Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = meiotic recombination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1658 KB  
Article
Breed-Specific Genetic Recombination Analysis in South African Bonsmara and Nguni Cattle Using Genomic Data
by Nozipho A. Magagula, Bohani Mtileni, Keabetswe T. Ncube, Khulekani S. Khanyile and Avhashoni A. Zwane
Agriculture 2025, 15(17), 1846; https://doi.org/10.3390/agriculture15171846 - 29 Aug 2025
Viewed by 209
Abstract
South African cattle comprise diverse breeds with distinct evolutionary histories, potentially reflecting differences in recombination landscapes. This study assessed genome-wide recombination rates and hotspots in Bonsmara (n = 190) and Nguni (n = 119) cattle using three-generation half-sib pedigrees genotyped with the Illumina [...] Read more.
South African cattle comprise diverse breeds with distinct evolutionary histories, potentially reflecting differences in recombination landscapes. This study assessed genome-wide recombination rates and hotspots in Bonsmara (n = 190) and Nguni (n = 119) cattle using three-generation half-sib pedigrees genotyped with the Illumina Bovine SNP50 BeadChip. Phasing across 29 autosomes was conducted using SHAPEIT v2, and crossover events were inferred using the DuoHMM algorithm. The total number of crossover events detected was higher in Nguni (n = 8982) than in Bonsmara (n = 7462); however, the average recombination rate per 1 Mb window was significantly higher in Bonsmara (0.31) compared to Nguni (0.18) (p < 0.01). This apparent discrepancy reflects differences in genomic distribution and crossover clustering across breeds, rather than overall recombination frequency. A critical limitation of the study is the reliance on half-sib families with small family sizes, which may underestimate recombination rates due to limited meiotic sampling and increased variance in crossover detection. We identified 407 recombination hotspots in Bonsmara and 179 in Nguni, defined as intervals exceeding 2.5 standard deviations above the mean recombination rate. Genes such as PDE1B and FP which are associated with productions traits were located within hotspot-enriched regions. However, functional causality between these genes and local recombination activity remains unverified. Our results provide statistically supported evidence for breed-specific recombination patterns and hotspot distributions, underscoring the importance of incorporating recombination architecture into genetic improvement strategies for South African cattle. Full article
(This article belongs to the Special Issue Quantitative Genetics of Livestock Populations)
Show Figures

Figure 1

17 pages, 6248 KB  
Article
Functional Spermatogenesis Across Testicular Developmental Stages in Neomale Large Yellow Croaker (Larimichthys crocea) Revealed by Histology and Gonadal Specific Cellular Markers
by Xu Liu, Weihua Hu, Ruiyi Chen, Yang Yang, Sixian Yang and Dongdong Xu
Biology 2025, 14(8), 1054; https://doi.org/10.3390/biology14081054 - 14 Aug 2025
Viewed by 346
Abstract
Gonadal development and spermatogenesis critically influence fish reproductive performance. Neomales (genetically female but functionally male) are indispensable for generating all-female populations, yet their spermatogenesis remains understudied. In the present study, we systematically investigated gonadal maturation in neomales of the large yellow croaker ( [...] Read more.
Gonadal development and spermatogenesis critically influence fish reproductive performance. Neomales (genetically female but functionally male) are indispensable for generating all-female populations, yet their spermatogenesis remains understudied. In the present study, we systematically investigated gonadal maturation in neomales of the large yellow croaker (Larimichthys crocea), an economically important marine species exhibiting sexually dimorphic growth. We examined the growth performance and gonadal development throughout the maturation process in neomales and control males. Results showed comparable growth performance but a temporal divergence in gonadal development: the gonadosomatic index (GSI) of neomales was significantly higher than control males at 400 and 430 days post-hatching (dph), but not at 460 dph during the reproductive period. Histological, ultrastructural (TEM), and immunofluorescence analyses collectively demonstrated that neomale testes contained all major spermatogenic cell types. Their morphological characteristics and expression patterns of key markers—germ cells (vasa), Sertoli cells (sox9a), and meiotic recombination (dmc1)—were similar to control males. These findings enhance understanding of gonadal development and spermatogenesis in neomales, providing a theoretical and technical foundation for large-scale production of all-female large yellow croaker. Full article
(This article belongs to the Special Issue Sexual Determination and Reproductive Regulation in Aquatic Organisms)
Show Figures

