Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,183)

Search Parameters:
Keywords = mechanical scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14492 KB  
Article
Inhibition Mechanism of Calcium Hydroxide on Arsenic Volatilization During Sintering of Contaminated Excavated Soils
by Xu Li, Yu Jin, Yaocheng Wang, Zhijun Dong and Weipeng Feng
Sustainability 2025, 17(20), 9027; https://doi.org/10.3390/su17209027 (registering DOI) - 12 Oct 2025
Abstract
Urbanization generates large quantities of arsenic-contaminated excavated soils that pose environmental risks due to arsenic volatilization during high-temperature sintering processes. While these soils have potential for recycling into construction materials, their reuse is hindered by arsenic release. This study demonstrated calcium hydroxide (Ca(OH) [...] Read more.
Urbanization generates large quantities of arsenic-contaminated excavated soils that pose environmental risks due to arsenic volatilization during high-temperature sintering processes. While these soils have potential for recycling into construction materials, their reuse is hindered by arsenic release. This study demonstrated calcium hydroxide (Ca(OH)2) as a highly effective additive for suppressing arsenic volatilization during soil sintering, while simultaneously improving material properties. Through comprehensive characterization using inductively coupled plasma-mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and X-ray microtomography (μCT), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), results demonstrated that Ca(OH)2 addition (0.5–2 wt.%) reduces arsenic volatilization by 57% through formation of thermally stable calcium arsenate (Ca3(AsO4)2). Ca(OH)2 acted via two mechanisms: (a) chemical immobilization through Ca-As-O compound formation, (b) physical encapsulation in a calcium-aluminosilicate matrix during liquid-phase sintering, and (c) pH buffering that maintains arsenic in less volatile forms. Optimal performance was achieved at 0.5% Ca(OH)2, yielding 9.14 MPa compressive strength (29% increase) with minimal arsenic leaching (<110 ppb). Microstructural analysis showed Ca(OH)2 promoted densification while higher doses increased porosity. This work provides a practical solution for safe reuse of arsenic-contaminated soils, addressing both environmental concerns and material performance requirements for construction applications. Full article
Show Figures

