Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (664)

Search Parameters:
Keywords = metal etch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1300 KB  
Article
A New Generation of Methods for Obtaining Metal–Ceramic Nanocomposites with Specific Sizes of Metal Nanocrystallites Stable at Elevated Temperatures and Testing the Chemical Properties of the Obtained Nanomaterials
by Rafał Pelka, Ewa Ekiert, Urszula Nowosielecka, Izabela Moszyńska and Roman Jędrzejewski
Appl. Sci. 2025, 15(21), 11752; https://doi.org/10.3390/app152111752 - 4 Nov 2025
Viewed by 269
Abstract
The starting material for this research was a metal–ceramic nanocomposite containing nanocrystalline iron with an average nanocrystallite size equal to 23 nm (based on X-Ray Diffraction; a specific surface area of 9 m2/g by the BET method) and a nanocrystallite size [...] Read more.
The starting material for this research was a metal–ceramic nanocomposite containing nanocrystalline iron with an average nanocrystallite size equal to 23 nm (based on X-Ray Diffraction; a specific surface area of 9 m2/g by the BET method) and a nanocrystallite size distribution standard deviation σ = 15 nm, promoted with hardly reducible oxides (Al2O3, CaO, K2O in total, max. 10 wt%), obtained by melting magnetite with promoter oxides at 1600 °C and reducing the resulting alloy with hydrogen at 500 °C. This material was then oxidized in a controlled manner with water vapor at 425 or 500 °C to achieve different oxidation degrees. Metallic iron remaining in the samples after the oxidizing step was removed by two-stage acid etching. Promoters introduced into the melt ensured the stability of the nanocomposite structure at elevated temperatures. After etching, the iron oxide was reduced with hydrogen at 375 or 500 °C. A series of nanocrystalline iron samples with different nanocrystallite sizes (in the range from 18 to 35 nm; specific surface areas decreased from 32 to 16 m2/g with increasing nanocrystallite size) and a narrowed nanocrystallite size distribution standard deviation σ = 3–5 nm was synthesized, which was then tested in the process of nitriding (at 375 and 500 °C), carburizing (400–550 °C), and oxidation (at 425 and 500 °C). The progress and rate of these reactions were measured in a differential tubular reactor with thermogravimetric measurement of mass changes in the solid sample and catharometric measurement of hydrogen concentration in the gas phase. The scalability of the proposed method was also investigated by conducting measurements on 1, 10, and 100 g samples. The effect of nanocrystallite size on the chemical properties of the tested samples was observed. The nanocomposite samples containing the smallest iron nanocrystallite sizes were found to be the most active in the nitriding reaction and catalytic decomposition of ammonia. All the tested modified samples were at least several times more active in the decomposition of ammonia than the unmodified sample. The practical effect of our work is the presentation and use of a new, more precise method for obtaining nanocrystallites of specific sizes. Full article
(This article belongs to the Special Issue Nanostructured Materials: From Surface to Porous Solids, 2nd Edition)
Show Figures

Figure 1

29 pages, 1018 KB  
Review
Advances in MXene Materials: Fabrication, Properties, and Applications
by Subin Antony Jose, Jordan Price, Jessica Lopez, Erick Perez-Perez and Pradeep L. Menezes
Materials 2025, 18(21), 4894; https://doi.org/10.3390/ma18214894 - 25 Oct 2025
Viewed by 1611
Abstract
This review provides a critical overview of MXenes, an innovative class of 2D transition metal carbides, nitrides, and carbonitrides, emphasizing their synthesis, properties, and application potential. We systematically examine synthesis methods, contrasting top-down approaches with emerging green alternatives and bottom-up techniques, evaluating each [...] Read more.
This review provides a critical overview of MXenes, an innovative class of 2D transition metal carbides, nitrides, and carbonitrides, emphasizing their synthesis, properties, and application potential. We systematically examine synthesis methods, contrasting top-down approaches with emerging green alternatives and bottom-up techniques, evaluating each in terms of scalability, cost, and environmental impact. This paper highlights MXenes’ unique characteristics, including high electrical conductivity, tunable surface chemistry, and structural versatility, which enable their use in energy storage, environmental remediation, biomedicine, and electromagnetic shielding. Key challenges such as oxidative instability, interfacial incompatibility, and hazardous etching processes are critically discussed. We identify future research priorities, including defect-engineered stabilization, AI-optimized manufacturing, and advanced integration protocols to bridge the gap between laboratory breakthroughs and industrial deployment. By integrating these insights, this review offers a roadmap for advancing MXenes from laboratory innovation to industrial application. Full article
Show Figures

