innovative concept relies on a three-phase microstructural architecture: a fine-grained alumina matrix improves cohesion, coarse particles act as crack propagation barriers, [...] Read more.
This study presents the development of a novel alumina-based ceramic composite designed for refractory applications in auxiliary components of sintering furnaces. The innovative concept relies on a three-phase microstructural architecture: a fine-grained alumina matrix improves cohesion, coarse particles act as crack propagation barriers, and spherical granules are intentionally introduced to increase porosity while preserving mechanical strength. This design reduces thermal capacity, enhancing the material’s energy efficiency under high-frequency thermal cycling and offering potential for operating cost reduction. A further novelty is the water-free forming process, which eliminates issues related to drying and deformation. The material was characterized using scanning electron microscopy (SEM), mechanical strength testing, and refractoriness under load (RUL) analysis to establish the structure–property relationships of the developed composite. The results demonstrate that the developed spherical alumina-based composite possesses excellent thermal and mechanical properties, making it a promising candidate for high-temperature industrial applications, particularly as auxiliary refractory plates. Full article
(This article belongs to the Special Issue High Temperature-Resistant Ceramics and Composites)
Show Figures

Figure 1

15 pages, 7971 KB  
Article
Effect of Short Carbon Fiber Volume Fraction on High-Temperature Tensile Properties of SCF/2A12 Composite
by Jinhao Wu, Shiyin Huang, Qingnan Meng, Mu Yuan, Sifan Wang, Xinyue Mao, Yuting Qiu and Linkai He
Materials 2025, 18(17), 4143; https://doi.org/10.3390/ma18174143 - 4 Sep 2025
Abstract
To meet the increasing performance requirements of drilling pipes, including a reduced weight and enhanced mechanical and thermal properties, the application of aluminum alloys must be further advanced. Short-carbon-fiber-reinforced 2A12 aluminum alloy composites were fabricated via powder metallurgy. The density, hardness, and tensile [...] Read more.
To meet the increasing performance requirements of drilling pipes, including a reduced weight and enhanced mechanical and thermal properties, the application of aluminum alloys must be further advanced. Short-carbon-fiber-reinforced 2A12 aluminum alloy composites were fabricated via powder metallurgy. The density, hardness, and tensile strength of the composites were measured. The influence of the carbon fiber content on the composite’s mechanical properties was investigated across various temperatures. The composite material exhibited maximum yield strengths of 412 MPa at room temperature, 381 MPa at 180 °C, and 337 MPa at 220 °C. Incorporating carbon fibers increased the service temperature of a 2A12 aluminum alloy by approximately 40 °C. The strength increment of composites with a fiber content below 6 vol.% corresponded to the load transfer mechanism of carbon fiber, while the reason for non-conformity at a more than 6 vol.% fiber content was the continuous fracturing of carbon fibers, leading to the failure of the composites. Full article
Show Figures

Figure 1

13 pages, 3828 KB  
Article
Arc Jet Testing and Modeling Study for Ablation of SiFRP Composites in Shear Environment
by Meicong Wang, Jixiang Shan, Xin Yang, Qianghong Chen, Yonggang Lu and Yupeng Hu
Materials 2025, 18(17), 4142; https://doi.org/10.3390/ma18174142 - 4 Sep 2025
Abstract
The ablation process of a silica fiber-reinforced polymer (SiFRP) composite under aerodynamic heating and a shear environment was investigated by experiments and numerical study. The flat plate samples were tested in an arc jet wind tunnel under heat flux and pressure ranging from [...] Read more.
The ablation process of a silica fiber-reinforced polymer (SiFRP) composite under aerodynamic heating and a shear environment was investigated by experiments and numerical study. The flat plate samples were tested in an arc jet wind tunnel under heat flux and pressure ranging from 107 W/cm2 at 2.3 kPa to 1100 W/cm2 at 84 kPa. The heating surface experiences shear as high as 1900 Pa. The in-depth thermal response and ablating surface temperature of the specimens are measured during ablation. According to the ablation experimental results, a multi-layer ablation model was established that accounts for the effects of carbon deposition, investigating the thermophysical properties of the ablation deposition layer. The accuracy of the proposed ablation model was evaluated by comparing the calculated and experimental surface ablation recession and internal temperature of a silica–phenolic composite under steady-state ablation. Carbon–silica reaction heat is the important endothermic mechanism for silica-reinforced composites. The research provides valuable reference for understanding the ablative thermal protection mechanism of silicon–phenolic composites in a high shear environment. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

