Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = metaheuristic technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 925 KB  
Article
Metaheuristic-Driven Feature Selection for Human Activity Recognition on KU-HAR Dataset Using XGBoost Classifier
by Proshenjit Sarker, Jun-Jiat Tiang and Abdullah-Al Nahid
Sensors 2025, 25(17), 5303; https://doi.org/10.3390/s25175303 - 26 Aug 2025
Abstract
Human activity recognition (HAR) is an automated technique for identifying human activities using images and sensor data. Although numerous studies exist, most of the models proposed are highly complex and rely on deep learning. This research utilized two novel frameworks based on the [...] Read more.
Human activity recognition (HAR) is an automated technique for identifying human activities using images and sensor data. Although numerous studies exist, most of the models proposed are highly complex and rely on deep learning. This research utilized two novel frameworks based on the Extreme Gradient Boosting (XGB) classifier, also known as the XGBoost classifier, enhanced with metaheuristic algorithms: Golden Jackal Optimization (GJO) and War Strategy Optimization (WARSO). This study utilized the KU-HAR dataset, which was collected from smartphone accelerometer and gyroscope sensors. We extracted 48 mathematical features to convey the HAR information. GJO-XGB achieved a mean accuracy in 10-fold cross-validation of 93.55% using only 23 out of 48 features. However, WARSO-XGB outperformed GJO-XGB and other traditional classifiers, achieving a mean accuracy, F-score, precision, and recall of 94.04%, 92.88%, 93.47%, and 92.40%, respectively. GJO-XGB has shown lower standard deviations on the test set (accuracy: 0.200; F-score: 0.285; precision: 0.388; recall: 0.336) compared to WARSO-XGB, indicating a more stable performance. WARSO-XGB exhibited lower time complexity, with average training and testing times of 30.84 s and 0.51 s, compared to 39.40 s and 0.81 s for GJO-XGB. After performing 10-fold cross-validation using various external random seeds, GJO-XGB and WARSO-XGB achieved accuracies of 93.80% and 94.19%, respectively, with a random seed = 20. SHAP identified that range_gyro_x, max_acc_z, mean_gyro_x, and some other features are the most informative features for HAR. The SHAP analysis also involved a discussion of the individual predictions, including the misclassifications. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

40 pages, 17003 KB  
Article
Marine Predators Algorithm-Based Robust Composite Controller for Enhanced Power Sharing and Real-Time Voltage Stability in DC–AC Microgrids
by Md Saiful Islam, Tushar Kanti Roy and Israt Jahan Bushra
Algorithms 2025, 18(8), 531; https://doi.org/10.3390/a18080531 - 20 Aug 2025
Viewed by 251
Abstract
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on [...] Read more.
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on backstepping fast terminal sliding mode control (BFTSMC). This controller is further enhanced with a virtual capacitor to emulate synthetic inertia and with a fractional power-based reaching law, which ensures smooth and finite-time convergence. Moreover, the proposed control strategy ensures the effective coordination of power sharing between AC and DC sub-grids through bidirectional converters, thereby maintaining system stability during rapid fluctuations in load or generation. To achieve optimal control performance under diverse and dynamic operating conditions, the controller gains are adaptively tuned using the marine predators algorithm (MPA), a nature-inspired metaheuristic optimization technique. Furthermore, the stability of the closed-loop system is rigorously established through control Lyapunov function analysis. Extensive simulation results conducted in the MATLAB/Simulink environment demonstrate that the proposed controller significantly outperforms conventional methods by eliminating steady-state error, reducing the settling time by up to 93.9%, and minimizing overshoot and undershoot. In addition, real-time performance is validated via processor-in-the-loop (PIL) testing, thereby confirming the controller’s practical feasibility and effectiveness in enhancing the resilience and efficiency of HADCMG operations. Full article
Show Figures