Figure 1

25 pages, 3357 KB  
Review
The Emerging Role of MXenes in Cancer Treatment
by Najla M. Salkho, William G. Pitt and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(21), 10296; https://doi.org/10.3390/ijms262110296 - 22 Oct 2025
Viewed by 610
Abstract
MXenes are relatively new 2D materials made up of carbides and/or nitrides of transition metals with a chemical formula Mn+1XnTx. They are usually fabricated by chemically etching a ceramic phase. MXenes possess tunable catalytic, optical, and electronic [...] Read more.
MXenes are relatively new 2D materials made up of carbides and/or nitrides of transition metals with a chemical formula Mn+1XnTx. They are usually fabricated by chemically etching a ceramic phase. MXenes possess tunable catalytic, optical, and electronic properties, which have attracted significant research interest, primarily in energy storage and biosensing applications. Since their first fabrication in 2011, there has been a rapid increase in studies investigating the use of MXenes in a wide range of applications. In this review, the synthesis methods of MXenes are discussed. Then, the potential application of MXenes in cancer treatment is highlighted based on current research. The ability of MXene to convert light, usually NIR (I and II), to heat with improved conversion efficiencies makes it a competitive candidate for photothermal cancer therapy. Moreover, the surface of MXenes can be modified with drugs or nanoparticles, thereby achieving synergistic photo/chemo/, and sonodynamic therapy. This review also examines the available research on the biocompatibility and cytotoxicity of MXenes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 6111 KB  
Article
Sustainable Removal of Heavy Metal Ions from Mineral Wastewater Using Waste Basalt Fiber
by Zhongyi Liu, Chenhu Zhang, Hexiang Zhong, Chengyong Wang, Peng Chen, Peng Zhang, Wei Ding and Shiwei Wang
Minerals 2025, 15(11), 1097; https://doi.org/10.3390/min15111097 - 22 Oct 2025
Viewed by 274
Abstract
Heavy metal ions in wastewater endanger ecology and human health, requiring cost-effective treatments. This study innovatively converts abandoned basalt fibers (BFs) into high-performance adsorbents (BFSN) via NaOH etching and chelation with nitrilotriacetic acid (NTA)/carboxymethyl starch (CMS), introducing target functional groups. Characterizations (XPS, FTIR, [...] Read more.
Heavy metal ions in wastewater endanger ecology and human health, requiring cost-effective treatments. This study innovatively converts abandoned basalt fibers (BFs) into high-performance adsorbents (BFSN) via NaOH etching and chelation with nitrilotriacetic acid (NTA)/carboxymethyl starch (CMS), introducing target functional groups. Characterizations (XPS, FTIR, zeta potential) reveal Cu2+/Pb2+ adsorption mechanisms: -COO chelation, N-containing group ion exchange, and electrostatic adsorption. Kinetics fit a pseudo-first-order model (R2 > 0.98) and isotherms fit the Langmuir model, confirming monolayer chemisorption. BFSN has excellent thermal stability (≤2% mass loss at 800 °C) and post-adsorption integrity (≈0.11% mass loss post-loading). Waste-derived BFSN, cheaper than commercial adsorbents, has strong economic viability. This “waste-to-value” approach offers efficient, sustainable large-scale heavy metal wastewater remediation, advancing waste utilization and ecological restoration in water treatment. Full article
Show Figures

