Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = metatranscriptomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2298 KiB  
Article
Unveiling the Petunia hybrida Virome: Metatranscriptomic Profiling from the Bulgarian Market and In Vitro Cultures
by Rumyana Valkova, Stoyanka Jurak, Elena Apostolova-Kuzova, Vesselin Baev, Lilyana Nacheva, Galina Yahubyan, Dijana Škorić and Mariyana Gozmanova
Plants 2025, 14(16), 2597; https://doi.org/10.3390/plants14162597 - 21 Aug 2025
Abstract
RNA sequencing is a high-throughput sequencing method essential for unbiased detection and characterization of known and emerging plant viruses. Its high sensitivity makes it particularly well-suited for identifying low-abundance viral sequences, even in asymptomatic plants or those affected by complex, mixed infections. Here, [...] Read more.
RNA sequencing is a high-throughput sequencing method essential for unbiased detection and characterization of known and emerging plant viruses. Its high sensitivity makes it particularly well-suited for identifying low-abundance viral sequences, even in asymptomatic plants or those affected by complex, mixed infections. Here, we conducted a metatranscriptomic survey of Petunia hybrida plants from the Bulgarian market, both symptomatic and asymptomatic, and their corresponding in vitro plantlets. Viruses were detected in all tested samples demonstrating that visual symptoms are not a reliable indicator of infection. The viromes were dominated by petunia vein clearing virus (PVCV, Petuvirus venapetuniae), cucumber mosaic virus (CMV, Cucumovirus CMV), and tomato aspermy virus (TAV, Cucumovirus TAV), along with bacteriophages and fungus-associated viruses. However, the PVCV and CMV abundance was elevated in in vitro samples, possibly due to cutting-induced activation and/or prolonged cultivation. Phylogenetic analysis of the Bulgarian CMV, TAV, and PVCV isolates highlights their genetic links to strains from a wide geographic range and diverse hosts, emphasizing the potential for virus movement and genetic exchange among plant viruses across regions and species. It also suggests that petunias may contribute to the transmission dynamics of viruses within ornamental trade networks. These findings also emphasize the phytosanitary risks to horticulture and establish a basis for further investigation into plant virus ecology. Full article
(This article belongs to the Special Issue Virus-Induced Diseases in Horticultural Plants)
Show Figures

Figure 1

27 pages, 1027 KiB  
Review
Recent Advances and Developments in Bacterial Endophyte Identification and Application: A 20-Year Landscape Review
by Neo M. Mametja, Thanyani E. Ramadwa, Muthumuni Managa and Tracy M. Masebe
Plants 2025, 14(16), 2506; https://doi.org/10.3390/plants14162506 - 12 Aug 2025
Viewed by 461
Abstract
Bacterial endophytes have emerged as critical components of plant microbiomes, offering multifaceted benefits ranging from growth promotion to stress resilience. This review synthesizes two decades of research, from 2004 to 2024, on bacterial endophyte identification and applications, highlighting advances in both traditional culture-based [...] Read more.
Bacterial endophytes have emerged as critical components of plant microbiomes, offering multifaceted benefits ranging from growth promotion to stress resilience. This review synthesizes two decades of research, from 2004 to 2024, on bacterial endophyte identification and applications, highlighting advances in both traditional culture-based techniques and modern omics approaches. The review also focuses on interactions between these microorganisms and their host plants, emphasizing their roles in biocontrol, phytoremediation, and nanoparticle biosynthesis. While significant progress has been made in characterizing cultivable bacterial endophytes, challenges persist in accessing unculturable species and understanding strain-specific functional mechanisms. The integration of metagenomics, metatranscriptomics, and metabolomics has begun unraveling this hidden diversity, revealing novel metabolic pathways and plant–microbe communication systems. There have been limitations in endophyte isolation protocols and field applications, and therefore a need exists for standardized frameworks to bridge lab-based discoveries with agricultural practices. Cutting-edge multi-omics techniques, such as genomics, transcriptomics, metabolomics, proteomics, and phenomics, should be used more in future research to clarify the mechanistic underpinnings of plant–endophyte interactions to thoroughly profile the microbial communities and unlock their functional potential under diverse environmental conditions. Overall, bacterial endophytes present viable paths toward sustainable farming methods, supporting food security and crop resilience in the face of environmental difficulties by providing a transformative opportunity for next-generation agriculture, mitigating climate-related agricultural stressors, reducing dependence on synthetic agrochemicals, and enhancing crop productivity. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Figure 1