Figure 1

27 pages, 1056 KB  
Article
Binary Grey Wolf Optimization Algorithm-Based Load Scheduling Using a Multi-Agent System in a Grid-Tied Solar Microgrid
by Sujo Vasu, P Ramesh Kumar and E A Jasmin
Energies 2025, 18(16), 4423; https://doi.org/10.3390/en18164423 - 19 Aug 2025
Viewed by 241
Abstract
Microgrids play a crucial role in the development of future smart grids, with multiple interconnected microgrids forming large-scale multi-microgrid systems that operate as smart grids. Multi-agent system (MAS)-based control solutions are the most suitable for addressing such control challenges. This paper presents a [...] Read more.
Microgrids play a crucial role in the development of future smart grids, with multiple interconnected microgrids forming large-scale multi-microgrid systems that operate as smart grids. Multi-agent system (MAS)-based control solutions are the most suitable for addressing such control challenges. This paper presents a demand-side management (DSM) strategy using a meta-heuristic optimization technique for minimizing the household energy consumption cost using MAS. The binary grey wolf optimization algorithm (BGWOA) optimizes load scheduling, reducing electricity costs, without compromising consumer preferences using time-of-day (ToD) tariffs. The communication agents and load agents comprise the MAS used to streamline load control operations. The results demonstrate that MAS-based load control using metaheuristic optimization techniques enhances demand-side management, thus minimizing the electricity costs while adhering to contradictory parameters like user preferences, appliance duration, and load atomicity. This makes renewable energy integration more cost-effective in smart grids, thereby ensuring affordable, reliable, and sustainable energy for all. Full article
Show Figures

Figure 1

47 pages, 4608 KB  
Article
Adaptive Differentiated Parrot Optimization: A Multi-Strategy Enhanced Algorithm for Global Optimization with Wind Power Forecasting Applications
by Guanjun Lin, Mahmoud Abdel-salam, Gang Hu and Heming Jia
Biomimetics 2025, 10(8), 542; https://doi.org/10.3390/biomimetics10080542 - 18 Aug 2025
Viewed by 259
Abstract
The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative [...] Read more.
The Parrot Optimization Algorithm (PO) represents a contemporary nature-inspired metaheuristic technique formulated through observations of Pyrrhura Molinae parrot behavioral patterns. PO exhibits effective optimization capabilities by achieving equilibrium between exploration and exploitation phases through mimicking foraging behaviors and social interactions. Nevertheless, during iterative progression, the algorithm encounters significant obstacles in preserving population diversity and experiences declining search effectiveness, resulting in early convergence and diminished capacity to identify optimal solutions within intricate optimization landscapes. To overcome these constraints, this work presents the Adaptive Differentiated Parrot Optimization Algorithm (ADPO), which constitutes a substantial enhancement over baseline PO through the implementation of three innovative mechanisms: Mean Differential Variation (MDV), Dimension Learning-Based Hunting (DLH), and Enhanced Adaptive Mutualism (EAM). The MDV mechanism strengthens the exploration capabilities by implementing dual-phase mutation strategies that facilitate extensive search during initial iterations while promoting intensive exploitation near promising solutions during later phases. Additionally, the DLH mechanism prevents premature convergence by enabling dimension-wise adaptive learning from spatial neighbors, expanding search diversity while maintaining coordinated optimization behavior. Finally, the EAM mechanism replaces rigid cooperation with fitness-guided interactions using flexible reference solutions, ensuring optimal balance between intensification and diversification throughout the optimization process. Collectively, these mechanisms significantly improve the algorithm’s exploration, exploitation, and convergence capabilities. Furthermore, ADPO’s effectiveness was comprehensively assessed using benchmark functions from the CEC2017 and CEC2022 suites, comparing performance against 12 advanced algorithms. The results demonstrate ADPO’s exceptional convergence speed, search efficiency, and solution precision. Additionally, ADPO was applied to wind power forecasting through integration with Long Short-Term Memory (LSTM) networks, achieving remarkable improvements over conventional approaches in real-world renewable energy prediction scenarios. Specifically, ADPO outperformed competing algorithms across multiple evaluation metrics, achieving average R2 values of 0.9726 in testing phases with exceptional prediction stability. Moreover, ADPO obtained superior Friedman rankings across all comparative evaluations, with values ranging from 1.42 to 2.78, demonstrating clear superiority over classical, contemporary, and recent algorithms. These outcomes validate the proposed enhancements and establish ADPO’s robustness and effectiveness in addressing complex optimization challenges. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

