Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = mercury detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3532 KB  
Article
Pollution Status, Ecological Risks, and Potential Sources of Metals in the Middle and Lower Reaches of the Lianjiang River Basin, Guangdong Province, China
by Yongzhong Lai, Le Li, Xianbing Huang, Guoyong Lu, Fengqin Pan and Wenhua Liu
Toxics 2025, 13(10), 840; https://doi.org/10.3390/toxics13100840 - 1 Oct 2025
Abstract
Human activities have led to severe aquatic pollution and significant concerns about the ecological health of the Lianjiang River Basin (LRB). These concerns resulted in the implementation of comprehensive policies and treatments to improve the sediment and water quality. Herein, we explore the [...] Read more.
Human activities have led to severe aquatic pollution and significant concerns about the ecological health of the Lianjiang River Basin (LRB). These concerns resulted in the implementation of comprehensive policies and treatments to improve the sediment and water quality. Herein, we explore the concentrations, sources, and degree of metal contamination in filtered water (FW), suspended solids (SSs), and surficial channel sediments (SCSs) in streams of the LRB. Calculated enrichment factors, an ecological risk index, and a principal component analysis were employed to understand the degree of elemental contamination, ecological risks, and their potential sources. Elements (e.g., Hg, Cd, Sn, Sb, Cu, and Mo) were mainly detected in FW, SSs, and SCSs in the Bergang, Hucheng, Xiashan, and Zhonggang rivers, and the mainstream of the LR. Four potential anthropogenic sources were identified, including electronic waste recycling (e.g., Cu, Sb, Pb, and Ni), mixed pollution (e.g., Se, Zn, Mn, and Mo), metal processing (e.g., Hg, Cr, Sn, and Cd), and battery manufacturing and recycling (e.g., Co, Ni, and Mn). Overall, Sn, Sb, Hg, Cu, and Cd were enriched by 37.5–79.2% and 34.8–91.3% at the SS and SCS sites, respectively. Mercury, Cd, Sn, Sb, Cu, and Mo posed the most risk both in the SSs and SCSs. Overall, the SS and SCS samples from the LRB remain severely contaminated with metals after recent environmental remediation. The implementation of pollution source control, sewage interception, and dredging operations should be further enhanced. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

25 pages, 104808 KB  
Article
From the Moon to Mercury: Release of Global Crater Catalogs Using Multimodal Deep Learning for Crater Detection and Morphometric Analysis
by Riccardo La Grassa, Cristina Re, Elena Martellato, Adriano Tullo, Silvia Bertoli, Gabriele Cremonese, Natalia Amanda Vergara Sassarini, Maddalena Faletti, Valentina Galluzzi and Lorenza Giacomini
Remote Sens. 2025, 17(19), 3287; https://doi.org/10.3390/rs17193287 - 25 Sep 2025
Abstract
This study has compiled the first impact-crater dataset for Mercury with diameters greater than 400 m by a multimodal deep-learning pipeline. We present an enhanced deep learning framework for large-scale planetary crater detection, extending the YOLOLens architecture through the integration of multimodal inputs: [...] Read more.
This study has compiled the first impact-crater dataset for Mercury with diameters greater than 400 m by a multimodal deep-learning pipeline. We present an enhanced deep learning framework for large-scale planetary crater detection, extending the YOLOLens architecture through the integration of multimodal inputs: optical imagery, digital terrain models (DTMs), and hillshade derivatives. By incorporating morphometric data, the model achieves robust detection of impact craters that are often imperceptible in optical imagery alone, especially in regions affected by low contrast, degraded rims, or shadow-dominated illumination. The resulting catalogs LU6M371TGT for the Moon and ME6M300TGT for Mercury constitute the most comprehensive automated crater inventories to date, demonstrating the effectiveness of multimodal learning and cross-planet transfer. This work highlights the critical role of terrain information in planetary object detection and establishes a scalable, high-throughput pipeline for planetary surface analysis using modern deep learning tools. To validate the pipeline, we compare its predictions against the manually annotated catalogs for the Moon, Mercury, and several regional inventories, observing close agreement across the full diameter spectrum, revealing a high level of confidence in our approach. This work presents a spatial density analysis, comparing the spatial density maps of small and large craters highlighting the uneven distribution of crater sizes across Mercury. We explore the prevalence of kilometer-scale (1–5 km range) impact craters, demonstrating that these dominate the crater population in certain regions of Mercury’s surface. Full article
Show Figures