23 pages, 4116 KiB  
Article
Taxonomic and Functional Profiling of Bacterial Communities in Leather Biodegradation: Insights into Metabolic Pathways and Diversity
by Manuela Bonilla-Espadas, Marcelo Bertazzo, Irene Lifante-Martinez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís and María-José Bonete
Bacteria 2025, 4(3), 37; https://doi.org/10.3390/bacteria4030037 - 1 Aug 2025
Viewed by 204
Abstract
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing [...] Read more.
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing and metatranscriptomic analysis. Proteobacteria, Bacteroidetes, and Patescibacteria emerged as the dominant phyla, while genera such as Acinetobacter, Pseudomonas, and Sphingopyxis were identified as key contributors to enzymatic activity and potential metal resistance. A total of 1302 enzymes were expressed across all the conditions, including 46 proteases, with endopeptidase La, endopeptidase Clp, and methionyl aminopeptidase being the most abundant. Collagen samples exhibited the highest functional diversity and total enzyme expression, whereas chrome-treated samples showed elevated protease activity, indicating selective pressure from heavy metals. Differential enzyme expression patterns were linked to both the microbial identity and tanning chemistry, revealing genus- and treatment-specific enzymatic signatures. These findings deepen our understanding of how tanning agents modulate the microbial structure and function and identify proteases with potential applications in the bioremediation and eco-innovation of leather waste processing. Full article
Show Figures

Figure 1

13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 489
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 3758 KiB  
Article
Metagenomic Sequencing Revealed the Effects of Different Potassium Sulfate Application Rates on Soil Microbial Community, Functional Genes, and Yield in Korla Fragrant Pear Orchard
by Lele Yang, Xing Shen, Linsen Yan, Jie Li, Kailong Wang, Bangxin Ding and Zhongping Chai
Agronomy 2025, 15(7), 1752; https://doi.org/10.3390/agronomy15071752 - 21 Jul 2025
Viewed by 446
Abstract
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, [...] Read more.
Potassium fertilizer management is critical for achieving high yields of Korla fragrant pear, yet current practices often overlook or misuse potassium inputs. In this study, a two-year field experiment (2023–2024) was conducted with 7- to 8-year-old pear trees using four potassium levels (0, 75, 150, and 225 kg/hm2). Metagenomic sequencing was employed to assess the effects on soil microbial communities, sulfur cycle functional genes, and fruit yield. Potassium treatments significantly altered soil physicochemical properties, the abundance of sulfur cycle functional genes, and fruit yield (p < 0.05). Increasing application rates significantly elevated soil-available potassium and organic matter while reducing pH (p < 0.05). Although alpha diversity was unaffected, NMDS analysis revealed differences in microbial community composition under different treatments. Functional gene analysis showed a significant decreasing trend in betB abundance, a peak in hpsO under K150, and variable patterns for soxX and metX across treatments (p < 0.05). All potassium applications significantly increased yield relative to CK, with K150 achieving the highest yield (p < 0.05). PLS-PM analysis indicated significant positive associations between potassium rate, nutrient availability, microbial abundance, sulfur cycling, and yield, and a significant negative association with pH (p < 0.05). These results provide a foundation for optimizing potassium fertilizer strategies in Korla fragrant pear orchards. It is recommended that future studies combine metagenomic and metatranscriptomic approaches to further elucidate the mechanisms linking potassium-driven microbial functional changes to improvements in fruit quality. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 4441 KiB  
Article
Short-Term Probiotic Colonization Alters Molecular Dynamics of 3D Oral Biofilms
by Nadeeka S. Udawatte, Chun Liu, Reuben Staples, Pingping Han, Purnima S. Kumar, Thiruma V. Arumugam, Sašo Ivanovski and Chaminda J. Seneviratne
Int. J. Mol. Sci. 2025, 26(13), 6403; https://doi.org/10.3390/ijms26136403 - 3 Jul 2025
Cited by 1 | Viewed by 2434
Abstract
Three-dimensional (3D) scaffold systems have proven instrumental in advancing our understanding of polymicrobial biofilm dynamics and probiotic interactions within the oral environment. Among oral probiotics, Streptococcus salivarius K12 (Ssk12) has shown considerable promise in modulating microbial homeostasis; however, its long-term therapeutic [...] Read more.
Three-dimensional (3D) scaffold systems have proven instrumental in advancing our understanding of polymicrobial biofilm dynamics and probiotic interactions within the oral environment. Among oral probiotics, Streptococcus salivarius K12 (Ssk12) has shown considerable promise in modulating microbial homeostasis; however, its long-term therapeutic benefits are contingent upon successful and sustained colonization of the oral mucosa. Despite its clinical relevance, the molecular mechanisms underlying the adhesion, persistence, and integration of Ssk12 into the native oral microbiome/biofilm remain inadequately characterized. In this pilot study, we explored the temporal colonization dynamics of Ssk12 and its impact on the structure and functional profiles of salivary-derived biofilms cultivated on melt-electrowritten poly(ε-caprolactone) (MEW-mPCL) scaffolds, which emulate the native oral niche. Colonization was monitored via fluorescence in situ hybridization (smFISH), confocal microscopy, and RT-qPCR, while shifts in community composition and function were assessed using 16S rRNA sequencing and meta-transcriptomics. A single administration of Ssk12 exhibited transient colonization lasting up to 7 days, with detectable presence diminishing by day 10. This was accompanied by short-term increases in Lactobacillus and Bifidobacterium populations. Functional analyses revealed increased transcriptional signatures linked to oxidative stress resistance and metabolic adaptation. These findings suggest that even short-term probiotic colonization induces significant functional changes, underscoring the need for strategies to enhance probiotic persistence. Full article
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 517
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