28 pages, 891 KB  
Review
Single-Objective Surrogate Models for Continuous Metaheuristics: An Overview
by Konrad Krawczyk and Jarosław Arabas
Appl. Sci. 2025, 15(16), 9068; https://doi.org/10.3390/app15169068 - 18 Aug 2025
Viewed by 330
Abstract
This paper presents a comprehensive overview of single-objective surrogate models for continuous metaheuristics, addressing computationally expensive optimization problems. Metaheuristics typically require numerous objective function evaluations that become impractical with expensive simulations. Surrogate-assisted metaheuristics address this by substituting costly evaluations with lower-cost approximations. We [...] Read more.
This paper presents a comprehensive overview of single-objective surrogate models for continuous metaheuristics, addressing computationally expensive optimization problems. Metaheuristics typically require numerous objective function evaluations that become impractical with expensive simulations. Surrogate-assisted metaheuristics address this by substituting costly evaluations with lower-cost approximations. We examine three fundamental approaches: regression models that predict exact objective function values, classification models that categorize solutions, and ranking models focusing on relative ordering. We analyze various surrogate types and discuss their strengths and limitations. We discuss structural approaches from global to local models, sample management strategies, and recent advances in ensemble methods and adaptive sampling techniques. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

17 pages, 479 KB  
Article
Adaptive Optimization of a Dual Moving Average Strategy for Automated Cryptocurrency Trading
by Andres Romo, Ricardo Soto, Emanuel Vega, Broderick Crawford, Antonia Salinas and Marcelo Becerra-Rozas
Mathematics 2025, 13(16), 2629; https://doi.org/10.3390/math13162629 - 16 Aug 2025
Viewed by 1004
Abstract
In recent years, computational intelligence techniques have significantly contributed to the automation and optimization of trading strategies. Despite the increasing sophistication of predictive models, classical technical indicators such as dual Simple Moving Averages (2-SMA) remain popular due to their simplicity and interpretability. This [...] Read more.
In recent years, computational intelligence techniques have significantly contributed to the automation and optimization of trading strategies. Despite the increasing sophistication of predictive models, classical technical indicators such as dual Simple Moving Averages (2-SMA) remain popular due to their simplicity and interpretability. This work proposes an adaptive trading system that combines the 2-SMA strategy with a learning-based metaheuristic optimizer known as the Learning-Based Linear Balancer (LB2). The objective is to dynamically adjust the strategy’s parameters to maximize returns in the highly volatile cryptocurrency market. The proposed system is evaluated through simulations using historical data of the BTCUSDT futures contract from the Binance platform, incorporating real-world trading constraints such as transaction fees. The optimization process is validated over 34 training/test splits using overlapping 60-day windows. Results show that the LB2-optimized strategy achieves an average return on investment (ROI) of 7.9% in unseen test periods, with a maximum ROI of 17.2% in the best case. Statistical analysis using the Wilcoxon Signed-Rank Test confirms that our approach significantly outperforms classical benchmarks, including Buy and Hold, Random Walk, and non-optimized 2-SMA. This study demonstrates that hybrid strategies combining classical indicators with adaptive optimization can achieve robust and consistent returns, making them a viable alternative to more complex predictive models in crypto-based financial environments. Full article
Show Figures