Figure 1

20 pages, 1256 KB  
Review
Exploring Meiotic Recombination and Its Potential Benefits in South African Beef Cattle: A Review
by Nozipho A. Magagula, Keabetswe T. Ncube, Avhashoni A. Zwane and Bohani Mtileni
Vet. Sci. 2025, 12(7), 669; https://doi.org/10.3390/vetsci12070669 - 16 Jul 2025
Viewed by 707
Abstract
Meiotic recombination is a key evolutionary process that generates novel allele combinations during prophase I of meiosis, promoting genetic diversity and enabling the selection of desirable traits in livestock breeding. Although its molecular mechanisms are well-characterised in model organisms such as humans and [...] Read more.
Meiotic recombination is a key evolutionary process that generates novel allele combinations during prophase I of meiosis, promoting genetic diversity and enabling the selection of desirable traits in livestock breeding. Although its molecular mechanisms are well-characterised in model organisms such as humans and mice, studies in African indigenous cattle, particularly South African breeds, remain scarce. Key regulators of recombination, including PRDM9, SPO11, and DMC1, play essential roles in crossover formation and genome stability, with mutations in these genes often linked to fertility defects. Despite the Bonsmara and Nguni breeds’ exceptional adaptability to arid and resource-limited environments, little is known about how recombination contributes to their unique genetic architecture and adaptive traits. This review synthesises the current knowledge on the molecular basis of meiotic recombination, with a focus on prophase I events and associated structural proteins and enzymes. It also highlights the utility of genome-wide tools, particularly high-density single nucleotide polymorphism (SNP) markers for recombination mapping. By focusing on the underexplored recombination landscape in South African beef cattle, this review identifies key knowledge gaps. It outlines how recombination studies can inform breeding strategies aimed at enhancing genetic improvement, conservation, and the long-term sustainability of local beef production systems. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

18 pages, 2910 KB  
Article
Repeatome Dynamics and Sex Chromosome Differentiation in the XY and XY1Y2 Systems of the Fish Hoplias malabaricus (Teleostei; Characiformes)
by Mariannah Pravatti Barcellos de Oliveira, Geize Aparecida Deon, Francisco de Menezes Cavalcante Sassi, Fernando Henrique Santos de Souza, Caio Augusto Gomes Goes, Ricardo Utsunomia, Fábio Porto-Foresti, Jhon Alex Dziechciarz Vidal, Amanda Bueno da Silva, Tariq Ezaz, Thomas Liehr and Marcelo de Bello Cioffi
Int. J. Mol. Sci. 2025, 26(13), 6039; https://doi.org/10.3390/ijms26136039 - 24 Jun 2025
Viewed by 568
Abstract
The wolf fish Hoplias malabaricus is a Neotropical species characterized by remarkable karyotypic diversity, including seven karyomorphs (KarA-G) with distinct sex chromosome systems. This study investigated the homologous XY (KarF) and XY1Y2 (KarG) sex chromosome systems present in this species [...] Read more.
The wolf fish Hoplias malabaricus is a Neotropical species characterized by remarkable karyotypic diversity, including seven karyomorphs (KarA-G) with distinct sex chromosome systems. This study investigated the homologous XY (KarF) and XY1Y2 (KarG) sex chromosome systems present in this species by integrating cytogenetics and genomics to examine sex chromosomes’ composition through characterization of repeatome (satellite DNA and transposable elements) and sex-linked markers. Our analysis indicated that both karyomorphs are little differentiated in their sex chromosomes content revealed by satDNA mapping and putative sex-linked markers. Both repeatomes were mostly composed of transposable elements, but neither intra- (male versus female) nor interspecific (KarF x KarG) variations were found. In both systems, we demonstrated the occurrence of sex-specific sequences probably located on the non-recombining region of the Y chromosome supported by the accumulation of sex-specific haplotypes of HmfSat10-28/HmgSat31-28. This investigation offered valuable insights by highlighting the composition of homologous XY and XY1Y2 multiple sex chromosomes. Although homologous, the large Y chromosome in KarF corresponds to two separate linkage groups (Y1 and Y2) in KarG implying a specific meiotic arrangement involving the X chromosome in a meiotic trivalent chain. This scenario likely influenced recombination rates and, as a result, the genomic composition of these chromosomes. Full article
(This article belongs to the Special Issue Repetitive DNA)
Show Figures