Figure 1

21 pages, 1379 KB  
Article
Comprehensive Assessment of Mercury Contamination and Health Risks from Artisanal and Small-Scale Gold Mining (ASGM) in Sukabumi, Indonesia
by Tia Agustiani, Susi Sulistia, Fuzi Suciati, Agus Sudaryanto, Fitri Yola Amandita, Efadeswarni, Rendi Handika, Patrick Adu Poku, Margaret Boohene, Jun Kobayashi, Yasuhiro Ishibashi, Jeffrey Stewart Morrow, Yasumi Anan and Tetsuro Agusa
Earth 2025, 6(3), 110; https://doi.org/10.3390/earth6030110 - 13 Sep 2025
Viewed by 553
Abstract
Mercury (Hg) pollution from artisanal and small-scale gold mining (ASGM) is a global environmental and public health concern. In Indonesia, ASGM remains widespread, yet assessments of multimedia contamination and health risks are limited. This study quantified Hg concentration in water, sediment, soil, fish, [...] Read more.
Mercury (Hg) pollution from artisanal and small-scale gold mining (ASGM) is a global environmental and public health concern. In Indonesia, ASGM remains widespread, yet assessments of multimedia contamination and health risks are limited. This study quantified Hg concentration in water, sediment, soil, fish, and cassava to evaluate environmental pollution and potential health risks in Waluran, Sukabumi, Indonesia. Mercury concentration in ASGM was higher than in the reference area, especially in fish (median: 4.76 mg/kg dw), cassava leaves (median: 15.7 mg/kg dw), and tailing sediments (median: 171 mg/kg dw). A remarkably high Hg concentration (9760 mg/kg dw) was detected in soil from amalgam-burning spots. An elevated Hg concentration was observed in the reference area, suggesting widespread contamination and potential for long-range dispersion. Over 85% of ASGM samples were categorized as heavily to extremely contaminated by the geo-accumulation index (Igeo). Bioaccumulation assessment indicated a high bioconcentration factor (BCF) in fish and moderate bioaccumulation factor (BAF) in cassava roots. Hazard Quotients (HQ) were greater than 1 for most exposure pathways in both adults and children, with the greatest risk deriving from cassava leaf consumption. These findings indicate severe Hg contamination within ASGM-affected communities and underscore the urgent need for public health interventions, environmental monitoring, and strengthened regulations to reduce Hg exposure in Indonesia. Full article
Show Figures

Figure 1

25 pages, 1077 KB  
Review
Heavy Metals in Milk and Dairy Products: Safety and Analysis
by Maria Renata S. Souto, Adriana M. Pimenta, Rita I. L. Catarino, Maria Fernanda C. Leal and Eugénia T. R. Simões
Pollutants 2025, 5(3), 29; https://doi.org/10.3390/pollutants5030029 - 10 Sep 2025
Viewed by 623
Abstract
Milk and dairy products play a key role in the human diet but may also be vehicles for toxic contaminants, particularly heavy metals and metalloids (HMs), such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As). This integrative review examines peer-reviewed studies [...] Read more.
Milk and dairy products play a key role in the human diet but may also be vehicles for toxic contaminants, particularly heavy metals and metalloids (HMs), such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As). This integrative review examines peer-reviewed studies published between 2015 and 2025 to examine sources, occurrence, and health risks associated with HM contamination in milk and dairy products. Key sources include industrial emissions, agricultural runoff, contaminated feed and water, and inadequate packaging. This review highlights regulatory inconsistencies, limited surveillance, and underuse of metal speciation analysis, which hinder accurate toxicity assessment. Advances in trace-level HM detection systems are discussed in terms of sensitivity, accessibility, and feasibility. Studies from diverse geographic regions frequently report high levels of Pb and Cd in samples originating from industrialized areas in low- and middle-income countries. Health risk indicators, such as target hazard quotients (THQs) and margins of exposure (MOEs), often exceed safety thresholds, particularly in children, indicating significant public health risks, especially with prolonged exposure. These findings underscore the urgent need for systematic contaminant monitoring, harmonized regulations, source-focused mitigation policies, and investment in rapid, cost-effective testing technologies to safeguard milk and dairy product safety worldwide. Full article
Show Figures