Figure 1

32 pages, 2613 KB  
Article
Pareto-Based Optimization of PV and Battery in Home-PV-BES-EV System with Integrated Dynamic Energy Management Strategy
by Abd Alrzak Aldaliee, Nurulafiqah Nadzirah Mansor, Hazlie Mokhlis, Agileswari K. Ramasamy and Lilik Jamilatul Awalin
Sustainability 2025, 17(16), 7364; https://doi.org/10.3390/su17167364 - 14 Aug 2025
Viewed by 290
Abstract
The assessment of grid-connected systems depends on their cost efficiency, reliability, and greenhouse gas (GHG) reduction potential. This study presents a multi-objective optimization framework for designing a grid-connected photovoltaic (PV) and battery energy storage (BES) system integrated with an electric vehicle (EV) for [...] Read more.
The assessment of grid-connected systems depends on their cost efficiency, reliability, and greenhouse gas (GHG) reduction potential. This study presents a multi-objective optimization framework for designing a grid-connected photovoltaic (PV) and battery energy storage (BES) system integrated with an electric vehicle (EV) for a household in Riyadh, Saudi Arabia. The framework aims to minimize the Cost of Energy (COE) and Loss of Power Supply Probability (LPSP) while maximizing the Renewable Energy Fraction (REF). Additionally, GHG emissions are evaluated as a result of these objectives. The EV operates in Vehicle-to-Home (V2H) mode, enhancing system flexibility and energy management. The optimization process employs two advanced metaheuristic techniques, Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Harris Hawks Optimization (MOHHO), to identify Pareto front solutions. Fuzzy logic is then applied to determine a balanced compromise among the economically optimal (minimum COE), renewable energy-oriented (maximum REF), and environmentally optimal (minimum GHG emissions) solutions. Simulation results show that the proposed system achieves a COE of USD 0.0554/kWh, a LPSP of 1.96%, and an REF of 92.55%. Although the COE is slightly higher than that of the grid, the system provides significant environmental and renewable energy benefits. This study highlights the potential of integrating dynamic EV management and advanced optimization techniques to enhance the performance of grid-connected systems. The findings demonstrate the effectiveness of combining Pareto-based optimization with fuzzy logic to achieve balanced solutions addressing economic, environmental, and renewable energy objectives, paving the way for sustainable energy systems in urban households. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 3065 KB  
Article
A Kangaroo Escape Optimizer-Enabled Fractional-Order PID Controller for Enhancing Dynamic Stability in Multi-Area Power Systems
by Sulaiman Z. Almutairi and Abdullah M. Shaheen
Fractal Fract. 2025, 9(8), 530; https://doi.org/10.3390/fractalfract9080530 - 14 Aug 2025
Viewed by 411
Abstract
In this study, we propose a novel metaheuristic algorithm named Kangaroo Escape optimization Technique (KET), inspired by the survival-driven escape strategies of kangaroos in unpredictable environments. The algorithm integrates a chaotic logistic energy adaptation strategy to balance a two-phase exploration process—zigzag motion and [...] Read more.
In this study, we propose a novel metaheuristic algorithm named Kangaroo Escape optimization Technique (KET), inspired by the survival-driven escape strategies of kangaroos in unpredictable environments. The algorithm integrates a chaotic logistic energy adaptation strategy to balance a two-phase exploration process—zigzag motion and long-jump escape—and an adaptive exploitation phase with local search guided by either nearby elite solutions or random peers. A unique decoy drop mechanism is introduced to prevent premature convergence and ensure dynamic diversity. KET is applied to optimize the parameters of a fractional-order Proportional Integral Derivative (PID) controller for Load Frequency Control (LFC) in interconnected power systems. The designed fractional-order PID controller-based KET optimization extends the conventional PID by introducing fractional calculus into the integral and derivative terms, allowing for more flexible and precise control dynamics. This added flexibility enables enhanced robustness and tuning capability, particularly useful in complex and uncertain systems such as modern power systems. Comparative results with existing state-of-the-art algorithms demonstrate the superior robustness, convergence speed, and control accuracy of the proposed approach under dynamic scenarios. The proposed KET-fractional order PID controller offers 29.6% greater robustness under worst-case conditions and 36% higher consistency across multiple runs compared to existing techniques. It achieves optimal performance faster than the Neural Network Algorithm (NNA), achieving its best Integral of Time Absolute Error (ITAE) value within the first 20 iterations, demonstrating its superior learning rate and early-stage search efficiency. In addition to LFC, the robustness and generality of the proposed KET were validated on a standard speed reducer design problem, demonstrating superior optimization performance and consistent convergence when compared to several recent metaheuristics. Full article
Show Figures