16 pages, 4056 KB  
Article
Experimental Study on Compressive Behavior of CFRP-Confined Pre-Damaged Pinus sylvestris var. mongolia Composited Wooden Column
by Sheng Peng, Wei Lou, Yifan Qiao, Lanyu Liu, Huacheng Liu and Dongping Wu
Buildings 2025, 15(17), 3173; https://doi.org/10.3390/buildings15173173 - 3 Sep 2025
Abstract
In China, most of the ancient wooden structure mortise and tenon buildings, under the long-term upper load, have columns with surface surfaces that have varying degrees of damage, which need to be repaired and strengthened urgently, but the theory related to CFRP, mortise [...] Read more.
In China, most of the ancient wooden structure mortise and tenon buildings, under the long-term upper load, have columns with surface surfaces that have varying degrees of damage, which need to be repaired and strengthened urgently, but the theory related to CFRP, mortise size, and pre-damage simulation still needs to be deeply studied. To investigate the effects of CFRP reinforcement layers, cross-sectional area of concealed tenons as the projected area after installation, and tenon engagement length as the axial length after installation on the axial compressive mechanical properties of pre-damaged quad-segment spliced Pinus sylvestris var. mongolia composited wooden columns, axial compression failure tests were conducted on 10 specimens following pre-damage simulation and CFRP strengthening. The experimental program yielded comprehensive data, including observations, mechanical analyses, load-displacement curves, load-strain curves, ultimate load-bearing capacities, ductility coefficients, and stiffness values. The results demonstrate that with consistent tenon cross-sectional area and engagement length, increasing CFRP layers from 1 to 3 raises the ultimate bearing capacity from 472.3 kN to 620.3 kN and improves the ductility coefficient from 4.67 to 7.95, clearly indicating that CFRP reinforcement significantly enhances axial compressive performance while effectively mitigating brittle failure. When maintaining constant CFRP layers and tenon cross-sectional area, extending the tenon engagement length from 30 mm to 90 mm elevates the bearing capacity from 494.95 kN to 546.3 kN and boosts the ductility coefficient from 5.58 to 7.95. In contrast, with fixed CFRP layers and engagement length, expanding the tenon cross-sectional area from 360 mm2 to 810 mm2 produces only marginal bearing capacity improvement from 548.2 kN to 556.2 kN with ductility coefficients ranging between 4.67 and 5.56, conclusively revealing that tenon engagement length has substantially greater influence on mechanical properties than cross-sectional area. The optimal axial compressive performance configuration combines 3 CFRP layers, an 810 mm2 tenon cross-section, and a 90 mm engagement length. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 6957 KB  
Article
Integrated Multi-Omics Analysis Reveals the Role of Resveratrol in Regulating the Intestinal Function of Megalobrama amblycephala via m6A Methylation
by Zhengyan Gu, Qiaoqiao Mu, Linjie Qian, Yan Lin, Wenqiang Jiang, Siyue Lu, Linghong Miao and Xianping Ge
Int. J. Mol. Sci. 2025, 26(17), 8587; https://doi.org/10.3390/ijms26178587 - 3 Sep 2025
Abstract
Resveratrol (RES), a natural polyphenol with lipid metabolism-regulating properties, also demonstrates remarkable efficacy in strengthening intestinal barrier integrity. In order to elucidate the mechanism by which RES ameliorates intestinal damage and lipid metabolism disturbances in Megalobrama amblycephala under a high-fat (HF) diet, a [...] Read more.
Resveratrol (RES), a natural polyphenol with lipid metabolism-regulating properties, also demonstrates remarkable efficacy in strengthening intestinal barrier integrity. In order to elucidate the mechanism by which RES ameliorates intestinal damage and lipid metabolism disturbances in Megalobrama amblycephala under a high-fat (HF) diet, a conventional diet (CON), an HF diet (HF), or an HF diet supplemented with 0.6, 3, or 6 g/kg RES (HF + 0.06%, 0.3%, or 0.6% RES) was fed to fish. After 8 weeks, RES supplementation in the HF diet significantly improved the growth performance and alleviated hepatic lipid deposition. Microbiota profiling revealed RES improved intestinal barrier function by reducing α-diversity, Actinobacteria and Bosea abundances, and enriching Firmicutes abundance. RES also maintained the integrity of the intestinal physical barrier and inhibited the inflammatory response. MeRIP-seq analysis indicated that RES modulated intestinal mRNA m6A methylation by upregulating methyltransferase-like 3 (mettl3) and downregulating fat mass and obesity-associated gene (fto) and Alk B homolog 5 (alkbh5). Combined RNA-seq and MeRIP-seq data revealed that RES alleviated endoplasmic reticulum stress (ERS) by upregulating the m6A methylation and gene level of heat shock protein 70 (hsp70). Correlation analyses identified significant associations between intestinal microbiota composition and ERS, tight junction, and inflammation. In summary, RES ameliorates lipid dysregulation via a synergistic mechanism involving intestinal microbiota, m6A modification, ERS, barrier function, and inflammatory response. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