Figure 1

19 pages, 2469 KB  
Article
Tuning Multi-Wavelength Reflection Properties of Porous Silicon Bragg Reflectors Using Silver-Nanoparticle-Assisted Electrochemical Etching
by Sheng-Yang Huang, Hsiao-Han Hsu, Amal Muhammed Musthafa, I-An Lin, Chia-Man Chou and Vincent K. S. Hsiao
Micromachines 2025, 16(11), 1198; https://doi.org/10.3390/mi16111198 - 22 Oct 2025
Viewed by 415
Abstract
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm [...] Read more.
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm2), the transition from single-peak to multi-peak reflection spectra was successfully achieved. The results demonstrate that at a concentration of 10 mg/mL silver nanoparticles, up to four distinct reflection bands can be obtained. A systematic investigation was conducted on the influence of etching cycles (4–20 cycles) and silver nanoparticle concentration on the optical performance and microstructure. SEM analysis revealed well-defined periodic multilayer structures, while XPS analysis confirmed the presence of metallic silver on the porous silicon surface. This work provides a simple, controllable, and cost-effective approach to the development of multifunctional photonic devices, with promising applications in laser optics, solar cells, chemical sensing, and surface-enhanced Raman scattering. Full article
(This article belongs to the Special Issue Micro-Nano Photonics: From Design and Fabrication to Application)
Show Figures

Figure 1

19 pages, 3793 KB  
Article
Controlled Nanopore Fabrication on Silicon via Surface Plasmon Polariton-Induced Laser Irradiation of Metal–Insulator–Metal Structured Films
by Sifan Huo, Sipeng Luo, Ruishen Wang, Jingnan Zhao, Wenfeng Miao, Zhiquan Guo and Yuanchen Cui
Coatings 2025, 15(10), 1187; https://doi.org/10.3390/coatings15101187 - 10 Oct 2025
Viewed by 832
Abstract
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to [...] Read more.
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to form the MIM structure. When irradiated with a 532 nm nanosecond laser, the MIM mask excites surface plasmon polaritons (SPPs), resulting in a localized field enhancement that enables the etching of nanopores into the silicon substrate. This method successfully produced nanopores with diameters as small as 50 nm and depths up to 28 nm. The laser-induced SPP-assisted machining significantly enhances the specific surface area of the processed surface, making it promising for applications in catalysis, biosensing, and microcantilever-based devices. For instance, an increased surface area can improve catalytic efficiency by providing more active sites, and enhance sensor sensitivity by amplifying response signals. Compared to conventional lithographic or focused ion beam techniques, this method offers simplicity, low cost, and scalability. The proposed technique demonstrates a practical and efficient route for the large-area subwavelength nanostructuring of silicon surfaces. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 5813 KB  
Article
Effect of Surface Treatments on Interlaminar Strength of an FML Formed by Basalt Fiber/Polyester Composite and Al 3003-H14 Sheets Manufactured via Combined VARTM and Vacuum Bagging Processes
by Cesar Alfonso Cortes-Tejada, Honorio Ortíz-Hernández, Marco Antonio García-Bernal, Gabriela Lourdes Rueda-Morales, Hilario Hernández-Moreno, Víctor Manuel Sauce-Rangel and Alexander Morales-Gómez
J. Manuf. Mater. Process. 2025, 9(10), 331; https://doi.org/10.3390/jmmp9100331 - 9 Oct 2025
Viewed by 676
Abstract
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature [...] Read more.
Metal/composite interfacial interactions are critical to the mechanical performance of Fiber Metal Laminates (FMLs). In this study, the feasibility of successively combining Vacuum-Assisted Resin Transfer Molding (VARTM) and Vacuum Bagging (VB) was investigated, a strategy that has not been reported in the literature for the fabrication of FMLs with 2/1 stacking configuration, using low-cost 3003-H14 aluminum alloy. The substrate was surface modified through mechanical abrasion and chemical etching in an ultrasonic bath with a 0.1 M NaOH solution, varying the exposure time (20, 40, and 60 min). These surfaces were characterized by optical microscopy and atomic force microscopy (AFM), conducting both qualitative and quantitative analyses of the two- and three-dimensional surface features associated with pore morphology. Additionally, their effects on interlaminar strength and Mode I failure modes of the adhesive joint at the metal/composite interface were evaluated. Micrographs of the surface variants revealed a systematic evolution of the metallic microstructure. The T-peel tests demonstrated that the microstructural features influenced the interlaminar behavior. The 40 min treatment exhibited the highest initial peak force (26.4 N) and the highest average peel force (12.4 N), with a predominantly cohesive mixed-mode failure, representing the most favorable configuration for maximizing adhesion at the metal/composite interface. Full article
Show Figures