Figure 1

37 pages, 3590 KB  
Article
Efficient Simulation Algorithm and Heuristic Local Optimization Approach for Multiproduct Pipeline Networks
by András Éles and István Heckl
Logistics 2025, 9(3), 114; https://doi.org/10.3390/logistics9030114 - 12 Aug 2025
Viewed by 237
Abstract
Background: Managing multiproduct pipeline systems is a complex task of critical importance in the petroleum industry. Experts frequently rely on simulation tools to design and validate pumping operation schedules. However, existing tools are often problem-specific and too slow to be effectively used for [...] Read more.
Background: Managing multiproduct pipeline systems is a complex task of critical importance in the petroleum industry. Experts frequently rely on simulation tools to design and validate pumping operation schedules. However, existing tools are often problem-specific and too slow to be effectively used for optimization purposes. Methods: In this paper, a new scheduling model is introduced, which inherently eliminates all conflicts except for tank overflows and underflows. A Discrete-Event Simulation algorithm was developed, capable of handling mesh-like pipeline topologies, reverse flows, and interface tracking. The computational performance of the new method is demonstrated using three local search-based optimization variants, including a simulated annealing metaheuristic. Results: A case study was made involving four problems, with 4–6 sites and 5–7 products in mesh-like and straight topologies, respectively, and a large-scale instance. Scheduling horizons of 2–28 days were used. The proposed simulation algorithm significantly outperforms a prior approach in speed, and the optimization algorithms effectively converged to feasible, high-quality schedules for most instances. Conclusions: This paper proposes a novel simulation technique for multiproduct pipeline scheduling along with three local search algorithm variants that demonstrate optimization capabilities. Full article
Show Figures

Figure 1

41 pages, 800 KB  
Review
Bridging Classic Operations Research and Artificial Intelligence for Network Optimization in the 6G Era: A Review
by Pablo Adasme, Ali Dehghan Firoozabadi and Enrique San Juan
Symmetry 2025, 17(8), 1279; https://doi.org/10.3390/sym17081279 - 9 Aug 2025
Viewed by 715
Abstract
This paper comprehensively reviews how operations research and optimization procedures are applied to address challenges in wireless network communications. Key challenges such as network topology design, dynamic task scheduling, and multi-objective resource allocation are examined and systematically categorized. The revision focuses on literature [...] Read more.
This paper comprehensively reviews how operations research and optimization procedures are applied to address challenges in wireless network communications. Key challenges such as network topology design, dynamic task scheduling, and multi-objective resource allocation are examined and systematically categorized. The revision focuses on literature published between 2023 and 2025, and covers topics such as flow optimization and routing, resource allocation and scheduling, mobile and wireless network management, network resilience and robustness, and energy efficiency. The works are selected using a methodological approach ranging from the exact optimization methods, such as mixed-integer programming, to heuristic/metaheuristic strategies and machine-learning-based techniques. It is reported a comparative analysis in terms of computational efficiency, scalability, and practical applicability. The main contribution is to highlight current research gaps and open challenges, with particular emphasis on the integration of operations research and artificial intelligence, especially in problems modeled using graphs and network structures. Full article
Show Figures