12 pages, 2949 KB  
Article
Micro-Mechanical Properties and Corrosion Resistance of Zr-Based Metallic Glass Matrix Composite Coatings Fabricated by Laser Cladding Technology
by Wenle Wang and Zhifeng Yan
Appl. Sci. 2025, 15(17), 9698; https://doi.org/10.3390/app15179698 - 3 Sep 2025
Abstract
Laser cladding with ultrafast cooling rates enables effective fabrication of metallic glass matrix composite (MGMC) coatings, significantly enhancing the hardness, corrosion resistance, and mechanical properties of metallic substrates. In this study, a multi-layer Zr65Al7.5Ni10Cu17.5 (at. %) [...] Read more.
Laser cladding with ultrafast cooling rates enables effective fabrication of metallic glass matrix composite (MGMC) coatings, significantly enhancing the hardness, corrosion resistance, and mechanical properties of metallic substrates. In this study, a multi-layer Zr65Al7.5Ni10Cu17.5 (at. %) MGMC coating was successfully fabricated by laser cladding technology. The effects of the region-dependent microstructural evolution on micro-mechanical properties and corrosion resistance were systematically investigated. The results indicated that the high impurity content of the powder feedstock promoted the crystallization of the coating during laser cladding. Moreover, coarse columnar crystals in the bottom region of the coating nucleated epitaxially at the coating/substrate interface and propagated along the thermal gradient parallel to the building direction, while dendritic crystals dominated the middle region under moderate thermal gradients. In the top region, fine dendritic and equiaxed crystals deposited in the amorphous matrix, due to the lowest thermal gradient and the highest cooling rate. Correspondingly, nanoindentation results revealed that the top region exhibited peak hardness (H), maximum elastic modulus (E), and optimal H/E ratio, exceeding values in both the bottom region and substrate. Simultaneously, the metallic glass matrix composite coating demonstrated significantly better corrosion resistance than the substrate due to its amorphous phase and protective passive film formation. This work advances amorphous solidification theory while expanding applications of metallic glasses in surface engineering. Full article
Show Figures

Figure 1

15 pages, 2419 KB  
Article
Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
by Giovanna Colucci, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo and Massimo Messori
J. Compos. Sci. 2025, 9(9), 479; https://doi.org/10.3390/jcs9090479 - 3 Sep 2025
Abstract
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization [...] Read more.
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization (VP) using a Liquid Crystal Display (LCD) 3D printer. Formulation viscosity was studied because of its important role in a VP process able to influence the printability of the final parts. Different 3D printed architectures were successfully realized with good resolution and accuracy, high level of detail, and flexibility. The effect of OP addition was investigated by thermal (TGA and DSC), morphological (SEM and PSD), viscoelastic (DMA), and mechanical (tensile testing) characterization. The filler led to an increase in the Tg, storage modulus, and tensile properties, underlining the stiffening effect induced by the OP particles onto the polymeric starting resin. This underlines the possibility to apply these bio-based composites in many application fields by valorizing agro-wastes, developing more sustainable materials, and taking advantages of VP 3D printing, such as low costs, minimal wastage, and customized geometry. Biocompatibility tests were also successfully carried out. The results clearly indicate that the AESO-based composites promote cell adhesion and viability. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Figure 1

12 pages, 4136 KB  
Article
Strain-Rate Dependent Behavior of Dispersed Nanocomposites
by Hayden A. Hanna, Katie A. Martin, Andrew M. Lessel, Zackery B. McClelland and Jeffery S. Wiggins
J. Compos. Sci. 2025, 9(9), 478; https://doi.org/10.3390/jcs9090478 - 3 Sep 2025
Abstract
With decreasing production costs, carbon nanomaterials have become common, scalable, and cost-effective additives in high-performance composites due to the potentially significant increases in mechanical, thermal, and electrical properties. The mechanical performance of carbon nanomaterial-reinforced matrix materials under high-strain-rate compressive conditions was investigated. This [...] Read more.
With decreasing production costs, carbon nanomaterials have become common, scalable, and cost-effective additives in high-performance composites due to the potentially significant increases in mechanical, thermal, and electrical properties. The mechanical performance of carbon nanomaterial-reinforced matrix materials under high-strain-rate compressive conditions was investigated. This study compares neat epoxy-amine with 0.1 wt.% loadings of graphene or graphite dispersed in epoxy-amine. Quasi-static and high-rate testing was conducted using an Instron load frame and Split Hopkinson Pressure Bar (SHPB), respectively, to assess the material’s response to increasing strain rates via compressive loadings. No significant change in compressive strength was observed at quasi-static strain rates, with the 0.1 wt.% graphene sample showing no significant deviation from the neat resin at high strain rates. In contrast, the 0.1 wt.% graphite sample exhibited a substantial reduction in comparative compressive strength, decreasing by ~43% at 102 s−1 strain rate and ~42% at 103 s−1 strain rate. While graphene may not significantly enhance stiffness at high strain rates, its ability to preserve ductility without introducing failure-prone features makes it a more effective additive for dynamic applications. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

Back to TopTop