Graphical abstract

14 pages, 1741 KB  
Article
Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment
by Antonio Humberto Hamad Minervino, Osvaldo Gato Nunes Neto, Fábio Edir Amaral Albuquerque, Kelly Cristiny Gomes da Paixão Albuquerque, Francisco Flávio Vieira de Assis, Rejane Santos Sousa, Raimundo Alves Barrêto Júnior, Marta López-Alonso and Marta Miranda
Toxics 2025, 13(9), 740; https://doi.org/10.3390/toxics13090740 - 31 Aug 2025
Viewed by 756
Abstract
Western Pará, northern Brazil, is a significant region for mineral exploration, leading to the deposition of potentially toxic elements in soils and water basins. This study evaluated concentrations of mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) in cattle muscle tissue from [...] Read more.
Western Pará, northern Brazil, is a significant region for mineral exploration, leading to the deposition of potentially toxic elements in soils and water basins. This study evaluated concentrations of mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) in cattle muscle tissue from three municipalities: Oriximiná, Itaituba, and Monte Alegre. Metal concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). The estimated daily intake (EDI) of toxic metals via beef consumption (71 g/person/day) was below oral reference doses values (RfDo). Target hazard quotient (THQ) and total THQ (TTHQ) values for all metals were below 1, indicating no significant non-carcinogenic health risk. Monte Alegre exhibited the highest THQ for As and Pb, Oriximiná for Cd, and Itaituba for Hg. Although the overall assessment suggests low risk, elevated Hg concentrations were detected in 10% of the samples, with at least one animal from each municipality exceeding the European Union maximum residue limit (0.01 mg/kg). These findings indicate localized contamination and potential mercury bioaccumulation. Given the rising anthropogenic activities (such as mining and deforestation), continued monitoring of heavy metal levels in animal tissues is recommended to ensure long-term food safety and public health. Full article
(This article belongs to the Special Issue Harmful Outcomes of Environmental and Food Pollutants on Human Health)
Show Figures