Figure 1

21 pages, 2719 KB  
Article
Physio-Mechanical Properties and Meso-Scale Damage Mechanism of Granite Under Thermal Shock
by Kai Gao, Jiamin Wang, Chi Liu, Pengyu Mu and Yun Wu
Energies 2025, 18(20), 5366; https://doi.org/10.3390/en18205366 (registering DOI) - 11 Oct 2025
Abstract
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different [...] Read more.
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different temperatures (20 °C, 150 °C, 300 °C, 450 °C, 600 °C, and 750 °C) were subjected to rapid cooling treatment with liquid nitrogen. After the thermal treatment, a series of tests were conducted on the granite, including wave velocity test, uniaxial compression experiment, computed tomography scanning, and scanning electron microscopy test, to explore the influence of thermal shock on the physical and mechanical parameters as well as the meso-structural damage of granite. The results show that with the increase in heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of granite gradually decrease, while the peak strain gradually increases. Additionally, the failure mode of granite gradually transitions from brittle failure to ductile failure. Through CT scanning experiments, the spatial distribution characteristics of the pore–fracture structure of granite under the influence of different temperature gradients and temperature change rates were obtained, which can directly reflect the damage degree of the rock structure. When the heat treatment temperature is 450 °C or lower, the number of thermally induced cracks in the scanned sections of granite is relatively small, and the connectivity of the cracks is poor. When the temperature exceeds 450 °C, the micro-cracks inside the granite develop and expand rapidly, and there is a gradual tendency to form a fracture network, resulting in a more significant effect of fracture initiation and permeability enhancement of the rock. The research results are of great significance for the development and utilization of hot dry rock and the evaluation of thermal reservoir connectivity and can provide useful references for rock engineering involving high-temperature thermal fracturing. Full article
(This article belongs to the Section H2: Geothermal)
10 pages, 1204 KB  
Case Report
Ultrasonographic Diagnosis and Computed Tomographic Confirmation of a Scapular Body Stress Fracture in an Elite Boxer: A Case Report
by Yonghyun Yoon, King Hei Stanley Lam, Jihyo Hwang, Seonghwan Kim, Jangkeun Kye, Hyeeun Kim, Junhan Kang, Jaeyoung Lee, Daniel Chiung-Jui Su, Teinny Suryadi, Anwar Suhaimi and Kenneth Dean Reeves
Diagnostics 2025, 15(20), 2565; https://doi.org/10.3390/diagnostics15202565 (registering DOI) - 11 Oct 2025
Abstract
Background and Clinical Significance: Scapular stress fractures are exceptionally rare in athletes and are notoriously difficult to diagnose due to their subtle presentation and poor sensitivity on initial radiographs. This case report describes the diagnostic challenge of a scapular body stress fracture [...] Read more.
Background and Clinical Significance: Scapular stress fractures are exceptionally rare in athletes and are notoriously difficult to diagnose due to their subtle presentation and poor sensitivity on initial radiographs. This case report describes the diagnostic challenge of a scapular body stress fracture in an elite boxer who initially presented with wrist pain. Case Presentation: A 19-year-old right-hand-dominant female elite boxer presented with a three-month history of bilateral wrist pain. Initial examination and MRI were consistent with a triangular fibrocartilage complex (TFCC) injury. Despite conservative management, her symptoms persisted, and she subsequently developed mechanical right shoulder pain and a sensation of instability. Physical examination revealed scapular dyskinesis, with a positive push-up test and weakness on punch protraction. Plain radiographs of the scapula were unremarkable. Point-of-care musculoskeletal ultrasound (MSK US) identified a cortical irregularity at the medial scapular border. A subsequent computed tomography (CT) scan obtained at three-month follow-up definitively confirmed a stress fracture at this site. Treatment focused on scapular stabilization via prolotherapy and activity modification, leading to symptomatic resolution and a successful return to sport. Conclusions: This case underscores the importance of evaluating the entire kinetic chain in athletes presenting with focal complaints. It demonstrates the utility of MSK US as an effective initial screening tool for cortical stress fractures and highlights the necessity of CT for definitive confirmation. Clinicians should maintain a high index of suspicion for scapular stress injuries in overhead athletes with unexplained shoulder dysfunction. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

28 pages, 8557 KB  
Article
Surface Optimization of Additively Manufactured (AM) Stainless Steel Components Using Combined Chemical and Electrochemical Post-Processing
by Pablo Edilberto Sanchez Guerrero, Andrew Grizzle, Daniel Fulford, Juan Estevez Hernandez, Lucas Rice and Pawan Tyagi
Coatings 2025, 15(10), 1197; https://doi.org/10.3390/coatings15101197 (registering DOI) - 11 Oct 2025
Abstract
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components [...] Read more.
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components that typically exhibit fatigue properties, resulting in component failure and unfavorable friction coefficients on the printed part. Therefore, to improve the surface quality of the fabricated parts, post-processing of AM-created components is required. With emphasis on electroless nickel plating, ChemPolishing (CP), and ElectroPolishing (EP), this study investigates post-processing methods for stainless steel that is additively manufactured (AM). The rough surfaces created by additive manufacturing (AM) restrict direct use. While ElectroPolishing (EP) achieves high material removal rates but may not be consistent, ChemPolishing (CP) offers uniform smoothening. Nickel plating enhances additive manufacturing (AM) products’ resistance to wear and scratches and corrosion protection. To optimize nickel deposition, medium (6%–9%) and high (10%–13%) phosphorus nickel was tested using the L9 Taguchi design of experiments (DOE). Mechanical properties, including scratch resistance and adhesion, were evaluated using the TABER 5900 reciprocating (Taber Industries, North Tonawanda, NY, USA) abraser apparatus, a 5 N scratch test, and ASTM B-733 thermal shock method. Surface analysis was performed with the KEYENCE VHX-7000 microscope (Keyence Corporation, Itasca, IL, USA), and chemical composition before and after nickel deposition was assessed via the ThermoFisher Phenom XL scanning electron microscope (SEM, Thermo Fisher Scientific, Waltham, MA, USA) Optimal processing conditions, determined using Qualitek-4 software, Version 20.1.0 revealed improvements in both surface finish and mechanical robustness. This comprehensive analysis underscores the potential of nickel-coated additive manufacturing (AM) parts for enhanced performance, offering a pathway to more durable and efficient additive manufacturing (AM) applications. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