Figure 1

11 pages, 1290 KB  
Article
The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl
by Luis F. Rossi and María Inés Pigozzi
Animals 2025, 15(12), 1759; https://doi.org/10.3390/ani15121759 - 14 Jun 2025
Viewed by 476
Abstract
Meiotic recombination is essential for chromosomal segregation and facilitates the exchange between homologs, which leads to the transmission of new combinations of linked alleles to the progeny. The eukaryotic meiotic machinery is generally highly conserved, but the frequency of crossover occurrence can vary [...] Read more.
Meiotic recombination is essential for chromosomal segregation and facilitates the exchange between homologs, which leads to the transmission of new combinations of linked alleles to the progeny. The eukaryotic meiotic machinery is generally highly conserved, but the frequency of crossover occurrence can vary dramatically across species and populations, between individuals, and across sexes. The chicken and the guinea fowl exhibit interspecific variation in the distribution of crossovers along their largest chromosomes. In many organisms, an association has been observed between the preferred crossover location and certain sequence parameters, such as high GC content, CpG islands, or gene promoters. Here, we compared the distribution of these genomic parameters with the recombination landscape, represented by MLH1 focus frequencies, in the two birds. We found an association between GC content density and recombination in the chicken, but the remaining parameters showed weak or no association with recombination, especially in the guinea fowl. We conclude that despite the different broad-scale crossover distribution, the investigated genomic parameters remained remarkably similar in these two species. We suggest that the density of these genomic features is more likely related to microscale variations in recombination rates, such as those determined by open chromatin configurations. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2385 KB  
Article
CDC6 Inhibits CDK1 Activity in MII-Arrested Oocyte Cell-Free Extract
by Louis Dillac, Klaudia Porębska, Malgorzata Kloc, Rafal P. Piprek, Jean-Pierre Tassan and Jacek Z. Kubiak
Int. J. Mol. Sci. 2025, 26(9), 4309; https://doi.org/10.3390/ijms26094309 - 1 May 2025
Viewed by 812
Abstract
The control of cyclin-dependent kinase 1 (CDK1) kinase activity is crucial for cell cycle progression. Cell division cycle 6 (CDC6) inhibits this activity in embryonic mitoses, and thus regulates the timing of cell division progression. The meiotic cell cycle differs greatly from the [...] Read more.
The control of cyclin-dependent kinase 1 (CDK1) kinase activity is crucial for cell cycle progression. Cell division cycle 6 (CDC6) inhibits this activity in embryonic mitoses, and thus regulates the timing of cell division progression. The meiotic cell cycle differs greatly from the mitotic one. Metaphase II (MII)-arrested oocytes remain in prolonged M-phase state due to the high activity of CDK1 in the presence of CytoStatic Factor (CSF). The role of CDC6 in the control of CDK1 during MII and oocyte activation remains unknown. Here, we studied the role of CDC6/CDK1 interactions in Xenopus laevis cell-free extracts arrested in MII (CSF extract) and upon calcium activation leading to meiotic-to-mitotic transition. The CSF extract allows analysis of biochemical processes based on immunodepletion of selected proteins and facilitates manipulations using addition of recombinant proteins. We show by glutathione S-transferase (GST)-CDC6 pull-down that CDC6 associates with CDK1 in CSF extract and by histone H1 kinase assay that it downregulates CDK1 activity. Thus, CDC6-dependent inhibition of CDK1 is involved in the homeostasis of the MII-arrest. Upon CSF extract activation with calcium exogenous GST-CDC6 provokes accelerated transition from MII to interphase, while the depletion of endogenous CDC6 results in a slower transition to interphase. We demonstrate this by following both the phosphorylation state of CDK1 substrate cell division cycle 27 (CDC27) and histone H1 kinase assay. Importantly, increasing doses of GST-CDC6 proportionally accelerate CDK1 inactivation showing that CDC6 controls the dynamics of MII to interphase transition in a dose-dependent manner. Thus, CDC6 is a CDK1 silencer acting upon both the MII arrest and CSF extract activation by assuring the physiological activity of CDK1 during this meiotic arrest and correct timely inactivation of this kinase during the second process. Thus, we show that CDC6 controls CDK1 not only during mitotic divisions, but also in MII-arrest and the meiotic-to-mitotic transition in Xenopus laevis cell-free extracts. This study aims to bridge that gap by investigating CDC6 function using a biochemically controlled system. Full article
Show Figures