Graphical abstract

17 pages, 304 KB  
Article
Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment
by Andrea Acosta-Dacal, Adrián Melián Henríquez, Juan Alberto Corbera, Ana Macías-Montes, Manuel Zumbado, Norberto Ruiz-Suárez, José Luis Martín-Barrasa, Octavio P. Luzardo and María Teresa Tejedor-Junco
Vet. Sci. 2025, 12(9), 829; https://doi.org/10.3390/vetsci12090829 - 29 Aug 2025
Viewed by 670
Abstract
Dromedary camels raised under semi-extensive management can act as One Health sentinels for environmental exposures and food chain surveillance, yet serum reference information remains scarce. Our objective was to provide the most comprehensive assessment to date of physiological and toxicological serum profiles in [...] Read more.
Dromedary camels raised under semi-extensive management can act as One Health sentinels for environmental exposures and food chain surveillance, yet serum reference information remains scarce. Our objective was to provide the most comprehensive assessment to date of physiological and toxicological serum profiles in dromedary camels (Camelus dromedarius) from the Canary Islands. We included 114 clinically healthy animals of different sex, age, and reproductive status. Serum samples were analyzed for essential, toxic, and potentially toxic elements using inductively coupled plasma mass spectrometry (ICP-MS). In addition, a high-throughput multi-residue method based on QuEChERS extraction followed by UHPLC-MS/MS and GC-MS/MS was used to screen for 360 organic compounds, including pesticides, veterinary drugs, human pharmaceuticals, and persistent organic pollutants. Essential elements showed biologically consistent variations according to sex, age group, and pregnancy status. Males had higher levels of selenium and copper, while calves showed elevated concentrations of manganese and zinc. Pregnant females exhibited lower iron, zinc, and selenium levels, consistent with increased fetal demand. These results provide preliminary reference values for healthy camels, stratified by physiological status. In contrast, classical toxic elements such as arsenic, mercury, lead, and cadmium were found at very low or undetectable concentrations. Several potentially toxic elements, including barium, strontium, and rare earth elements, were detected sporadically but without toxicological concern. Only 13 organic compounds (3.6%) were detected in any sample, and concentrations were consistently low. The most prevalent was the PAH acenaphthene (55.3%), followed by the fungicide procymidone and the PAH fluorene. Notably, no residues of the usually detected 4,4′-DDE or PCB congeners were found in any sample. These findings confirm the low environmental and dietary exposure of camels under low-intensity farming systems and highlight their value as sentinel species for food safety and environmental monitoring. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
20 pages, 3712 KB  
Article
Mussels as Bioindicators for the Rapid Detection of Heavy Metal Fluctuations in Marine Coastal Waters: A Case Study of Seasonal Bioaccumulation Monitoring and Assessment of Perna viridis from the Gulf of Tonkin Coastline, Hai Phong, Vietnam
by Hue Nguyen Thanh Kim, Van-Hao Duong, Trung-Tien Chu, Thanh-Xuan Pham-Thi, Xuan-Quang Nguyen, Sang Van Vu, Thin Pham Van, Duc-Thinh Ta, Duc-Thang Duong, Obid Tursunov, Marckasagayam Priyadharshini, Mohamed Saiyad Musthafa, Miklós Hegedűs, Amin Shahrokhi and Tibor Kovács
Water 2025, 17(17), 2552; https://doi.org/10.3390/w17172552 - 28 Aug 2025
Viewed by 1108
Abstract
This study aims to evaluate the feasibility of using the mussel as a bioindicator for the rapid detection of heavy metal (such as Cd, Pb, Hg, Ni, Cr, Cu, As, and Zn) fluctuations in aquatic environments and the sensitivity of the bioaccumulation of [...] Read more.
This study aims to evaluate the feasibility of using the mussel as a bioindicator for the rapid detection of heavy metal (such as Cd, Pb, Hg, Ni, Cr, Cu, As, and Zn) fluctuations in aquatic environments and the sensitivity of the bioaccumulation of heavy metals in muscle tissues over time. The seasonal bioaccumulation patterns of heavy metals within Asian green mussels (Perna viridis), from Vietnamese coastal waters of Hai Phong were investigated using inductively coupled plasma mass spectrometry (ICP-MS). Additionally, the health risks from the consumption of P. viridis by local people were assessed. Mussels of varying sizes were sampled on a monthly basis between March (dry season) and July 2024 (wet season). The results revealed that the hepatopancreas had substantially higher concentrations of metals at all times relative to their corresponding muscle tissues, confirming its appropriateness as a bioindicator organ. The concentrations of heavy metals in mussels were recorded as significantly lower than the guideline levels, except for arsenic (As). Zinc (Zn) showed the highest concentrations, while mercury (Hg) had the lowest concentrations. There were strong seasonal and monthly differences, with peak levels of Pb, Cr, and As during the dry season, and high levels of Cs and Cu during the rainy season. It was found that the condition index, physiological factors, and shell size all had major impacts on the absorption of specific heavy metals. It was indicated that Pb, Cr, As, Cs, and Cu bioaccumulation are both biologically and environmentally responsive and can be used as proxies for environmental contamination, while the accumulation of these metals correlated with biological traits (shell length, weight, and CI), which is useful in modeling efforts. Health risk assessments using target hazard quotients (THQs) and the total hazard index (THI) identified Pb in the hepatopancreas as a primary contributor to the non-carcinogenic risk (THQ > 1), particularly during the dry season. The findings revealed the suitability of P. viridis, particularly hepatopancreatic tissue, as a short-term biomonitoring tool for detecting spikes and rapid fluctuations of certain heavy metals and assessing related human health risks in coastal aquatic systems. Full article
(This article belongs to the Special Issue Water Pollutants and Human Health: Challenges and Perspectives)
Show Figures