Figure 1

23 pages, 1884 KB  
Review
Silicon Photocatalytic Water-Treatment: Synthesis, Modifications, and Machine Learning Insights
by Abay S. Serikkanov, Nurlan B. Bakranov, Tunyk K. Idrissova, Dina I. Bakranova and Danil W. Boukhvalov
Nanomaterials 2025, 15(19), 1514; https://doi.org/10.3390/nano15191514 - 3 Oct 2025
Viewed by 707
Abstract
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including [...] Read more.
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including chemical deposition, metal-associated etching, hydrothermal methods, and atomic layer deposition. Heterostructures, plasmonic effects, and co-catalysts that enhance photocatalytic activity are considered. Particular attention is drawn to the silicon doping of semiconductors, such as TiO2 and ZnO, to enhance their optical and electronic properties. The formation of heterostructures and the evaluation of their efficiency were discussed. Despite the high biocompatibility and availability of silicon, its photocorrosion and limited stability require the development of protective coatings and morphology optimization. The application of machine learning for predicting redox potentials and optimizing photocatalyst synthesis could offer new opportunities for increasing their efficiency. The review highlights the potential of Si-based materials for sustainable technologies and provides a roadmap for further research. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

45 pages, 2145 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Viewed by 1022
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

17 pages, 10881 KB  
Article
Femtosecond Laser Precision Etching of Silver Layer on Silica Aerogel Surfaces
by Shengtian Lin, Congyi Wu, Guojun Zhang and Jinjin Wu
Micromachines 2025, 16(10), 1107; https://doi.org/10.3390/mi16101107 - 29 Sep 2025
Viewed by 509
Abstract
Silica fiber-reinforced silica aerogel (SFRSA) has low dielectric constant, light weight and high temperature resistance characteristics, making it one of the preferred materials for heat-resistant absorptive layers on the surfaces of high-speed aircraft. However, due to its ultra-high porosity, poor rigidity, and sensitivity [...] Read more.
Silica fiber-reinforced silica aerogel (SFRSA) has low dielectric constant, light weight and high temperature resistance characteristics, making it one of the preferred materials for heat-resistant absorptive layers on the surfaces of high-speed aircraft. However, due to its ultra-high porosity, poor rigidity, and sensitivity to organic solvents, existing machining and chemical etching processes struggle to achieve patterned preparation of metallic layers on aerogel substrates. In order to address this issue, the present study employs femtosecond laser etching of the metal layer on the SFRSA surface. Orthogonal experiments were conducted to analyze the impact of different laser process parameters on the etching quality. With straightness as the primary factor, the optimal process parameters obtained were a laser power set to 2.15 W, a laser etching speed of 200 mm/s, and a laser etching time of 9. This achieved an etching width of 26.16 μm, a heat-affected zone of 39.16 μm, and straightness of 7.9 μm. Finally, Raman spectroscopy was used to study laser-ablated samples; thermogravimetric analysis (TGA) and Pyrolysis-Gas Chromatography–Mass Spectrometry analysis (Py-GC-MS) were employed to investigate the changes in the metal layer at high temperatures. A compositional analysis was conducted, revealing a decrease in carbon content within the etched region following laser ablation. The production of CO2 gas and surface oxidation indicated that laser etching primarily operates via a photothermal mechanism. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