Figure 1

14 pages, 4569 KB  
Article
Characterization of PRDM9 Multifunctionality in Yak Testes Through Protein Interaction Mapping
by Guowen Wang, Shi Shu, Changqi Fu, Rong Huang, Shangrong Xu, Jun Zhang and Wei Peng
Int. J. Mol. Sci. 2025, 26(4), 1420; https://doi.org/10.3390/ijms26041420 - 8 Feb 2025
Viewed by 1151
Abstract
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks during spermatogenesis. PRDM9 determines the localization of recombination hotspots by interacting with several protein complexes in mammals. The function of PRDM9 is not well understood during spermatogenesis in mice or yaks. [...] Read more.
Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks during spermatogenesis. PRDM9 determines the localization of recombination hotspots by interacting with several protein complexes in mammals. The function of PRDM9 is not well understood during spermatogenesis in mice or yaks. In this study, we applied yeast two-hybrid assays combined with next-generation sequencing techniques to screen the complete set of PRDM9-interacting proteins and explore its novel functions in yak spermatogenesis. Our results showed that 267 PRDM9-interacting proteins were identified. The gene ontology (GO) analysis of the interacting proteins revealed that the GO terms were primarily associated with spermatogenesis, positive regulation of double-strand break repair via homologous recombination, RNA splicing, the ubiquitin-dependent ERAD pathway, and other biological processes. MKX and PDCD5 were verified to be strongly interacting with PRDM9 and expressed in prophase I of meiosis in both mouse and yak testes. The localizations of RNA splicing genes including THOC5, DDX5, and XRCC6 were expressed in spermatocytes. Cattleyak is the hybrid offspring of a yak and a domestic cow, and the male offspring are sterile. The gene expression of the interacting proteins was also examined in the sterile male hybrid of yak and cattle. Among the 58 detected genes, 55 were downregulated in cattleyak. In conclusion, we established a complete PRDM9 interaction network, and a novel function of PRDM9 was identified, which will further promote our understanding of spermatogenesis. It also provides new insights for the study of hybrid male sterility. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

31 pages, 4693 KB  
Review
Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function
by Paula Alonso-Ramos and Jesús A. Carballo
Int. J. Mol. Sci. 2024, 25(23), 12861; https://doi.org/10.3390/ijms252312861 - 29 Nov 2024
Viewed by 1835
Abstract
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it [...] Read more.
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators. This phase separation characteristic of the nucleolus is vital for the specific and timely release of Cdc14, required for most essential functions of phosphatase in the cell cycle. While mitosis distributes chromosomes to daughter cells, meiosis is a specialized division process that produces gametes and introduces genetic diversity. Central to meiosis is meiotic recombination, which enhances genetic diversity by generating crossover and non-crossover products. This process begins with the introduction of double-strand breaks, which are then processed by numerous repair enzymes. Meiotic recombination and progression are regulated by proteins and feedback mechanisms. CDKs and polo-like kinase Cdc5 drive recombination through positive feedback, while phosphatases like Cdc14 are crucial for activating Yen1, a Holliday junction resolvase involved in repairing unresolved recombination intermediates in both mitosis and meiosis. Cdc14 is released from the nucleolus in a regulated manner, especially during the transition between meiosis I and II, where it helps inactivate CDK activity and promote proper chromosome segregation. This review integrates current knowledge, providing a synthesis of these interconnected processes and an overview of the mechanisms governing cell cycle regulation and meiotic recombination. Full article
(This article belongs to the Special Issue Cell Division: A Focus on Molecular Mechanisms)
Show Figures