21 pages, 1321 KiB  
Review
Exploration of Multi-Source Lignocellulose-Degrading Microbial Resources and Bioaugmentation Strategies: Implications for Rumen Efficiency
by Xiaokang Lv, Zhanhong Qiao, Chao Chen, Jinling Hua and Chuanshe Zhou
Animals 2025, 15(13), 1920; https://doi.org/10.3390/ani15131920 - 29 Jun 2025
Viewed by 346
Abstract
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive [...] Read more.
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive tracts, forest soil, and microbial populations in papermaking processes. The rumen of ruminants harbors a diverse range of microbial species, making it a promising source of lignocellulose-degrading microorganisms. Exploring alternative systems like insect intestines and forest soil is essential for future research. Current studies primarily rely on traditional microbial isolation techniques to identify lignocellulose-degrading strains, underscoring the necessity to transition to utilizing microbial culturomics and genome-editing technologies for discovering and manipulating cellulose-degrading microbes. This review provides an overview of lignocellulose-degrading microbial communities from diverse environments, encompassing bacterial and fungal populations. It also delves into the use of metagenomic, metatranscriptomic, and metaproteomic approaches to pinpoint highly efficient cellulase genes, along with the application of genome-editing tools for engineering lignocellulose-degrading microorganisms. The primary objective of this review is to offer insights for further exploration of potential lignocellulose-degrading microbial resources and high-performance cellulase genes to enhance roughage utilization in ruminant rumen ecosystems. Full article
Show Figures

Figure 1

20 pages, 1478 KiB  
Review
Cyanobacteria and Soil Restoration: Bridging Molecular Insights with Practical Solutions
by Matias Garcia, Pablo Bruna, Paola Duran and Michel Abanto
Microorganisms 2025, 13(7), 1468; https://doi.org/10.3390/microorganisms13071468 - 24 Jun 2025
Viewed by 878
Abstract
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being [...] Read more.
Soil degradation has been accelerating globally due to climate change, which threatens food production, biodiversity, and ecosystem balance. Traditional soil restoration strategies are often expensive, slow, or unsustainable in the long term. In this context, cyanobacteria have emerged as promising biotechnological alternatives, being the only prokaryotes capable of performing oxygenic photosynthesis. Moreover, they can capture atmospheric carbon and nitrogen, release exopolysaccharides (EPSs) that stabilize the soil, and facilitate the development of biological soil crusts (biocrusts). In recent years, the convergence of multi-omics tools, such as metagenomics, metatranscriptomics, and metabolomics, has advanced our understanding of cyanobacterial dynamics, their metabolic potential, and symbiotic interactions with microbial consortia, as exemplified by the cyanosphere of Microcoleus vaginatus. In addition, recent advances in bioinformatics have enabled high-resolution taxonomic and functional profiling of environmental samples, facilitating the identification and prediction of resilient microorganisms suited to challenging degraded soils. These tools also allow for the prediction of biosynthetic gene clusters and the detection of prophages or cyanophages within microbiomes, offering a novel approach to enhance carbon sequestration in dry and nutrient-poor soils. This review synthesizes the latest findings and proposes a roadmap for the translation of molecular-level knowledge into scalable biotechnological strategies for soil restoration. We discuss approaches ranging from the use of native biocrust strains to the exploration of cyanophages with the potential to enhance cyanobacterial photosynthetic activity. By bridging ecological functions with cutting-edge omics technologies, this study highlights the critical role of cyanobacteria as a nature-based solution for climate-smart soil management in degraded and arid ecosystems. Full article
(This article belongs to the Special Issue Omics Research in Microbial Ecology)
Show Figures