15 pages, 4098 KB  
Article
Corrosion Resistance Properties of As-Sintered 17-4 PH Samples Additive-Manufactured Through Binder Jetting
by Pietro Forcellese, Wasiq Ali Khan, Tommaso Mancia, Michela Simoncini, Matěj Reiser, Milan Kouřil and Tiziano Bellezze
Metals 2025, 15(10), 1082; https://doi.org/10.3390/met15101082 - 27 Sep 2025
Viewed by 422
Abstract
The corrosion resistance and microstructural characteristics of 17-4 PH stainless steel fabricated through Metal Binder Jetting (MBJ) were investigated through Cyclic Potentiodynamic Polarization (CPP), Open Circuit Potential (OCP) monitoring, SEM-EDX, optical microscopy, XRD, and chemical etching. Electrochemical tests revealed that as-sintered samples exhibited [...] Read more.
The corrosion resistance and microstructural characteristics of 17-4 PH stainless steel fabricated through Metal Binder Jetting (MBJ) were investigated through Cyclic Potentiodynamic Polarization (CPP), Open Circuit Potential (OCP) monitoring, SEM-EDX, optical microscopy, XRD, and chemical etching. Electrochemical tests revealed that as-sintered samples exhibited isotropic corrosion performance across different build-up orientations and directions. The CPP tests indicated the formation of a passive film with limited stability, while the monitoring of the OCP showed initial instability, followed by stabilization over time. Microstructural analysis indicated the presence of microporosities and a structure consisting of martensitic and ferritic grains in the as-sintered 17-4 PH, alongside copper and niobium segregations at grain boundaries, which may deeply influence localized corrosion susceptibility. These findings suggest that the as-sintered 17-4 PH fabricated through MBJ exhibits comparable corrosion behavior to 17-4 PH additive-manufactured through other techniques in which the sintering process is involved. The study highlights the influence of microstructure on electrochemical performance and underscores the need for post processing treatments to enhance corrosion resistance. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

23 pages, 4516 KB  
Review
Photoelectrochemical Oxidation and Etching Methods Used in Fabrication of GaN-Based Metal-Oxide-Semiconductor High-Electron Mobility Transistors and Integrated Circuits: A Review
by Ching-Ting Lee and Hsin-Ying Lee
Micromachines 2025, 16(10), 1077; https://doi.org/10.3390/mi16101077 - 23 Sep 2025
Viewed by 477
Abstract
The photoelectrochemical oxidation method was utilized to directly grow a gate oxide layer and simultaneously create gate-recessed regions for fabricating GaN-based depletion-mode metal-oxide-semiconductor high-electron mobility transistors (D-mode MOSHEMTs). The LiNbO3 gate ferroelectric layer and stacked gate oxide layers of LiNbO3/HfO [...] Read more.
The photoelectrochemical oxidation method was utilized to directly grow a gate oxide layer and simultaneously create gate-recessed regions for fabricating GaN-based depletion-mode metal-oxide-semiconductor high-electron mobility transistors (D-mode MOSHEMTs). The LiNbO3 gate ferroelectric layer and stacked gate oxide layers of LiNbO3/HfO2/Al2O3 were respectively deposited on the created gate-recessed regions using the photoelectrochemical etching method to fabricate the GaN-based enhancement mode MOSHEMTs (E-mode MOSHEMTs). GaN-based complementary integrated circuits were realized by monolithically integrating the D-mode MOSHEMTs and the E-mode MOSHEMTs. The performances of the inverter circuit manufactured using the integrated GaN-based complementary MOSHEMTs were measured and analyzed. Full article
Show Figures

Figure 1

39 pages, 7971 KB  
Review
Enhancing the Catalytic Performance of Zeolites via Metal Doping and Porosity Control
by Linda Zh. Nikoshvili, Lyudmila M. Bronstein, Valentina G. Matveeva and Mikhail G. Sulman
Molecules 2025, 30(18), 3798; https://doi.org/10.3390/molecules30183798 - 18 Sep 2025
Viewed by 1113
Abstract
Zeolites are widely used as solid acid catalysts and also as supports in complex multifunctional heterogeneous systems. In recent years, there has been an increase in the development of zeolite-based catalysts with hierarchical porosity combined with metal dopants (modifiers or catalysts). These modifications [...] Read more.
Zeolites are widely used as solid acid catalysts and also as supports in complex multifunctional heterogeneous systems. In recent years, there has been an increase in the development of zeolite-based catalysts with hierarchical porosity combined with metal dopants (modifiers or catalysts). These modifications can significantly improve the catalytic characteristics of such materials. In this review, we discuss the application of hierarchically porous zeolites, including metal-doped ones, in catalytic reactions employed in the production and upgrading of liquid fuels, i.e., pyrolysis of biomass and polymeric wastes; conversion of alcohols to fuel hydrocarbons, aromatics and olefins; cracking and hydrocracking of polymeric wastes and hydrocarbons; and hydroisomerization. It is revealed that, in many cases, higher activity, selectivity and stability can be achieved for metal-doped hierarchical zeolites in comparison with parent ones due to control over the diffusion, surface acidity and coke deposition processes. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Graphical abstract