Figure 1

27 pages, 2146 KB  
Article
Giant Moray Eel (Gymnothorax javanicus), a Long-Living Apex Predator That Poses a Food Safety Risk in the Pacific
by Emillie M. F. Passfield, Kirsty F. Smith, D. Tim Harwood, Joshua D. Fitzgerald, Phoebe A. Argyle, Jacob Thomson-Laing and J. Sam Murray
Mar. Drugs 2025, 23(9), 341; https://doi.org/10.3390/md23090341 - 26 Aug 2025
Viewed by 943
Abstract
The giant moray eel (GME; Gymnothorax javanicus) is an important marine species that plays a key ecological role in reef systems and is a valued food source for indigenous communities. However, it is well-known that GMEs pose a food safety risk due [...] Read more.
The giant moray eel (GME; Gymnothorax javanicus) is an important marine species that plays a key ecological role in reef systems and is a valued food source for indigenous communities. However, it is well-known that GMEs pose a food safety risk due to their ability to accumulate high levels of ciguatoxins (CTXs), the toxins known to cause ciguatera poisoning. This study assessed the age, CTX levels, elemental composition, and nutritional profile of seven GME specimens collected from Muri Lagoon, Rarotonga (Cook Islands), representing the most detailed compositional investigation on this species. Age was determined for the three largest specimens, with the oldest being 39 years old. All specimens contained ciguatoxins, with Type I (CTX4A derivatives), Type II (CTX3C derivatives), algal-ciguatoxins, and biotransformed metabolites being detected. There was a higher CTX content in the liver samples compared to flesh samples, with the longest–heaviest specimen containing the highest levels. The CTX1B level observed in flesh samples of all seven eel specimens exceeded the recommended safe guidance level proposed by the USFDA. A similar ciguatoxin profile was observed across flesh sections, with the belly flap or top loin containing the highest levels of CTXs in most specimens. No bioactive metabolites produced by co-occurring harmful microalgae, including regulated shellfish toxins, were detected. Elemental analysis determined the presence of 21 elements, including arsenic, low levels of mercury, and the volcanic elements rubidium and strontium. Nutritionally, the GMEs were shown to be a lean protein source; however, due to the ubiquitous bioaccumulation of CTXs, they pose a food safety risk to consumers. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Figure 1

20 pages, 2128 KB  
Review
A Review of Quartz Crystal Microbalance-Based Mercury Detection: Principles, Performance, and On-Site Applications
by Kazutoshi Noda, Kohji Marumoto and Hidenobu Aizawa
Sensors 2025, 25(16), 5118; https://doi.org/10.3390/s25165118 - 18 Aug 2025
Viewed by 527
Abstract
Mercury (Hg) is a globally recognized toxic element, and the Minamata Convention on Mercury entered into force in 2017 to address its associated risks. Under the United Nations Environment Programme, international efforts to reduce Hg emissions and monitor its environmental presence are ongoing. [...] Read more.
Mercury (Hg) is a globally recognized toxic element, and the Minamata Convention on Mercury entered into force in 2017 to address its associated risks. Under the United Nations Environment Programme, international efforts to reduce Hg emissions and monitor its environmental presence are ongoing. In support of these initiatives, we developed a simple and rapid mercury detection device based on a quartz crystal microbalance (QCM-Hg sensor), which utilizes the direct amalgamation reaction between Hg and a gold (Au) electrode. The experimental results demonstrated a proportional relationship between Hg concentration and the resulting oscillation frequency shift. Increased flow rates and prolonged measurement durations enhanced detection sensitivity. The system achieved a detection limit of approximately 1 µg/m3, comparable to that of commercially available analyzers. Furthermore, a measurement configuration integrating the reduction-vaporization method with the QCM-Hg sensor enabled the detection of mercury in aqueous samples. Based on the experimental results and the gas-phase detection sensitivity achieved to date, concentrations as low as approximately 0.05 µg/L appear to be detectable. These findings highlight the potential of the QCM-Hg system for on-site mercury monitoring. This review aims to provide a comprehensive yet concise overview of QCM-Hg sensor development and its potential as a next-generation tool for environmental and occupational mercury monitoring. Full article
Show Figures