Figure 1

14 pages, 3676 KB  
Article
Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions
by Reine U. Protacio, Seth Dixon, Mari K. Davidson and Wayne P. Wahls
Biomolecules 2024, 14(8), 1016; https://doi.org/10.3390/biom14081016 - 16 Aug 2024
Viewed by 1478
Abstract
Recombination hotspot-activating DNA sites (e.g., M26, CCAAT, Oligo-C) and their binding proteins (e.g., Atf1-Pcr1 heterodimer; Php2-Php3-Php5 complex, Rst2, Prdm9) regulate the distribution of Spo11 (Rec12)-initiated meiotic recombination. We sought to create 14 different candidate regulatory DNA sites via bp substitutions [...] Read more.
Recombination hotspot-activating DNA sites (e.g., M26, CCAAT, Oligo-C) and their binding proteins (e.g., Atf1-Pcr1 heterodimer; Php2-Php3-Php5 complex, Rst2, Prdm9) regulate the distribution of Spo11 (Rec12)-initiated meiotic recombination. We sought to create 14 different candidate regulatory DNA sites via bp substitutions in the ade6 gene of Schizosaccharomyces pombe. We used a fission yeast-optimized CRISPR-Cas9 system (SpEDIT) and 196 bp-long dsDNA templates with centrally located bp substitutions designed to ablate the genomic PAM site, create specific 15 bp-long DNA sequences, and introduce a stop codon. After co-transformation with a plasmid that encoded both the guide RNA and Cas9 enzyme, about one-third of colonies had a phenotype diagnostic for DNA sequence changes at ade6. PCR diagnostics and DNA sequencing revealed a diverse collection of alterations at the target locus, including: (A) complete or (B) partial template-directed substitutions; (C) non-homologous end joinings; (D) duplications; (E) bp mutations, and (F) insertions of ectopic DNA. We concluded that SpEDIT can be used successfully to generate a diverse collection of DNA sequence elements within a reporter gene of interest. However, its utility is complicated by low efficiency, incomplete template-directed repair events, and undesired alterations to the target locus. Full article
(This article belongs to the Special Issue Two Billion Years of Sex)
Show Figures