Figure 1

18 pages, 3168 KiB  
Article
Ammonium-Generating Microbial Consortia in Paddy Soil Revealed by DNA-Stable Isotope Probing and Metatranscriptomics
by Chao-Nan Wang, Yoko Masuda and Keishi Senoo
Microorganisms 2025, 13(7), 1448; https://doi.org/10.3390/microorganisms13071448 - 21 Jun 2025
Viewed by 592
Abstract
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen [...] Read more.
Rice paddy fields are sustainable agricultural systems as soil microorganisms help maintain nitrogen fertility through generating ammonium. In these soils, dissimilatory nitrate reduction to ammonium (DNRA), nitrogen fixation, and denitrification are closely linked. DNRA and denitrification share the same initial steps and nitrogen gas, the end product of denitrification, can serve as a substrate for nitrogen fixation. However, the microorganisms responsible for these three reductive nitrogen transformations, particularly those focused on ammonium generation, have not been comprehensively characterized. In this study, we used stable isotope probing with 15NO3, 15N2O, and 15N2, combined with 16S rRNA high-throughput sequencing and metatranscriptomics, to identify ammonium-generating microbial consortia in paddy soils. Our results revealed that several bacterial families actively contribute to ammonium generation under different nitrogen substrate conditions. Specifically, Geobacteraceae (N2O and +N2), Bacillaceae (+NO3 and +N2), Rhodocyclaceae (+N2O and +N2), Anaeromyxobacteraceae (+NO3 and +N2O), and Clostridiaceae (+NO3 and +N2) were involved. Many of these bacteria participate in key ecological processes typical of paddy environments, including iron or sulfate reduction and rice straw decomposition. This study revealed the ammonium-generating microbial consortia in paddy soil that contain several key bacterial drivers of multiple reductive nitrogen transformations and suggested their diverse functions in paddy soil metabolism. Full article
Show Figures

Figure 1

12 pages, 732 KiB  
Systematic Review
Gut-Microbiome Signatures Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: A Systematic Review
by Ielmina Domilescu, Bogdan Miutescu, Florin George Horhat, Alina Popescu, Camelia Nica, Ana Maria Ghiuchici, Eyad Gadour, Ioan Sîrbu and Delia Hutanu
Metabolites 2025, 15(6), 412; https://doi.org/10.3390/metabo15060412 - 18 Jun 2025
Viewed by 643
Abstract
Background and Objectives: Rectal cancer management increasingly relies on watch-and-wait strategies after neoadjuvant chemoradiotherapy (nCRT). Accurate, non-invasive prediction of pathological complete response (pCR) remains elusive. Emerging evidence suggests that gut-microbiome composition modulates radio-chemosensitivity. We systematically reviewed primary studies that correlated baseline or on-treatment [...] Read more.
Background and Objectives: Rectal cancer management increasingly relies on watch-and-wait strategies after neoadjuvant chemoradiotherapy (nCRT). Accurate, non-invasive prediction of pathological complete response (pCR) remains elusive. Emerging evidence suggests that gut-microbiome composition modulates radio-chemosensitivity. We systematically reviewed primary studies that correlated baseline or on-treatment gut-microbiome features with nCRT response in locally advanced rectal cancer (LARC). Methods: MEDLINE, Embase and PubMed were searched from inception to 30 April 2025. Eligibility required (i) prospective or retrospective human studies of LARC, (ii) faecal or mucosal microbiome profiling by 16S, metagenomics, or metatranscriptomics, and (iii) response assessment using tumour-regression grade or pCR. Narrative synthesis and random-effects proportion meta-analysis were performed where data were homogeneous. Results: Twelve studies (n = 1354 unique patients, median sample = 73, range 22–735) met inclusion. Four independent machine-learning models achieved an Area Under the Receiver Operating Characteristic curve AUROC ≥ 0.85 for pCR prediction. Consistently enriched taxa in responders included Lachnospiraceae bacterium, Blautia wexlerae, Roseburia spp., and Intestinimonas butyriciproducens. Non-responders showed over-representation of Fusobacterium nucleatum, Bacteroides fragilis, and Prevotella spp. Two studies linked butyrate-producing modules to radiosensitivity, whereas nucleotide-biosynthesis pathways conferred resistance. Pooled pCR rate in patients with a “butyrate-rich” baseline profile was 44% (95% CI 35–54) versus 21% (95% CI 15–29) in controls (I2 = 18%). Conclusions: Despite heterogeneity, convergent functional and taxonomic signals underpin a microbiome-based radiosensitivity axis in LARC. Multi-centre validation cohorts and intervention trials manipulating these taxa, such as prebiotics or live-biotherapeutics, are warranted before clinical deployment. Full article
(This article belongs to the Special Issue Advances in Gut Microbiome Metabolomics)
Show Figures

Figure 1

24 pages, 1816 KiB  
Review
A Systematic Review on Microbial Profiling Techniques in Goat Milk: Implications for Probiotics and Shelf-Life
by Nare Jessica Monareng, Keabetswe T. Ncube, Charles van Rooi, Mamokoma C. Modiba and Bohani Mtileni
Int. J. Mol. Sci. 2025, 26(12), 5551; https://doi.org/10.3390/ijms26125551 - 10 Jun 2025
Viewed by 909
Abstract
Due to its high digestibility, rich nutrient profile, and potential probiotic content, goat milk is an essential nutritional resource, particularly for individuals with cow milk allergies. This review summarises the current state of microbial diversity in goat milk, emphasising the implications for quality, [...] Read more.
Due to its high digestibility, rich nutrient profile, and potential probiotic content, goat milk is an essential nutritional resource, particularly for individuals with cow milk allergies. This review summarises the current state of microbial diversity in goat milk, emphasising the implications for quality, safety, and probiotic potential. This systematic review adhered to PRISMA guidelines, conducting a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar using keywords related to microbial profiling in goat milk. The inclusion criteria targeted English-language studies from 2000 to 2025 that utilised high-throughput or next-generation sequencing methods. Out of 126 articles screened, 84 met the eligibility criteria. The extracted data focused on microbial diversity, profiling techniques, and their respective strengths and limitations in evaluating probiotic potential and spoilage risks. The review addresses the challenges linked to microbial spoilage and the composition and functional roles of microbial communities in goat milk. With species such as Bacillus and Pseudomonas playing crucial roles in fermentation and spoilage, key findings emphasise the prevalence of microbial phyla, including Proteobacteria, Firmicutes, and Actinobacteria in goat milk. The review also explores the probiotic potential of the goat milk microbiota, highlighting the health benefits associated with strains such as Lactobacillus and Bifidobacterium. Significant discoveries underline the necessity for advanced multi-omics techniques to thoroughly define microbial ecosystems and the substantial gaps in breed-specific microbiota research. Important findings illustrate the need for enhanced multi-omics techniques, given the challenges of host RNA and protein interference, low microbial biomass, and limited goat-specific reference databases, for optimising probiotic development, spoilage prevention strategies, and integrating metagenomics, metabolomics, metaproteomics, and metatranscriptomics to improve milk quality and safety as some of the future research objectives. This study emphasises the importance of understanding goat milk microbiology to advance dairy science and enhance human health. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2183 KiB  
Article
Human Papillomavirus-Encoded microRNAs as Regulators of Human Gene Expression in Anal Squamous Cell Carcinoma: A Meta-Transcriptomics Study
by Daniel J. García, Marco A. Pulpillo-Berrocal, José L. Ruiz, Eduardo Andrés-León and Laura C. Terrón-Camero
Non-Coding RNA 2025, 11(3), 43; https://doi.org/10.3390/ncrna11030043 - 9 Jun 2025
Viewed by 835
Abstract
Introduction: Anal squamous cell carcinoma (ASCC) is a rare but increasingly common gastrointestinal malignancy, mainly associated with oncogenic human papillomaviruses (HPVs). The role of non-coding RNAs (ncRNAs) in tumorigenesis is recognized, but the impact of viral ncRNAs on host gene expression remains unclear. [...] Read more.
Introduction: Anal squamous cell carcinoma (ASCC) is a rare but increasingly common gastrointestinal malignancy, mainly associated with oncogenic human papillomaviruses (HPVs). The role of non-coding RNAs (ncRNAs) in tumorigenesis is recognized, but the impact of viral ncRNAs on host gene expression remains unclear. Methods: We re-analyzed total RNA-Seq data from 70 anal biopsies: 31 low-grade squamous intraepithelial lesions (LGSIL), 16 high-grade SIL (HGSIL), and 23 ASCC cases. Microbial composition was assessed taxonomically. Novel viral miRNAs were predicted using vsRNAfinder and linked to host targets using TargetScan and expression correlation analyses. Results: Microbial profiling revealed significant differences in abundance, with Alphapapillomaviruses types 9, 10, and 14 enriched across lesion grades. We identified 90 novel viral miRNAs and 177 significant anti-correlated miRNA–mRNA interactions. Target genes were enriched in pathways related to cell cycle, epithelial–mesenchymal transition, lipid metabolism, immune modulation, and viral replication. Discussion: Our findings suggest that HPV-derived miRNAs, including those from low-risk types, may contribute to neoplastic transformation by modulating host regulatory networks. Conclusion: This study highlights viral miRNAs as potential drivers of HPV-related anal cancer and supports their utility as early biomarkers and therapeutic targets in ASCC. Full article
Show Figures