Figure 1

31 pages, 2279 KB  
Review
An Overview of Heavy Metal Contamination in Water from Agriculture: Origins, Monitoring, Risks, and Control Measures
by Roxana Maria Madjar and Gina Vasile Scăețeanu
Sustainability 2025, 17(16), 7368; https://doi.org/10.3390/su17167368 - 14 Aug 2025
Viewed by 1682
Abstract
Agricultural activities are widely recognized as major sources of water pollution, primarily due to the introduction of heavy metals (HMs) through fertilizers, pesticides, manures, sewage sludge, and irrigation water. Owing to their persistence and non-biodegradability, these metals pose substantial risks to ecosystems and [...] Read more.
Agricultural activities are widely recognized as major sources of water pollution, primarily due to the introduction of heavy metals (HMs) through fertilizers, pesticides, manures, sewage sludge, and irrigation water. Owing to their persistence and non-biodegradability, these metals pose substantial risks to ecosystems and public health. While certain HMs such as cobalt, copper, and zinc are essential micronutrients for crops at low concentrations, others—like arsenic, cadmium, lead, and mercury—enter agricultural systems as contaminants and serve no biological function in plants. This paper explores the complex issue of HM contamination in water resulting from agricultural practices. It reviews the primary sources and pathways through which HMs enter aquatic systems, discusses their ecological and health impacts, and examines analytical methods used for HM detection and monitoring. In response to this challenge, several mitigation strategies are highlighted, including the optimized use of agrochemicals, adoption of sustainable farming practices, and implementation of phytoremediation and bioremediation techniques. Additionally, the importance of community education and regulatory enforcement is emphasized as part of an integrated approach to pollution control. Ultimately, this paper underscores the need for balanced solutions that safeguard water resources while maintaining agricultural productivity. Full article
(This article belongs to the Special Issue Geoenvironmental Engineering and Water Pollution Control)
Show Figures

Graphical abstract

23 pages, 3226 KB  
Article
Advanced Flow Detection Cell for SPEs for Enhancing In Situ Water Monitoring of Trace Levels of Cadmium
by Giulia Mossotti, Davide Girelli, Matilde Aronne, Giulio Galfré, Andrea Piscitelli, Luciano Scaltrito, Sergio Ferrero and Valentina Bertana
Water 2025, 17(16), 2384; https://doi.org/10.3390/w17162384 - 12 Aug 2025
Viewed by 1917
Abstract
An advanced anodic stripping voltammetry (ASV)-based Micro Electro Mechanical System (MEMS) sensor for cadmium (Cd) detection is presented in this study, which is cost-effective and efficient for in situ water monitoring, providing a crucial early warning mechanism, streamlining environmental monitoring, and facilitating timely [...] Read more.
An advanced anodic stripping voltammetry (ASV)-based Micro Electro Mechanical System (MEMS) sensor for cadmium (Cd) detection is presented in this study, which is cost-effective and efficient for in situ water monitoring, providing a crucial early warning mechanism, streamlining environmental monitoring, and facilitating timely intervention to safeguard public health and environmental safety. The rationale behind this work is to address the critical need for an in situ monitoring system for cadmium (Cd) in freshwater sources, particularly those adjacent to agricultural fields. Cd(II) is a highly toxic heavy metal that poses a significant threat to agricultural ecosystems and human health due to its rapid bioaccumulation in plants and subsequent entry into the food chain. The developed analytic device is composed of a commercial mercury salt-modified graphite screen-printed electrode (SPE) with a custom-designed innovative polydimethylsiloxane (PDMS) flow detection cell. The flow cell was prototyped using 3D printing and replica moulding, with its design and performance validated through COMSOL Multiphysics simulations to optimize inflow conditions and ensure maximum analyte dispersion on the working electrode surface. Chemical detection was performed using square wave voltammetry, demonstrating a linear response for Cd(II) concentrations of 0 to 20 µg/L. The system exhibited robust analytical performance, enabling 25–30 daily analyses with consistent sensitivity within the Limit of Detection (LoD) set by the law of 3 µg/L. Full article
Show Figures