18 pages, 9239 KB  
Article
Sustainable Upcycling of Spent Battery Graphite into High-Performance PEG Anodes via Flash Joule Heating
by Yihan Luo, Jing Sun, Wenxin Chen, Shuo Lu and Ziliang Wang
Recycling 2025, 10(5), 171; https://doi.org/10.3390/recycling10050171 - 2 Sep 2025
Viewed by 936
Abstract
The upcycling of spent lithium-ion battery graphite constitutes an essential pathway for mitigating manufacturing expenditures and alleviating ecological burdens. This study proposes an integrated strategy to upcycle spent graphite into high-performance porous expanded graphite (PEG) anodes, leveraging flash Joule heating (FJH) as a [...] Read more.
The upcycling of spent lithium-ion battery graphite constitutes an essential pathway for mitigating manufacturing expenditures and alleviating ecological burdens. This study proposes an integrated strategy to upcycle spent graphite into high-performance porous expanded graphite (PEG) anodes, leveraging flash Joule heating (FJH) as a core technique for efficient decontamination, interlayer expansion, and active etching. Results show that the binders and impurities are efficiently removed by FJH treatment, and the graphite interlayer spacing is expanded. The iron oxide, which acts as an etching reagent, can then be easily intercalated and laid into the decontaminated graphite for subsequent etching. A subsequent FJH treatment simultaneously releases oxidized intercalants and triggers in-situ metal oxide etching, yielding PEG with a rich porous architecture and enhanced specific surface area. This method successfully prepared high-performance porous expanded graphite anode material with a mesoporous structure. The resulting anode delivers a remarkable capacity retention of 419 mAh·g−1 after 600 cycles at 2C, outperforming the performance of commercial graphite anodes. This innovative approach offers a promising route for sustainable graphite reclamation. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Graphical abstract

16 pages, 3334 KB  
Article
Integrated Alkali Gradient pH Control Purification of Acidic Copper-Containing Etching Waste Solution and Cu2(OH)3Cl Conversion-Calcination Process for High-Purity CuO
by Dengliang He, Song Ren, Shuxin Liu and Shishan Xue
Processes 2025, 13(9), 2807; https://doi.org/10.3390/pr13092807 - 2 Sep 2025
Viewed by 699
Abstract
With the rapid advances of the electronics industry, a large amount of acidic etching waste solutions (AEWS) for etching Printed Circuit Board (PCB) are generated, which require complete remediation and sustainable recycling to avoid environmental pollution and wasting of resources. Herein, the novel [...] Read more.
With the rapid advances of the electronics industry, a large amount of acidic etching waste solutions (AEWS) for etching Printed Circuit Board (PCB) are generated, which require complete remediation and sustainable recycling to avoid environmental pollution and wasting of resources. Herein, the novel purification technology for the acidic copper-containing etching waste solution was exploited via integrated alkali gradient pH control (3.0, 3.2, and 3.5). At pH 3.0, the system demonstrated selective metal removal with 94.02% efficiency for Fe and 82.60% for Mn. Elevating the pH to 3.2 enabled effective elimination of Zn (59.32%), Cr (59.46%), and Al (33.24%), while maintaining minimal copper loss (8.16%). Further pH adjustment to 3.5 achieved enhanced removal efficiencies of 97.86% (Fe), 91.30% (Mn), 59.38% (Zn), 62.10% (Cr), 21.66% (Ca), 34.05% (Al), and 26.66% (Co), with copper retention remaining high at 70.83% (29.17% loss). Furthermore, using the purified AEWS (pH 3.2) as precursor, high-purity nano-CuO was successfully synthesized through a Cu2(OH)3Cl conversion-calcination process, exhibiting 99.20% CuO purity with 0.0012% chlorine content and <0.1% metallic impurities. The development and application of the purification technology for AEWS containing copper, along with the production methodology for high-purity CuO, were significant to the fields of electronic information industry, environmental engineering, green industry and sustainable development of the ecological environment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop