Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (682)

Search Parameters:
Keywords = metal etch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8182 KB  
Article
Analysis of Niobium and Stainless Steel Electropolishing Solutions by Laser-Induced Breakdown Spectroscopy Using a Porous Silicon Substrate and a Non-Contact Pretreatment
by Ayumu Matsumoto, Yuki Takeda, Kiichi Kuroda, Hiroto Torigoe, Yui Sugita, Yusuke Shimazu, Keisuke Nii, Yoshiaki Ida and Shinji Yae
Materials 2026, 19(3), 637; https://doi.org/10.3390/ma19030637 - 6 Feb 2026
Viewed by 273
Abstract
Electropolishing is an essential process for the surface treatment of metallic materials. To determine the appropriate replacement timing of electropolishing solutions for their efficient use and improved productivity, it is important to periodically analyze the amounts of dissolved metals in the solutions. However, [...] Read more.
Electropolishing is an essential process for the surface treatment of metallic materials. To determine the appropriate replacement timing of electropolishing solutions for their efficient use and improved productivity, it is important to periodically analyze the amounts of dissolved metals in the solutions. However, these solutions are typically highly corrosive, and on-site analytical techniques that can be easily applied at production sites have not yet been established. In this study, we demonstrated microvolume liquid analysis using low-energy laser-induced breakdown spectroscopy (LIBS) combined with a porous silicon substrate fabricated by metal-assisted etching (metal-assisted chemical etching) and a non-contact gas-blowing pretreatment. In the analysis of electropolishing solutions used for niobium superconducting cavities and stainless steel products, emission lines of niobium and of iron and chromium were successfully detected after blowing the respective microdroplet samples on porous silicon, and linear correlations were observed between the spectral line intensity and the polished amounts. The present results provide a basis for future on-site application of LIBS to highly corrosive electropolishing solutions in the metal finishing industry. Full article
(This article belongs to the Special Issue Surface Modifications and Coatings for Metallic Materials)
Show Figures

Graphical abstract

11 pages, 5577 KB  
Article
NO2 Gas Sensor Based on WO3/SiNWs Composite Structure
by Fengyun Sun and Encheng Zhang
Micromachines 2026, 17(2), 211; https://doi.org/10.3390/mi17020211 - 5 Feb 2026
Viewed by 167
Abstract
Although tungsten oxide (WO3)-based NO2 sensors have been extensively studied, achieving high sensitivity at low operating temperatures remains a significant challenge. To address this limitation, we designed a WO3/SiNWs heterojunction-based sensor, fabricated through metal-assisted chemical etching followed by [...] Read more.
Although tungsten oxide (WO3)-based NO2 sensors have been extensively studied, achieving high sensitivity at low operating temperatures remains a significant challenge. To address this limitation, we designed a WO3/SiNWs heterojunction-based sensor, fabricated through metal-assisted chemical etching followed by hydrothermal synthesis. Structural and morphological analyses confirm the uniform integration of WO3 nanorods onto SiNWs and the establishment of an effective p–n junction. The optimized sensor exhibits a response of 238 toward 1 ppm NO2 at 127 °C with a response/recovery times of 14.8 s/99.2 s. The improved performance stems from the heterojunction-driven enhancement of charge carrier separation and surface adsorption sites, offering a viable route for developing low-power, high-performance gas sensors. Full article
Show Figures

Figure 1

20 pages, 4912 KB  
Article
A De Novo Sacrificial-MOF Strategy for Fabricating Cellulose Nanofibers/ZIF-8/PANI Gel Composite Membranes for High-Performance Flexible Supercapacitors
by Shan-Shan Li, Peng-Jiu Wu, Zhi-Yao Ming, Chang-Hai Liu, Wen-Chang Wang and Zhi-Dong Chen
Gels 2026, 12(2), 134; https://doi.org/10.3390/gels12020134 - 2 Feb 2026
Viewed by 192
Abstract
Cellulose nanofibers/metal-organic framework (CNFs/MOF) composites hold promise for energy storage thanks to high porosity, large specific surface area, and inherent flexibility, but their poor conductivity limits applications to environmental remediation and gas adsorption. Herein, flexible CNFs served as substrates for in situ growth [...] Read more.
Cellulose nanofibers/metal-organic framework (CNFs/MOF) composites hold promise for energy storage thanks to high porosity, large specific surface area, and inherent flexibility, but their poor conductivity limits applications to environmental remediation and gas adsorption. Herein, flexible CNFs served as substrates for in situ growth of continuous ZIF-8 nanolayers via interfacial synthesis, with a CNFs/ZIF-8 gel network built to enhance structural integrity and flexibility. A novel strategy first regulated the layered pore structure: ZIF-8 in CNFs/ZIF-8 nanofibers was etched in the acidic environment of aniline in situ polymerization, constructing a hierarchical porous architecture with interconnected micropores and mesopores. CNFs/ZIF-8/PANI gel composite membranes were then fabricated. As self-supporting electrodes for symmetric supercapacitors, the composites showed excellent electrochemical performance: 1350 F/g at 1 A/g for the electrode, and the flexible solid-state device delivered a specific capacitance of 220.9 F/g at 0.5 A/g, along with a capacitance retention rate of 74% after 5000 charge–discharge cycles at 10 A/g. The superior performance stems from synergistic hierarchical pore structure regulation via partial MOF sacrificial templating and gel matrix-mediated rapid ion diffusion, offering a feasible approach for high-performance flexible energy storage devices. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

11 pages, 2905 KB  
Article
Fabrication of Sapphire-Embedded Ultra-Wear-Resistant Metal Grids
by Gaoyuan Mi, Songlin Wang, Jianfu Zhang, Runqing Li, Qingqing Wu, Xiang Zhang, Wanhong Yin and Tianyu Wu
Coatings 2026, 16(2), 166; https://doi.org/10.3390/coatings16020166 - 30 Jan 2026
Viewed by 177
Abstract
To address poor wear resistance of surface metal grids for optical windows and low efficiency and poor uniformity of traditional embedded technologies, this study fabricates ultra-wear-resistant embedded metal grids on 180 mm × 180 mm × 8 mm sapphire via photolithography and large-area [...] Read more.
To address poor wear resistance of surface metal grids for optical windows and low efficiency and poor uniformity of traditional embedded technologies, this study fabricates ultra-wear-resistant embedded metal grids on 180 mm × 180 mm × 8 mm sapphire via photolithography and large-area plasma etching. Etching grooves (depth about 300 nm) and depositing 135 nm silver (Ag) + 170 nm alumina (Al2O3) films, the grids exhibit transmittance 80.2%~80.9% (2~5 μm), wear resistance without damage, and reliable EMI shielding (Electromagnetic Interference Shielding) (3~18 GHz), offering a scalable solution for harsh-environment optoelectronic windows. The embedded structure integrates high transmittance, ultra-wear resistance, and reliable EMI shielding, addressing the core demands of optoelectronic windows in aerospace, outdoor monitoring, and other harsh environments where durability and stability are critical. The key innovation lies in the optimized integration of large-area plasma etching and low-temperature electron beam deposition, achieving precise control of groove depth uniformity (<4%) and transmittance uniformity (<1%) on high-hardness sapphire substrates, which overcomes the trade-off between efficiency and uniformity in traditional embedded technologies. Future applications include high-performance optical windows for airborne surveillance systems, space-borne optoelectronic devices, and harsh-environment industrial monitoring equipment, with potential extension to other high-hardness dielectric substrates. Full article
(This article belongs to the Special Issue Surface Modification Techniques Utilizing Plasma and Photonic Methods)
Show Figures

Figure 1

17 pages, 3206 KB  
Article
Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis
by Zheng-Yan Lei, Nguyen Van Toan, Masaya Toda, Ioana Voiculescu and Takahito Ono
Micromachines 2026, 17(2), 148; https://doi.org/10.3390/mi17020148 - 23 Jan 2026
Viewed by 251
Abstract
Electrocatalytic CO2 reduction is a promising approach to mitigate rising atmospheric CO2 levels while converting CO2 into valuable products such as CH4. Conversion into other useful substances further expands its potential applications. However, the efficiency of the CO [...] Read more.
Electrocatalytic CO2 reduction is a promising approach to mitigate rising atmospheric CO2 levels while converting CO2 into valuable products such as CH4. Conversion into other useful substances further expands its potential applications. However, the efficiency of the CO2 reduction reaction (CO2RR) is strongly influenced by device geometry and CO2 mass transfer in the electrolyte. In this work, we present and evaluate microchannel electrocatalytic devices consisting of a porous Cu cathode and a Pt anode, fabricated via metal-assisted chemical etching (MACE). The porous surfaces generated through MACE enhanced reaction activity. To study the impact of the distance between electrodes, several devices with different channel heights were fabricated and tested. The device with the highest CH4 selectivity had a narrow inter-electrode gap of 50 μm and achieved a Faradaic efficiency of 56 ± 11% at an applied potential of −5 V versus an Ag/AgCl reference electrode. This efficiency was considerably higher than that of the device with larger inter-electrode gaps (300 and 480 μm). This reduced efficiency in the larger channel was attributed to limited CO2 availability at the cathode surface. Bubble visualization experiments further demonstrated that the electrolyte flow rate had a strong impact on supplied CO2 bubble morphology and mass transfer. At a flow rate of 0.75 mL/min, smaller CO2 bubbles were formed, increasing the gas–liquid interfacial area and thereby enhancing CO2 dissolution into the electrolyte. These results underline the critical role of electrode gap design and bubble dynamics in optimizing microchannel electrocatalytic devices for efficient CO2RR. Full article
Show Figures

Figure 1

11 pages, 4063 KB  
Article
Dry-Transferred MoS2 Films on PET with Plasma Patterning for Full-Bridge Strain-Gauge Sensors
by Jinkyeong Kim, Minjae Lee, Wooseung Lee, Minseok Lee, Chang-Mo Kang, Daewoong Jung, Hyunwoo Son, Eunyoung Kim, Sangwoo Chae and Joonhyub Kim
Sensors 2026, 26(2), 585; https://doi.org/10.3390/s26020585 - 15 Jan 2026
Viewed by 256
Abstract
In this study, a high-performance MoS2-based strain-gauge pressure was sensor fabricated entirely below 80 °C, enabling direct integration onto flexible polyethylene terephthalate (PET) substrates. The sensor comprised a three-layer MoS2 channel (~2 nm) patterned via dry transfer and O2 [...] Read more.
In this study, a high-performance MoS2-based strain-gauge pressure was sensor fabricated entirely below 80 °C, enabling direct integration onto flexible polyethylene terephthalate (PET) substrates. The sensor comprised a three-layer MoS2 channel (~2 nm) patterned via dry transfer and O2/Ar plasma etching, interfaced with Cr/Au electrodes. This wafer-scale and cost-effective fabrication route preserves the crystallinity of the film and prevents substrate degradation. The sensor achieved a gauge factor of ~104 under compression, representing a fifty-fold improvement over conventional metal foil gauges (~2), with a linear response across both compressive and tensile regimes. Mechanical robustness was confirmed through repeated bending and tape adhesion tests, with no degradation in electrical performance. When configured as a Wheatstone bridge, this device exhibits normalized sensitivity suitable for real-time monitoring, with response and recovery times below 200 ms. These results establish O2/Ar-plasma-patterned MoS2 architectures as a scalable, cost-effective platform for next-generation flexible sensors, outperforming metal-foil technology in applications including seat-occupancy detection, wearable physiological monitoring, and tactile interfaces for soft robotics. Full article
Show Figures

Graphical abstract

19 pages, 3563 KB  
Article
Numerical and Experimental Study of Laser Surface Modification Using a High-Power Fiber CW Laser
by Evaggelos Kaselouris, Alexandros Gosta, Efstathios Kamposos, Dionysios Rouchotas, George Vernardos, Helen Papadaki, Alexandros Skoulakis, Yannis Orphanos, Makis Bakarezos, Ioannis Fitilis, Nektarios A. Papadogiannis, Michael Tatarakis and Vasilis Dimitriou
Materials 2026, 19(2), 343; https://doi.org/10.3390/ma19020343 - 15 Jan 2026
Viewed by 295
Abstract
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction [...] Read more.
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction processes, including laser-induced plastic deformation, laser etching, and engraving. Cases for both static single-shot and dynamic linear scanning laser beams are investigated. The developed numerical models incorporate a Gaussian heat source and the Johnson–Cook constitutive model to capture elastoplastic, damage, and thermal effects. The simulation results, which provide detailed insights into temperature gradients, displacement fields, and stress–strain evolution, are rigorously validated against experimental data. The experiments are conducted on an integrated setup comprising a 2 kW TRUMPF CW fiber laser hosted on a 3-axis CNC milling machine, with diagnostics including thermal imaging, thermocouples, white-light interferometry, and strain gauges. The strong agreement between simulations and measurements confirms the predictive capability of the developed FEM framework. Overall, this research establishes a reliable computational approach for optimizing laser parameters, such as power, dwell time, and scanning speed, to achieve precise control in metal surface treatment and modification applications. Full article
(This article belongs to the Special Issue Fabrication of Advanced Materials)
Show Figures

Graphical abstract

16 pages, 5163 KB  
Article
CMOS-Compatible Micro Photovoltaic Generator with Post-Processing Enhanced Optical Absorption
by Hung-Wei Chen, Chi-Yuan Lee and Ching-Liang Dai
Micromachines 2026, 17(1), 48; https://doi.org/10.3390/mi17010048 - 30 Dec 2025
Viewed by 829
Abstract
This work reports the design and realization of a silicon-based micro photovoltaic generator (MPG) fabricated using a standard 0.18 μm complementary metal oxide semiconductor (CMOS) technology. The device harvests optical energy and converts it into electrical power through the photovoltaic effect, leveraging a [...] Read more.
This work reports the design and realization of a silicon-based micro photovoltaic generator (MPG) fabricated using a standard 0.18 μm complementary metal oxide semiconductor (CMOS) technology. The device harvests optical energy and converts it into electrical power through the photovoltaic effect, leveraging a network of engineered p–n junctions formed within the semiconductor. A grid-structured architecture is adopted, in which patterned p-type regions are embedded inside an n-well platform. This configuration expands the effective junction area, increases carrier-collection paths, and strengthens the internal electric field, thereby enhancing photocurrent generation. To further improve optical coupling, a specialized post-CMOS treatment is introduced. A wet etching is used to selectively remove the silicon dioxide layer that normally covers the junction regions in CMOS processes. Eliminating this dielectric layer enables direct photon penetration into the depletion region minimizes reflection-related losses, resulting in a significant improvement in device performance. Under an illumination intensity of 1000 W/m2, the fabricated microgenerator delivers an open-circuit voltage of 0.49 V, a short-circuit current of 239 µA, and a maximum output power of 90 µW. The device exhibits an overall energy conversion efficiency of 12.9%, confirming the effectiveness of the grid-like junction design and the post-processing oxide removal. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

11 pages, 4507 KB  
Article
Ligand Functionality-Dependent Performance of Organotin Carboxylate Resists
by Xiaofei Liu, Tianren Liu, Kaixin Su, Jingxin Lei, Yuanfu Chen, Yuan Chen and Dongxu Yang
Micromachines 2026, 17(1), 1; https://doi.org/10.3390/mi17010001 - 19 Dec 2025
Cited by 1 | Viewed by 392
Abstract
As metal-containing resists attract increasing research interest in high-resolution lithography, gaining insights into the photochemical mechanisms, particularly in relation to the ligand functionality, is actively demanded. In this work, a controlled pair of organotin carboxylates with analogous structures but different functional groups has [...] Read more.
As metal-containing resists attract increasing research interest in high-resolution lithography, gaining insights into the photochemical mechanisms, particularly in relation to the ligand functionality, is actively demanded. In this work, a controlled pair of organotin carboxylates with analogous structures but different functional groups has been designed and synthesized as deep-ultraviolet (DUV) resists. Both resists demonstrate 90 nm half-pitch resolution and the capability of pattern transfer on carbon-based hard-mask layers. Through various characterizations and comparison of the controlled pair, we propose two competitive reaction paths for the organotin system with olefin groups, which regulate the lithographic sensitivity and dissolution contrast. Our findings highlight the structural adjustability of organotin carboxylates and their potential application as high-resolution and etch-durable DUV resists. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

22 pages, 4062 KB  
Article
Laser Truncation of Silicon Nanowires Fabricated by Ag-Assisted Chemical Etching for Reliable Electrode Deposition in Solar Cells
by Grażyna Kulesza-Matlak, Ewa Sarna, Tomasz Kukulski, Anna Sypień, Mariusz Kuglarz and Kazimierz Drabczyk
Appl. Sci. 2025, 15(24), 12873; https://doi.org/10.3390/app152412873 - 5 Dec 2025
Viewed by 360
Abstract
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the [...] Read more.
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the nanowire tips, leading to delamination, inhomogeneous coverage, and high contact resistance. In this work, we introduce a maskless laser-based truncation technique that selectively shortens MACE-derived SiNWs to controlled residual heights of 300–500 nm exclusively within the regions intended for electrode formation, while preserving the full nanowire morphology in active areas. A detailed parametric study of laser power, scanning speed, and pulse repetition frequency allowed the identification of an optimal processing window enabling controlled tip melting without damaging the nanowire roots or the crystalline silicon substrate. High-resolution SEM imaging confirms uniform planarization, well-preserved structural integrity, and the absence of subsurface defects in the laser-processed tracks. Optical reflectance measurements further demonstrate that introducing 2% and 5% truncated surface fractions—corresponding to the minimum and maximum metallized front-grid coverage in industrial Si solar cells—results in only a minimal reflectance increase, preserving the advantageous the light-trapping behavior of the SiNW texture. The proposed laser truncation approach provides a clean, scalable, and industrially compatible route toward creating electrode-ready surfaces on nanostructured silicon, enabling reliable metallization while maintaining optical performance. This method offers strong potential for integration into silicon photovoltaics, photodetectors, and nanoscale electronic and sensing devices. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

17 pages, 4281 KB  
Article
Development of Highly Active and Stable SmMnO3 Perovskite Catalysts for Catalytic Combustion
by Dinghua Ruan, Shipeng Wu, Chenyi Yuan, Zhen Huang, Wei Shen and Hualong Xu
Catalysts 2025, 15(12), 1149; https://doi.org/10.3390/catal15121149 - 5 Dec 2025
Cited by 1 | Viewed by 648
Abstract
The development of highly efficient and stable non-noble metal catalysts for volatile organic compound (VOCs) abatement remains a pressing challenge. Mn-based perovskites exhibit superior thermal stability as redox catalysts but suffer from limited activity in light alkane combustion. This study systematically investigates the [...] Read more.
The development of highly efficient and stable non-noble metal catalysts for volatile organic compound (VOCs) abatement remains a pressing challenge. Mn-based perovskites exhibit superior thermal stability as redox catalysts but suffer from limited activity in light alkane combustion. This study systematically investigates the performance of SmMnO3 (SMO) perovskite catalysts for propane oxidation through selective etching of Sm species. By precisely controlling the etching process, the removal of surface Sm exposes more active sites and significantly increases the specific surface area from 22.05 m2·g−1 for pristine SMO to 66.15 m2·g−1. SEM and N2 adsorption–desorption analysis revealed that prolonged etching induces surface roughening and pore channel expansion. XPS and XANES measurements confirmed that an increased Mn4+/Mn3+ ratio enhances reactant adsorption and accessibility to active sites. The etched catalysts exhibited markedly improved activity for propane oxidation, achieving a ~50 °C reduction in light-off temperature compared to the raw SMO. This performance enhancement is attributed to the synergistic effects of enhanced oxygen mobility, elevated Mn4+ content, and abundant oxygen vacancies. Further characterization via Raman spectroscopy and H2-TPR revealed weakened Jahn–Teller distortion and lower reduction temperatures, reflecting optimized Mn–O interactions and superior redox properties. Among the samples, SMO-20 demonstrated exceptional stability. Moreover, the SMO-20/cordierite monolithic catalyst maintained outstanding catalytic performance over 1000 h of operation. This work offers a facile and effective approach to engineer perovskite catalysts and provides new insights into structure–activity relationships in VOC oxidation. Full article
(This article belongs to the Special Issue Advanced Catalysts for Energy Conversion and Environmental Protection)
Show Figures

Graphical abstract

21 pages, 19150 KB  
Article
Preparation and Properties of Plasma Etching-Resistant Y2O3 Films
by Rui Zhang, Jiaxing Peng, Xiaobo Zhang, Kesheng Guo, Zecui Gao, Wei Dai, Zhengtao Wu, Yuxiang Xu and Qimin Wang
Coatings 2025, 15(12), 1397; https://doi.org/10.3390/coatings15121397 - 29 Nov 2025
Viewed by 1002
Abstract
Yttrium oxide (Y2O3) films have been widely used as protective layers in plasma etching equipment, but achieving stoichiometric films with high deposition rates remains a challenge. In this study, Y2O3 films were fabricated by a medium-frequency [...] Read more.
Yttrium oxide (Y2O3) films have been widely used as protective layers in plasma etching equipment, but achieving stoichiometric films with high deposition rates remains a challenge. In this study, Y2O3 films were fabricated by a medium-frequency reactive magnetron sputtering (MF-RMS) technique. The oxygen flow and target control voltage were regulated through a closed-loop feedback control system, which effectively solved the problem. The microstructure, mechanical, optical, and plasma etching properties were systematically investigated. The results showed that near-stoichiometric films can achieve a relatively high deposition rate. Increasing the deposition temperature induced a structural transition in the Y2O3 film from a predominantly cubic phase to a mixture of cubic and monoclinic phases. For Y2O3 films deposited at room temperature, increasing the bias voltage increased the deposition rate but reduced hardness and elastic modulus. The Y2O3 film deposited at 300 °C in the near-metallic mode exhibited the highest hardness and elastic modulus, reaching 13.3 GPa and 222.0 GPa, respectively. All Y2O3 films exhibited excellent transmittance and resistance to plasma etching. This study provides an effective protective strategy for semiconductor etching chambers. Full article
Show Figures

Figure 1

14 pages, 4167 KB  
Article
Process Optimization for Metal-Contact Etching in 3D Integration Devices
by Sung Gyu Pyo
Micromachines 2025, 16(12), 1354; https://doi.org/10.3390/mi16121354 - 28 Nov 2025
Viewed by 399
Abstract
This study investigates a metal-contact etching process that differs from conventional device contact etching by focusing on the film-stack configuration and the associated super-contact etching characteristics. Because metal-contact etching is closely linked to both physical profiles and electrical performance, evaluating a single parameter [...] Read more.
This study investigates a metal-contact etching process that differs from conventional device contact etching by focusing on the film-stack configuration and the associated super-contact etching characteristics. Because metal-contact etching is closely linked to both physical profiles and electrical performance, evaluating a single parameter provides limited insight; thus, the physical profile characteristics of metal-contact etching and 3D-integrated super-contacts were comprehensively examined. In the first-step etch, the target depth in the wafer left region was approximately 2365 Å, and the bottom surface exhibited a desirable rounded profile. Following the removal of liner TEOS and nitride, the stopping margin was evaluated under three conditions: (1) metal-contact etching with a ~22 s target reduction, (2) a CMOS image-sensor baseline incorporating an interlayer-dielectric-reduction scheme, and (3) a high-selectivity condition achieved by increasing the C5F8/O2 ratio with a reduced etch target. Under all three conditions, the bit-line contact (BLC) nitride experienced punch-through. To address this limitation, a three-step etch sequence was implemented, in which the first two steps achieved the required etch depth and the final step utilized a high-selectivity over-etch to secure a sufficient stopping margin. This approach demonstrated robust process windows, favorable CD control, and reliable nitride stopping performance, thereby establishing a practical methodology for stable super-contact etching in advanced 3D-integrated logic applications. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 4th Edition)
Show Figures

Figure 1

15 pages, 2522 KB  
Article
Impact of Professional Hygiene Instruments on the Roughness of Implant Surfaces: An In Vitro Analysis
by Jacopo Colombo, Francesca Baldi, Paola Gavoglio, Giulia Marchisio and Domenico Baldi
Appl. Sci. 2025, 15(23), 12598; https://doi.org/10.3390/app152312598 - 28 Nov 2025
Viewed by 376
Abstract
Introduction: This study highlights the importance of maintaining dental implants, particularly in the context of peri-implantitis. It emphasizes the need for dental hygienists to choose appropriate instruments that will not damage implant surfaces while effectively cleaning them. Materials and Methods: The research involved [...] Read more.
Introduction: This study highlights the importance of maintaining dental implants, particularly in the context of peri-implantitis. It emphasizes the need for dental hygienists to choose appropriate instruments that will not damage implant surfaces while effectively cleaning them. Materials and Methods: The research involved in vitro tests using 4 ultrasonic inserts for peri-implant mechanical instrumentation on one machined and one etched healing abutment, with a focus on how these instruments affect surface roughness. For each insert, four surface roughness measurements were recorded on each abutment. The data were then analyzed in two separate designs, one for the machined abutments and one for the etched abutments. The significance of the factors was determined by analyzing them using an ANOVA test. Results: The study found significant effects of surface treatment and instrument type on surface roughness parameters. Instrumentation tended to alter the roughness of machined surfaces more than etched ones, with notable differences in performance among the various inserts. Discussion: The results suggest that surface treatment has a more substantial impact on roughness than the choice of instrument. Future studies are encouraged to explore other parameters related to bacterial biofilm retention and the potential release of material from non-metallic inserts. Conclusions: Key findings include that surface treatment significantly influences surface roughness and that specific instruments can either increase or decrease roughness based on the type of surface. Full article
Show Figures

Figure 1

17 pages, 1763 KB  
Article
Controlling the Orientation of MoS2 Films on Mo Metal Thin Film Through Sulfur Flux Regulation: A Novel Reaction-Diffusion Model
by Joonam Kim, Masakazu Ike and Kenichi Tokuda
Nanomaterials 2025, 15(23), 1783; https://doi.org/10.3390/nano15231783 - 27 Nov 2025
Viewed by 658
Abstract
This study presents a novel strategy for controlling the orientation of MoS2 films on thick metallic substrates through precise regulation of the sulfur flux alone. In contrast to previous approaches that rely on substrate modifications or complex parameter tuning, orientation control is [...] Read more.
This study presents a novel strategy for controlling the orientation of MoS2 films on thick metallic substrates through precise regulation of the sulfur flux alone. In contrast to previous approaches that rely on substrate modifications or complex parameter tuning, orientation control is achieved here solely by adjusting the sulfur concentration during the sulfurization of 400 nm RF-sputtered Mo films. The metallic Mo substrate also allows potential film transfer via selective etching—analogous to the graphene/Cu system—providing a viable route for device integration on arbitrary substrates. Analyses (XRD, Raman, and TEM) reveal that low sulfur flux (30–50 sccm) favors horizontal growth, whereas high flux (>300 sccm) induces vertical orientation. To rationalize this behavior, a reaction-diffusion model based on the Thiele modulus was developed, quantitatively linking sulfur flux to film orientation and identifying critical thresholds (~50 and ~300 sccm) governing the horizontal-to-vertical transition. This unified approach enables the realization of distinct MoS2 orientations using identical materials and processes, analogous to the orientation control in graphene growth on copper. The ability to grow orientation-controlled MoS2 on non-noble metal substrates opens new opportunities for integrating electronic (horizontal) and catalytic (vertical) functionalities, thereby advancing scalable manufacturing of TMDC-based technologies. Full article
Show Figures

Figure 1

Back to TopTop