20 pages, 4046 KB  
Article
Comparative Analysis of Sisal–Cement Composite Properties After Chemical and Thermal Fiber Treatments
by Daniele Oliveira Justo dos Santos, Romildo Dias Toledo Filho and Paulo Roberto Lopes Lima
Fibers 2025, 13(10), 138; https://doi.org/10.3390/fib13100138 (registering DOI) - 11 Oct 2025
Abstract
The use of sisal fibers to reinforce concrete and mortar enables the development of sustainable cement-based materials suitable for various construction elements. However, the high-water absorption of natural fibers can cause dimensional instability and poor fiber–matrix bonding, which reduces strength over time. Physical [...] Read more.
The use of sisal fibers to reinforce concrete and mortar enables the development of sustainable cement-based materials suitable for various construction elements. However, the high-water absorption of natural fibers can cause dimensional instability and poor fiber–matrix bonding, which reduces strength over time. Physical and chemical treatments can decrease water absorption and enhance the dimensional stability and bonding properties of fibers, but their effects on composite performance require further clarification. This study produced composites with 2%, 3%, and 4% by mass of sisal fibers subjected to different treatments, including hornification, washed alkaline treatment, and unwashed alkaline treatment. Fibers were characterized through water absorption, dimensional variation, scanning electron microscopy (SEM), X-ray diffraction, thermogravimetric analysis and direct tensile testing. Composites were evaluated by water absorption, capillarity, drying shrinkage, direct tensile and four-point bending tests to assess the influence of fiber treatment and content. Results showed that alkaline treatment significantly improved the physical and mechanical properties of sisal fibers. Consequently, composites reinforced with alkaline-treated fibers achieved superior performance compared to those reinforced with hornified fibers, with the best results observed at the highest fiber mass fraction (4%). These findings demonstrate the potential of treated sisal fibers to enhance the durability and mechanical behavior of natural fiber-reinforced cementitious composites. Full article
26 pages, 3185 KB  
Article
Preparation and Performance Research of Ultra-High-Performance Concrete Incorporating Municipal Solid Waste Incineration Bottom Ash
by Fengli Liu, Yize He, Junhua Liu, Wu Li, Xiaofei Hao and Chang Liu
Buildings 2025, 15(20), 3659; https://doi.org/10.3390/buildings15203659 (registering DOI) - 11 Oct 2025
Abstract
Low carbon, low cost and sustainability are important development trends of ultra-high-performance concrete (UHPC). In this study, municipal solid waste incineration bottom ash (MSWIBA) was used to replace 5%, 10%, 20% and 30% of quartz sand (QS), respectively, and the effect of the [...] Read more.
Low carbon, low cost and sustainability are important development trends of ultra-high-performance concrete (UHPC). In this study, municipal solid waste incineration bottom ash (MSWIBA) was used to replace 5%, 10%, 20% and 30% of quartz sand (QS), respectively, and the effect of the MSWIBA substitution rate on the workability, wet packing density, mechanical properties, shrinkage, resistance to chloride ion corrosion, and resistance to sulfate corrosion of UHPC was studied. The mechanism analysis was carried out by combining X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) tests, and UHPC heavy metal leaching tests, environmental impact assessment, and economic analysis were conducted. Results show that the active silicon and aluminum components in MSWIBA reacted with cement hydration products to optimize the matrix density. MSWIBA has an internal curing effect, which is beneficial for reducing the shrinkage of UHPC. When the MSWIBA replacement rate is 10%, the 28-day compressive strength of MSWIBA-UHPC is 128.7 MPa, which is equivalent to the benchmark group. The fluidity, corrosion resistance and heavy metal leaching all meet the requirements. The energy consumption, carbon emissions and costs are reduced by 0.22%, 2.30% and 6.67%, respectively. The research results can provide a reference for the development of ecological UHPC with economic, low-carbon and environmental benefits, as well as the harmless disposal and resource utilization of hazardous wastes such as MSWIBA. Full article
Show Figures