Figure 1

33 pages, 3534 KB  
Review
Enhancing the Performance of Active Distribution Grids: A Review Using Metaheuristic Techniques
by Jesús Daniel Dávalos Soto, Daniel Guillen, Luis Ibarra, José Ezequiel Santibañez-Aguilar, Jesús Elias Valdez-Resendiz, Juan Avilés, Meng Yen Shih and Antonio Notholt
Energies 2025, 18(15), 4180; https://doi.org/10.3390/en18154180 - 6 Aug 2025
Viewed by 418
Abstract
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, [...] Read more.
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, energy storage systems, banks of capacitors, and electric vehicle chargers. This paper provides an in-depth review of the primary strategies for incorporating these technologies into the distribution network to improve its reliability, stability, and efficiency. It also explores the principal metaheuristic techniques employed for the optimal allocation of distributed generation units, banks of capacitors, energy storage systems, electric vehicle chargers, and network reconfiguration. These techniques are essential for effectively integrating these technologies and optimizing the active distribution network by enhancing power quality and voltage level, reducing losses, and ensuring operational indices are maintained at optimal levels. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

32 pages, 2173 KB  
Article
A Swarm-Based Multi-Objective Framework for Lightweight and Real-Time IoT Intrusion Detection
by Hessah A. Alsalamah and Walaa N. Ismail
Mathematics 2025, 13(15), 2522; https://doi.org/10.3390/math13152522 - 5 Aug 2025
Viewed by 358
Abstract
Internet of Things (IoT) applications and services have transformed the way people interact with their environment, enhancing comfort and quality of life. Additionally, Machine Learning (ML) approaches show significant promise for detecting intrusions in IoT environments. However, the high dimensionality, class imbalance, and [...] Read more.
Internet of Things (IoT) applications and services have transformed the way people interact with their environment, enhancing comfort and quality of life. Additionally, Machine Learning (ML) approaches show significant promise for detecting intrusions in IoT environments. However, the high dimensionality, class imbalance, and complexity of network traffic—combined with the dynamic nature of sensor networks—pose substantial challenges to the development of efficient and effective detection algorithms. In this study, a multi-objective metaheuristic optimization approach, referred to as MOOIDS-IoT, is integrated with ML techniques to develop an intelligent cybersecurity system for IoT environments. MOOIDS-IoT combines a Genetic Algorithm (GA)-based feature selection technique with a multi-objective Particle Swarm Optimization (PSO) algorithm. PSO optimizes convergence speed, model complexity, and classification accuracy by dynamically adjusting the weights and thresholds of the deployed classifiers. Furthermore, PSO integrates Pareto-based multi-objective optimization directly into the particle swarm framework, extending conventional swarm intelligence while preserving a diverse set of non-dominated solutions. In addition, the GA reduces training time and eliminates redundancy by identifying the most significant input characteristics. The MOOIDS-IoT framework is evaluated using two lightweight models—MOO-PSO-XGBoost and MOO-PSO-RF—across two benchmark datasets, namely the NSL-KDD and CICIoT2023 datasets. On CICIoT2023, MOO-PSO-RF obtains 91.42% accuracy, whereas MOO-PSO-XGBoost obtains 98.38% accuracy. In addition, both models perform well on NSL-KDD (MOO-PSO-RF: 99.66% accuracy, MOO-PSO-XGBoost: 98.46% accuracy). The proposed approach is particularly appropriate for IoT applications with limited resources, where scalability and model efficiency are crucial considerations. Full article
Show Figures

Figure 1

24 pages, 533 KB  
Article
A Gray Predictive Evolutionary Algorithm with Adaptive Threshold Adjustment Strategy for Photovoltaic Model Parameter Estimation
by Wencong Wang, Baoduo Su, Quan Zhou and Qinghua Su
Mathematics 2025, 13(15), 2503; https://doi.org/10.3390/math13152503 - 4 Aug 2025
Viewed by 248
Abstract
Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible [...] Read more.
Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible regions for each decision variable in the solar parameter estimation problem. The consideration of variable length difference in algorithm design may be beneficial to the efficiency for solving this problem. A gray predictive evolutionary algorithm with adaptive threshold adjustment strategy (GPEat) is proposed in this paper to estimate the parameters of several solar photovoltaic models. Unlike original GPEs and their existing variants with fixed thresholds, GPEat designs an adaptive threshold adjustment strategy (ATS), which adaptively adjusts the threshold parameter of GPE to be proportional to the length of each dimensional variable of the PV problem. The adaptive change of the threshold helps GPEat to select suitable operators for different dimensions of the PV problem. Several sets of experiments are conducted based on single-, double-, and triple-diode models and PV panel models. The experimental results indicate the highly competitive in parameter estimation for solar PV models of the proposed algorithm. Full article
Show Figures

Figure 1

28 pages, 15616 KB  
Article
Binary Secretary Bird Optimization Algorithm for the Set Covering Problem
by Broderick Crawford, Felipe Cisternas-Caneo, Ricardo Soto, Claudio Patricio Toledo Mac-lean, José Lara Arce, Fabián Solís-Piñones, Gino Astorga and Giovanni Giachetti
Mathematics 2025, 13(15), 2482; https://doi.org/10.3390/math13152482 - 1 Aug 2025
Viewed by 369
Abstract
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the [...] Read more.
The Set Coverage Problem (SCP) is an important combinatorial optimization problem known to be NP-complete. The use of metaheuristics to solve the SCP includes different algorithms. In particular, binarization techniques have been explored to adapt metaheuristics designed for continuous optimization problems to the binary domain of the SCP. In this work, we present a new approach to solve the SCP based on the Secretary Bird Optimization Algorithm (SBOA). This algorithm is inspired by the natural behavior of the secretary bird, known for its ability to hunt prey and evade predators in its environment. Since the SBOA was originally designed for optimization problems in continuous space and the SCP is a binary problem, this paper proposes the implementation of several binarization techniques to adapt the algorithm to the discrete domain. These techniques include eight transfer functions and five different discretization methods. Taken together, these combinations create multiple SBOA adaptations that effectively balance exploration and exploitation, promoting an adequate distribution in the search space. Experimental results applied to the SCP together with its variant Unicost SCP and compared to Grey Wolf Optimizer and Particle Swarm Optimization suggest that the binary version of SBOA is a robust algorithm capable of producing high quality solutions with low computational cost. Given the promising results obtained, it is proposed as future work to focus on complex and large-scale problems as well as to optimize their performance in terms of time and accuracy. Full article
Show Figures

Figure 1

24 pages, 5046 KB  
Article
Cauchy Operator Boosted Artificial Rabbits Optimization for Solving Power System Problems
by Haval Tariq Sadeeq
Eng 2025, 6(8), 174; https://doi.org/10.3390/eng6080174 - 1 Aug 2025
Viewed by 392
Abstract
The majority of the challenges faced in power system engineering are presented as constrained optimization functions, which are frequently characterized by their complicated architectures. Metaheuristics are mathematical techniques used to solve complicated optimization problems. One such technique, Artificial Rabbits Optimization (ARO), has been [...] Read more.
The majority of the challenges faced in power system engineering are presented as constrained optimization functions, which are frequently characterized by their complicated architectures. Metaheuristics are mathematical techniques used to solve complicated optimization problems. One such technique, Artificial Rabbits Optimization (ARO), has been designed to address global optimization challenges. However, ARO has limitations in terms of search functionality, restricting its efficiency in dealing with constrained optimization environments. To improve ARO’s compatibility with a variety of challenging problems, this work proposes implementing the Cauchy mutation operator into the position-updating procedure during the exploration stage. Furthermore, a novel multi-mode control parameter is developed to facilitate a smooth transition between exploration and exploitation phases. The enhancements may boost the performance and serve as an effective optimization tool for tackling complex engineering tasks. The improved version is known as Cauchy Artificial Rabbits Optimization (CARO). The proposed CARO’s performance is evaluated using eleven power system challenges as part of the CEC2020 competition’s test set of real-world constrained problems. The experimental results demonstrate the practical applicability of the proposed CARO in engineering applications and provide areas for future investigation. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

Back to TopTop