Figure 1

19 pages, 582 KB  
Article
Xylitol Antioxidant Properties: A Potential Effect for Inflammation Reduction in Menopausal Women?—A Pilot Study
by Ilona Górna, Magdalena Kowalówka, Barbara Więckowska, Michalina Banaszak, Grzegorz Kosewski, Olivia Grządzielska, Juliusz Przysławski and Sławomira Drzymała-Czyż
Curr. Issues Mol. Biol. 2025, 47(8), 611; https://doi.org/10.3390/cimb47080611 - 2 Aug 2025
Viewed by 665
Abstract
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess [...] Read more.
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess the effect of replacing sucrose with xylitol on serum antioxidant capacity in postmenopausal women. Methods: This study included 34 women aged 50 to 65 years who successively consumed 5 g/d, 10 g/d, and 15 g/d of xylitol. The dietary intervention lasted a total of 6 weeks, with each phase covering a 2-week period. Diet was assessed twice based on a 7-day dietary interview (Diet 6.0, NIZP–PZH, Warsaw). The material for this study was venous blood. Antioxidant capacity was determined using the DPPH radical scavenging method and the ABTS cation radical scavenging method. Results: In both methods, a significant increase in serum antioxidant potential was observed after replacing sugar with xylitol (p < 0.0001). An increase in the ability to neutralize free radicals was observed in almost all women studied. Additional analysis of the effect of selected nutrients on the obtained effects of the nutritional intervention showed that the most significant effect could potentially be exerted by manganese, maltose, sucrose, and mercury, and the strongest positive correlation was exerted by vitamin A, retinol, and vitamin E. Although the values obtained in the constructed models were not statistically significant, the large effect indicates potentially significant relationships that could have a significant impact on serum antioxidant potential in the studied group of women. Conclusions: The results suggest a potential role of xylitol in enhancing antioxidant defense mechanisms in menopausal women. Although the sample size was relatively small, this study was powered at approximately 80% to detect large effects, supporting the reliability of the observed results. Nevertheless, given the pilot nature of this study, further research with larger cohorts is warranted to confirm these preliminary observations and to clarify the clinical significance of xylitol supplementation in populations exposed to oxidative stress. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammatory Diseases)
Show Figures

Graphical abstract

33 pages, 2747 KB  
Review
Biochar-Derived Electrochemical Sensors: A Green Route for Trace Heavy Metal Detection
by Sairaman Saikrithika and Young-Joon Kim
Chemosensors 2025, 13(8), 278; https://doi.org/10.3390/chemosensors13080278 - 1 Aug 2025
Viewed by 855
Abstract
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, [...] Read more.
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, namely, lead (Pb2+), cadmium (Cd2+), mercury (Hg2+), arsenic (As3+), and chromium, are potential hazards due to their non-biodegradable nature with high toxicity, even at trace levels. Acute health complications, including neurological, renal, and developmental disorders, arise upon exposure to such metal ions. To monitor and mitigate these toxic exposures, sensitive detection techniques are essential. Pre-existing conventional detection methods, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), involve expensive instrumentation, skilled operators, and complex sample preparation. Electrochemical sensing, which is simple, portable, and eco-friendly, is foreseen as a potential alternative to the above conventional methods. Carbon-based nanomaterials play a crucial role in electrochemical sensors due to their high conductivity, stability, and the presence of surface functional groups. Biochar (BC), a carbon-rich product, has emerged as a promising electrode material for electrochemical sensing due to its high surface area, sustainability, tunable porosity, surface rich in functional groups, eco-friendliness, and negligible environmental footprint. Nevertheless, broad-spectrum studies on the use of biochar in electrochemical sensors remain narrow. This review focuses on the recent advancements in the development of biochar-based electrochemical sensors for the detection of toxic heavy metals such as Pb2+, Cd2+, and Hg2+ and the simultaneous detection of multiple ions, with special emphasis on BC synthesis routes, surface modification methodologies, electrode fabrication techniques, and electroanalytical performance. Finally, current challenges and future perspectives for integrating BC into next-generation sensor platforms are outlined. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