Figure 1

48 pages, 8745 KB  
Review
Fringe-Based Structured-Light 3D Reconstruction: Principles, Projection Technologies, and Deep Learning Integration
by Zhongyuan Zhang, Hao Wang, Yiming Li, Zinan Li, Weihua Gui, Xiaohao Wang, Chaobo Zhang, Xiaojun Liang and Xinghui Li
Sensors 2025, 25(20), 6296; https://doi.org/10.3390/s25206296 (registering DOI) - 11 Oct 2025
Abstract
Structured-light 3D reconstruction is an active measurement technique that extracts spatial geometric information of objects by projecting fringe patterns and analyzing their distortions. It has been widely applied in industrial inspection, cultural heritage digitization, virtual reality, and other related fields. This review presents [...] Read more.
Structured-light 3D reconstruction is an active measurement technique that extracts spatial geometric information of objects by projecting fringe patterns and analyzing their distortions. It has been widely applied in industrial inspection, cultural heritage digitization, virtual reality, and other related fields. This review presents a comprehensive analysis of mainstream fringe-based reconstruction methods, including Fringe Projection Profilometry (FPP) for diffuse surfaces and Phase Measuring Deflectometry (PMD) for specular surfaces. While existing reviews typically focus on individual techniques or specific applications, they often lack a systematic comparison between these two major approaches. In particular, the influence of different projection schemes such as Digital Light Processing (DLP) and MEMS scanning mirror–based laser scanning on system performance has not yet been fully clarified. To fill this gap, the review analyzes and compares FPP and PMD with respect to measurement principles, system implementation, calibration and modeling strategies, error control mechanisms, and integration with deep learning methods. Special focus is placed on the potential of MEMS projection technology in achieving lightweight and high-dynamic-range measurement scenarios, as well as the emerging role of deep learning in enhancing phase retrieval and 3D reconstruction accuracy. This review concludes by identifying key technical challenges and offering insights into future research directions in system modeling, intelligent reconstruction, and comprehensive performance evaluation. Full article
(This article belongs to the Section Sensing and Imaging)
23 pages, 5973 KB  
Article
Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions
by Michal Bílek, Jiří Maxa, Pavla Šabacká, Robert Bayer, Tomáš Binar, Petr Bača, Jiří Votava, Martin Tobiáš and Marek Žák
Sensors 2025, 25(20), 6291; https://doi.org/10.3390/s25206291 - 10 Oct 2025
Abstract
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle—where normal [...] Read more.
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle—where normal shock waves are generated—was characterized across a range of low-pressure regimes. The experimental results were employed to validate and calibrate computational fluid dynamics (CFD) models, particularly within pressure ranges approaching the limits of continuum mechanics. The validated analyses enabled a more detailed examination of shock-wave behavior under near-continuum conditions, with direct relevance to the operational environment of differentially pumped chambers in Environmental Scanning Electron Microscopy (ESEM). Furthermore, an entropy increase across the normal shock wave at low pressures was quantified, attributed to the extended molecular mean free path and local deviations from thermodynamic equilibrium. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 6936 KB  
Article
Mechanistic Insights into Cooling-Rate-Governed Acicular Ferrite Transformation Kinetics and Strengthening-Toughening Synergy in EH36 Heavy Steel Plate
by Chunliang Yan, Fengming Wang, Rongli Sang and Qingjun Zhang
Materials 2025, 18(20), 4661; https://doi.org/10.3390/ma18204661 - 10 Oct 2025
Abstract
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling [...] Read more.
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling rate on the nucleation and growth of acicular ferrite and its consequent microstructure-property relationships through an integrated approach combining in situ observation via high-temperature laser scanning confocal microscopy with multiscale characterization techniques. Results demonstrate that the cooling rate significantly affects acicular ferrite formation, with the range of 3–7 °C/s being most conducive to acicular ferrite formation. At 5 °C/s, the acicular ferrite volume fraction reached a maximum of 74% with an optimal aspect ratio (5.97). Characterization confirmed that TiOx-Al2O3·SiO2-MnO-MnS complex inclusions act as effective nucleation sites for acicular ferrite, where the MnS outer layer plays a key role in reducing interfacial energy and promoting acicular ferrite radial growth. Furthermore, the interlocking acicular ferrite structure was shown to enhance microhardness by 14% (HV0.1 = 212.5) compared to conventional ferrite through grain refinement strengthening and dislocation strengthening (with a dislocation density of 2 × 108 dislocations/mm2). These results provide crucial theoretical insights and a practical processing window for strengthening-toughening control of heavy plate core microstructures, offering a viable pathway for improving the comprehensive performance of ultra-heavy plates. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

15 pages, 6338 KB  
Article
High-Strength Low-Alloy Steels for Automobiles: Microstructure and Mechanical Properties
by Guoqiang Ma, Bo Gao, Zhen Chen, Yuquan Li, Ruirui Wu, Hailian Gui and Zhibing Chu
Materials 2025, 18(20), 4660; https://doi.org/10.3390/ma18204660 - 10 Oct 2025
Abstract
High-strength low-alloy (HSLA) steel is widely used in automotive industry for reduction of consumption and emissions. The microstructure and mechanical properties of two automotive HSLA steels with different strength grades were systematically investigated in present study. Microstructural characterization was conducted using optical microscopy [...] Read more.
High-strength low-alloy (HSLA) steel is widely used in automotive industry for reduction of consumption and emissions. The microstructure and mechanical properties of two automotive HSLA steels with different strength grades were systematically investigated in present study. Microstructural characterization was conducted using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD), while mechanical properties were evaluated with Vickers hardness tester and tensile tests. Both steels exhibited a ferrite matrix with spheroidized carbides/pearlites. However, Sample A displayed equiaxed ferrite grains with localized pearlite colonies, while Sample B featured pronounced elongated ferrite grains with a band structure. Tensile testing revealed that Sample B had higher ultimate tensile stress and yield stress compared to Sample A. Texture analysis indicated that both steels were dominated by α-fiber and γ-fiber textures, with minor θ-fiber texture, resulting in minimal mechanical anisotropy between the rolling direction (RD) and transverse direction (TD). The quantitative assessment of strengthening mechanisms, based on microstructural parameters and experimental data, revealed that grain boundary strengthening dominates, with dislocation strengthening also contributing significantly. This work provides the first comprehensive quantification of individual strengthening contributions in automotive HSLA steels, offering critical guidance for developing further higher-strength automotive steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 5585 KB  
Article
Corrosion Mechanisms of Commercial Superalloys in Binary and Ternary Chloride Molten Salts
by Hongyi Hu, Xian Zhang, Tianyou Huang, Rui Yu and Kaiming Wu
Corros. Mater. Degrad. 2025, 6(4), 49; https://doi.org/10.3390/cmd6040049 (registering DOI) - 10 Oct 2025
Abstract
In concentrated solar power (CSP) systems, structural materials face severe corrosion challenges induced by molten chlorides, with the corrosion severity being highly dependent on the salt composition. This study systematically compares the corrosion behavior of two representative superalloys, Inconel 625 and SS321, in [...] Read more.
In concentrated solar power (CSP) systems, structural materials face severe corrosion challenges induced by molten chlorides, with the corrosion severity being highly dependent on the salt composition. This study systematically compares the corrosion behavior of two representative superalloys, Inconel 625 and SS321, in binary NaCl–KCl and ternary MgCl2–NaCl–KCl molten salts at 700 °C. The corrosion products and microstructural features were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), and electron backscatter diffraction (EBSD), in combination with static exposure tests to elucidate the underlying mechanisms. The results show that in NaCl–KCl molten salts, both alloys primarily form Cr2O3 as the protective product. However, the corrosion scale of SS321 is porous, whereas Inconel 625 develops a dense NiCr2O4 inner layer, exhibiting superior corrosion resistance. In the MgCl2–NaCl–KCl molten salt system, Cr2O3 is replaced by a dense MgO layer forms on Inconel 625, coupled with Mo surface enrichment, which significantly inhibits Cr depletion and leads to a notably reduced corrosion rate relative to the binary salt. In contrast, the transformation of Cr2O3 on SS321 into porous MgCr2O4 exacerbates intergranular corrosion, resulting in a substantial degradation of corrosion resistance. This study elucidates the distinct corrosion pathways and mechanisms of different alloys in binary and ternary chloride salts, providing important guidance for the selection of molten salt compositions and corrosion-resistant structural materials in CSP applications. Full article
Show Figures

Figure 1

23 pages, 3529 KB  
Article
Synthesis, Characterization, and Evaluation of Folic Acid Release Ability of Acrylamide–Acrylic Acid Hydrogels and Acrylamide–Acrylic Acid/Functionalized Carbon Nanotube Nanocomposite Hydrogels
by Karina Sandoval-García, Jorge A. Cortés-Ortega, Edgar B. Figueroa-Ochoa, Víctor H. Antolín-Cerón and Sergio M. Nuño-Donlucas
Int. J. Mol. Sci. 2025, 26(20), 9847; https://doi.org/10.3390/ijms26209847 - 10 Oct 2025
Abstract
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox [...] Read more.
Hydrogels of acrylamide (AM)–acrylic acid (AA) and nanocomposite hydrogels of AM–AA and carbon nanotubes (CNTs) functionalized with acyl chloride groups (CNTsOxCl) were synthesized and characterized, and their ability to release folic acid was analyzed. Both hydrogel types were synthesized via redox polymerization. CNTs were prepared via chemical vapor deposition. The prepared samples were analyzed via transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, and field-emission scanning electron microscopy. Their swelling ability and their mechanical properties (compression tests) were determined at room temperature ~298.15 K, whereas their ability to release folic acid was studied using UV–VIS spectroscopy. The equilibrium swelling of the AM–AA hydrogels was greater than that of the AM–AA/CNTsOxCl nanocomposite hydrogels prepared at the same monomeric relation (wt%), whereas the Young moduli of these nanocomposite hydrogels were higher than that of AM–AA hydrogels. For the AM–AA/CNTsOxCl nanocomposite hydrogels, polymer chains containing AM and AA units were grafted to CNTsOxCl. The glass–transition temperatures of AM–AA nanocomposite hydrogels were higher than that of AM–AA hydrogels. Folic acid release from the AM–AA hydrogels and AM–AA/CNTsOxCl nanocomposite hydrogels was successfully adjusted using the Weibull model. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Graphical abstract

35 pages, 19884 KB  
Article
A Monte Carlo-Based 3D Whole Lung Model for Aerosol Deposition Studies: Implementation and Validation
by Georgi Hristov Spasov, Ciro Cottini and Andrea Benassi
Bioengineering 2025, 12(10), 1092; https://doi.org/10.3390/bioengineering12101092 - 10 Oct 2025
Abstract
A detailed picture of how an aerosol is transported and deposited in the self-affine bronchial tree structure of patients is fundamental to design and optimize orally inhaled drug products. This work describes a Monte Carlo-based statistical deposition model able to simulate aerosol transport [...] Read more.
A detailed picture of how an aerosol is transported and deposited in the self-affine bronchial tree structure of patients is fundamental to design and optimize orally inhaled drug products. This work describes a Monte Carlo-based statistical deposition model able to simulate aerosol transport and deposition in a 3D human bronchial tree. The model enables working with complex and realistic inhalation maneuvers including breath-holding and exhalation. It can run on fully stochastically generated bronchial trees as well as on those whose proximal airways are extracted from patient chest scans. However, at present, a mechanical breathing model is not explicitly included in our trees; their ventilation can be controlled by means of heuristic airflow splitting rules at bifurcations and by an alveolation index controlling the distal lung volume. Our formulation allows us to introduce different types of pathologies on the trees, both those altering their morphology (e.g., bronchiectasis and chronic obstructive pulmonary disease) and those impairing their function (e.g., interstitial lung diseases and emphysema). In this initial activity we describe deposition and ventilation models as well as the stochastic tree construction algorithm, and we validate them against total, regional, lobar, and sub-lobar deposition for healthy subjects. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

13 pages, 1795 KB  
Article
Enhanced Wear and Corrosion Resistance of AlCoCrFeNiMoTi High-Entropy Alloy via B Addition by Laser Cladding
by Sansan Ao, Jiaxun Sun, Ziyuan Qi, Youxiang Wei, Hongyu Chen and Yang Li
Materials 2025, 18(20), 4651; https://doi.org/10.3390/ma18204651 - 10 Oct 2025
Abstract
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser [...] Read more.
To address the synergistic degradation mechanisms in engineering service environments, we propose a boron microalloying strategy to enhance the multifunctional surface performance of AlCoCrFeNiMo-based high-entropy alloys. AlCoCrFeNiMoTiBx coatings (x = 0, 0.5, 1, and 1.5) were fabricated on Q235 steel substrates using laser cladding. The microstructure of the coatings was characterized using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), while their wear and corrosion resistance were evaluated through tribological and electrochemical tests. The key findings indicate that boron addition preserves the original body-centered cubic (BCC) and σ phases in the coating while promoting the in situ formation of TiB2, leading to lattice distortion. With increasing B content, the BCC phase becomes refined, and both the fraction and size of TiB2 particles increase. Boron incorporation improves the coating’s microhardness and wear resistance, with the highest wear resistance achieved at x = 1, where abrasive and oxidative wear predominate. At lower content (x = 0.5), B enhances the stability of the passive film and thereby improves corrosion resistance. In contrast, excessive formation of large TiB2 particles introduces defects into the passive film, accelerating its degradation. Full article
Show Figures

Figure 1

19 pages, 5979 KB  
Article
Improving the Biocompatibility of Plant-Derived Scaffolds for Tissue Engineering Using Heat Treatment
by Arvind Ramsamooj, Nicole Gorbenko, Cristian Olivares, Sashane John and Nick Merna
J. Funct. Biomater. 2025, 16(10), 380; https://doi.org/10.3390/jfb16100380 - 10 Oct 2025
Abstract
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain [...] Read more.
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain barriers to clinical use. This study tested whether mild heat treatment improves scaffold biocompatibility without compromising mechanical performance. Decellularized leatherleaf viburnum scaffolds were treated at 30–40 °C in 5% NaOH for 15–60 min and then evaluated via tensile testing, burst pressure analysis, scanning electron microscopy, histology, and in vitro assays with white blood cells and endothelial cells. Scaffold properties were compared to those of untreated controls. Heat treatment did not significantly affect scaffold thickness but decreased fiber area fraction and diameter across all anatomical layers. Scaffolds treated at 30–35 °C for ≤30 min retained >90% of tensile strength and achieved burst pressures ≥820 mmHg, exceeding physiological arterial pressures. Heat treatment reduced surface fractal dimension while increasing entropy and lacunarity, producing a smoother but more heterogeneous microarchitecture. White blood cell viability increased up to 2.5-fold and endothelial cell seeding efficiency improved with treatment duration, with 60 min producing near-confluent monolayers. Mild alkaline heat treatment therefore improved immune compatibility and endothelialization while preserving mechanical integrity, offering a simple, scalable modification to advance plant-derived scaffolds for grafting. Full article
Show Figures

Graphical abstract

Back to TopTop