Figure 1

26 pages, 498 KB  
Review
Structure and Evolution of Ribosomal Genes of Insect Chromosomes
by Vladimir E. Gokhman and Valentina G. Kuznetsova
Insects 2024, 15(8), 593; https://doi.org/10.3390/insects15080593 - 4 Aug 2024
Cited by 4 | Viewed by 2567
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes [...] Read more.
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
14 pages, 2144 KB  
Article
Exploration of Genome-Wide Recombination Rate Variation Patterns at Different Scales in Pigs
by Zuoquan Chen, Meng Zhou, Yingchun Sun, Xi Tang, Zhiyan Zhang and Lusheng Huang
Animals 2024, 14(9), 1345; https://doi.org/10.3390/ani14091345 - 29 Apr 2024
Viewed by 2043
Abstract
Meiotic recombination is a prevalent process in eukaryotic sexual reproduction organisms that plays key roles in genetic diversity, breed selection, and species evolution. However, the recombination events differ across breeds and even within breeds. In this study, we initially computed large-scale population recombination [...] Read more.
Meiotic recombination is a prevalent process in eukaryotic sexual reproduction organisms that plays key roles in genetic diversity, breed selection, and species evolution. However, the recombination events differ across breeds and even within breeds. In this study, we initially computed large-scale population recombination rates of both sexes using approximately 52 K SNP genotypes in a total of 3279 pigs from four different Chinese and Western breeds. We then constructed a high-resolution historical recombination map using approximately 16 million SNPs from a sample of unrelated individuals. Comparative analysis of porcine recombination events from different breeds and at different resolutions revealed the following observations: Firstly, the 1Mb-scale pig recombination maps of the same sex are moderately conserved among different breeds, with the similarity of recombination events between Western pigs and Chinese indigenous pigs being lower than within their respective groups. Secondly, we identified 3861 recombination hotspots in the genome and observed medium- to high-level correlation between historical recombination rates (0.542~0.683) and estimates of meiotic recombination rates. Third, we observed that recombination hotspots are significantly far from the transcription start sites of pig genes, and the silico–predicted PRDM9 zinc finger domain DNA recognition motif is significantly enriched in the regions of recombination hotspots compared to recombination coldspots, highlighting the potential role of PRDM9 in regulating recombination hotspots in pigs. Our study analyzed the variation patterns of the pig recombination map at broad and fine scales, providing a valuable reference for genomic selection breeding and laying a crucial foundation for further understanding the molecular mechanisms of pig genome recombination. Full article
Show Figures

Figure 1

14 pages, 818 KB  
Review
Enrichment and Diversification of the Wheat Genome via Alien Introgression
by Jeffrey Boehm and Xiwen Cai
Plants 2024, 13(3), 339; https://doi.org/10.3390/plants13030339 - 23 Jan 2024
Cited by 7 | Viewed by 2657
Abstract
Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome’s polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, [...] Read more.
Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome’s polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

11 pages, 2302 KB  
Brief Report
Visualizing and Inferring Chromosome Segregation in the Pedigree of an Improved Banana Cultivar (Gold Finger) with Genome Ancestry Mosaic Painting
by Alberto Cenci, Guillaume Martin, Catherine Breton, Angélique D’Hont, Nabila Yahiaoui, Julie Sardos and Mathieu Rouard
Horticulturae 2023, 9(12), 1330; https://doi.org/10.3390/horticulturae9121330 - 11 Dec 2023
Cited by 1 | Viewed by 2328
Abstract
Banana breeding faces numerous challenges, such as sterility and low seed viability. Enhancing our understanding of banana genetics, notably through next-generation sequencing, can help mitigate these challenges. The genotyping datasets currently available from genebanks were used to decipher cultivated bananas’ genetic makeup of [...] Read more.
Banana breeding faces numerous challenges, such as sterility and low seed viability. Enhancing our understanding of banana genetics, notably through next-generation sequencing, can help mitigate these challenges. The genotyping datasets currently available from genebanks were used to decipher cultivated bananas’ genetic makeup of natural cultivars using genome ancestry mosaic painting. This article presents the application of this method to breeding materials by analyzing the chromosome segregation at the origin of ‘Gold Finger’ (FHIA-01), a successful improved tetraploid variety that was developed in the 1980s. First, the method enabled us to clarify the variety’s intricate genetic composition from ancestral wild species. Second, it enabled us to infer the parental gametes responsible for the formation of this hybrid. It thus revealed 16 recombinations in the haploid male gamete and 10 in the unreduced triploid female gamete. Finally, we could deduce the meiotic mechanism lying behind the transmission of unreduced gametes (i.e., FDR). While we show that the method is a powerful tool for the visualization and inference of gametic contribution in hybrids, we also discuss its advantages and limitations to advance our comprehension of banana genetics in a breeding context. Full article
(This article belongs to the Special Issue Developments in the Genetics and Breeding of Banana Species)
Show Figures