11 pages, 3086 KB  
Article
A Carbazole-Based Aggregation-Induced Emission “Turn-On” Sensor for Mercury Ions in Aqueous Solution
by Remya Radha, Mohammed S. Valliyengal and Mohammad H. Al-Sayah
Chemosensors 2025, 13(8), 276; https://doi.org/10.3390/chemosensors13080276 - 25 Jul 2025
Viewed by 764
Abstract
The development of rapid detection methods to identify mercury ions in aqueous solutions is crucial for effectively monitoring environmental contamination. Fluorescent chemical sensors offer a fast and reliable approach to detect and analyze these metal ions. In this study, a sensor utilizing aggregation-induced [...] Read more.
The development of rapid detection methods to identify mercury ions in aqueous solutions is crucial for effectively monitoring environmental contamination. Fluorescent chemical sensors offer a fast and reliable approach to detect and analyze these metal ions. In this study, a sensor utilizing aggregation-induced emission (AIE) is introduced as a ’turn-on’ fluorescent sensor specifically designed for mercury ions in aqueous solutions. The sensor, based on carbazole, forms aggregates in aqueous solutions, resulting in a significant 800% enhancement of its fluorescence signal. When elemental iodine is added to the solution, the fluorescence of the aggregates is quenched by 90%. However, upon subsequent addition of mercury ions, the fluorescence is regenerated, and the intensity of the emission signal is directly proportional to the concentration of the ions across a wide concentration range. The carbazole-iodine complex acts as a fluorescent probe, enabling the detection of mercury ions in aqueous solutions. Full article
Show Figures

Graphical abstract

32 pages, 3950 KB  
Article
Macrozoobenthos Response to Sediment Contamination near the S/s Stuttgart Wreck: A Biological and Chemical Assessment in the Gulf of Gdańsk, Southern Baltic Sea
by Anna Tarała, Diana Dziaduch, Katarzyna Galer-Tatarowicz, Aleksandra Bojke, Maria Kubacka and Marcin Kalarus
Water 2025, 17(15), 2199; https://doi.org/10.3390/w17152199 - 23 Jul 2025
Viewed by 523
Abstract
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased [...] Read more.
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased species richness and distinct benthic assemblages, shaped primarily by depth and distance from the wreck. Among macrozoobenthos, there dominated opportunistic species, characterized by a high degree of resistance to the unfavorable state of the environment, suggesting adaptation to local conditions. Elevated concentrations of heavy metals were detected in sediments, with maximum values of Cd—0.85 mg·kg−1, Cu—34 mg·kg−1, Zn—119 mg·kg−1, and Ni—32.3 mg·kg−1. However, no significant correlations between sediment contamination and macrozoobenthos composition were found. In Mytilus trossulus, contaminant levels were mostly within regulatory limits; however, mercury concentrations reached 0.069 mg·kg−1 wet weight near the wreck and 0.493 mg·kg−1 at the reference station, both exceeding the threshold defined in national legislation (0.02 mg·kg−1) (Journal of Laws of 2021, item 568). Condition indices for Macoma balthica were lower in the wreck area, suggesting sublethal stress. Ecotoxicological tests showed no acute toxicity in most sediment samples, emphasizing the complexity of pollutant effects. The data presented here not only enrich the existing literature on marine pollution but also contribute to the development of more effective environmental protection strategies for marine ecosystems under international protection. Full article
Show Figures

Figure 1

Back to TopTop