Figure 1

14 pages, 5738 KB  
Article
Cytological Analysis of Crossover Frequency and Distribution in Male Meiosis of Cardueline Finches (Fringillidae, Aves)
by Ekaterina Grishko, Lyubov Malinovskaya, Anastasia Slobodchikova, Artemiy Kotelnikov, Anna Torgasheva and Pavel Borodin
Animals 2023, 13(23), 3624; https://doi.org/10.3390/ani13233624 - 23 Nov 2023
Cited by 2 | Viewed by 1410
Abstract
Meiotic recombination is an important source of genetic diversity. Using immunolocalization of several meiotic proteins at the spreads of male pachytene cells, we estimated the number of recombination nodules per cell and their distribution along the macrochromosome 1 of the Common linnet, [...] Read more.
Meiotic recombination is an important source of genetic diversity. Using immunolocalization of several meiotic proteins at the spreads of male pachytene cells, we estimated the number of recombination nodules per cell and their distribution along the macrochromosome 1 of the Common linnet, Eurasian bullfinch, Eurasian siskin, and European goldfinch. The macrochromosomes of the two former species have metapolycentromeres, composed of several centromeric domains. We detected significant interspecies differences in the mean numbers of recombination nodules per genome: 52.9 ± 2.8 in the linnet, 49.5 ± 3.5 in the bullfinch, 61.5 ± 6.3 in the siskin and 52.2 ± 2.7 in the goldfinch. Recombination patterns on macrochromosome 1 were similar across species, with more nodules localized near chromosome ends and fewer around centromeres. The distance from the proximal nodule to the centromere depended on the nodule count per chromosome arm, with more events leading to a closer location. However, species with different centromere types showed no difference in this regard. We propose that the deficiency of recombination sites near centromeres could be due to the sequential occurrence of crossovers starting from the chromosome ends and may not be attributed to any suppressive effect of the centromere itself. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

15 pages, 3428 KB  
Article
Cancer Associated PRDM9: Implications for Linking Genomic Instability and Meiotic Recombination
by Paris Ladias, Georgios S. Markopoulos, Charilaos Kostoulas, Ioanna Bouba, Sofia Markoula and Ioannis Georgiou
Int. J. Mol. Sci. 2023, 24(22), 16522; https://doi.org/10.3390/ijms242216522 - 20 Nov 2023
Cited by 2 | Viewed by 2149
Abstract
The PR domain-containing 9 or PRDM9 is a gene recognized for its fundamental role in meiosis, a process essential for forming reproductive cells. Recent findings have implicated alterations in the PRDM9, particularly its zinc finger motifs, in the onset and progression of cancer. [...] Read more.
The PR domain-containing 9 or PRDM9 is a gene recognized for its fundamental role in meiosis, a process essential for forming reproductive cells. Recent findings have implicated alterations in the PRDM9, particularly its zinc finger motifs, in the onset and progression of cancer. This association is manifested through genomic instability and the misregulation of genes critical to cell growth, proliferation, and differentiation. In our comprehensive study, we harnessed advanced bioinformatic mining tools to delve deep into the intricate relationship between PRDM9F and cancer. We analyzed 136,752 breakpoints and found an undeniable association between specific PRDM9 motifs and the occurrence of double-strand breaks, a phenomenon evidenced in every cancer profile examined. Utilizing R statistical querying and the Regioner package, 55 unique sequence variations of PRDM9 were statistically correlated with cancer, from a pool of 1024 variations. A robust analysis using the Enrichr tool revealed prominent associations with various cancer types. Moreover, connections were noted with specific phenotypic conditions and molecular functions, underlining the pervasive influence of PRDM9 variations in the biological spectrum. The Reactome tool identified 25 significant pathways associated with cancer, offering insights into the mechanistic underpinnings linking PRDM9 to cancer progression. This detailed analysis not only confirms the pivotal role of PRDM9 in cancer development, but also unveils a complex network of biological processes influenced by its variations. The insights gained lay a solid foundation for future research aimed at deciphering the mechanistic pathways of PRDM9, offering prospects for targeted interventions and innovative therapeutic approaches in cancer management. Full article
(This article belongs to the Special Issue Developmental Biology: Computational and Experimental Approaches)
Show Figures

Figure 1

Back to TopTop