Figure 1

22 pages, 3123 KiB  
Article
Multiomics-Based Profiling of the Fecal Microbiome Reveals Potential Disease-Specific Signatures in Pediatric IBD (PIBD)
by Anita H. DeSantis, Kristina Buss, Keaton M. Coker, Brad A. Pasternak, Jinhua Chi, Jeffrey S. Patterson, Haiwei Gu, Peter W. Jurutka and Todd R. Sandrin
Biomolecules 2025, 15(5), 746; https://doi.org/10.3390/biom15050746 - 21 May 2025
Viewed by 1406
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors [...] Read more.
Inflammatory bowel disease (IBD), which includes Crohn’s Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors such as the gut microbiome (GM), genetic predisposition to the disease, and certain environmental factors are thought to be involved in pathogenesis. However, the pathophysiology of IBD is incompletely understood, and diagnostic biomarkers and effective treatments, particularly for PIBD, are limited. Recent work suggests that these factors may interact to influence disease development, and multiomic approaches have emerged as promising tools to elucidate the pathophysiology. We employed metagenomics, metabolomics- and metatranscriptomics-based approaches to examine the microbiome, its genetic potential, and its activity to identify factors associated with PIBD. Metagenomics-based analyses revealed pathways such as octane oxidation and glycolysis that were differentially expressed in UC patients. Additionally, metatranscriptomics-based analyses suggested enrichment of glycan degradation and two component systems in UC samples as well as protein processing in the endoplasmic reticulum, ribosome, and protein export in CD and UC samples. In addition, metabolomics-based approaches revealed patterns of differentially abundant metabolites between healthy and PIBD individuals. Interestingly, overall microbiome community composition (as measured by alpha and beta diversity indices) did not appear to be associated with PIBD. However, we observed a small number of differentially abundant taxa in UC versus healthy controls, including members of the Classes Gammaproteobacteria and Clostridia as well as members of the Family Rikenellaceae. Accordingly, when identifying potential biomarkers for PIBD, our results suggest that multiomics-based approaches afford enhanced potential to detect putative biomarkers for PIBD compared to microbiome community composition sequence data alone. Full article
Show Figures

Figure 1

21 pages, 4015 KiB  
Article
Characterizing the Endophytic Microbiome and Microbial Functional Assemblages Associated with Fengtang Plum (Prunus salicina Lindl.) Development and Resistance
by Jiqing Lei, Yinna Shi, Hong Li and Rui Wang
Horticulturae 2025, 11(5), 483; https://doi.org/10.3390/horticulturae11050483 - 30 Apr 2025
Viewed by 571
Abstract
Fengtang plum, a novel cultivar recently developed in China, has gained huge popularity due to its large fruit size, crisp sweetness, distinctive aroma, and notable resistance to brown rot caused by Monilinia spp. To investigate microbial community dynamics during fruit development, we analyzed [...] Read more.
Fengtang plum, a novel cultivar recently developed in China, has gained huge popularity due to its large fruit size, crisp sweetness, distinctive aroma, and notable resistance to brown rot caused by Monilinia spp. To investigate microbial community dynamics during fruit development, we analyzed samples from three phenological stages: fruit-setting (BSP1), veraison (BSP2), and maturity (BSP3). Our results demonstrated stage-specific microbial succession patterns: alpha diversity indices (observed species, ACE, PD_whole_tree) significantly increased at BSP2/BSP3 versus BSP1, accompanied by diverging Shannon index trends between bacteria (progressive enhancement) and fungi (stage-dependent reduction). Bacterial communities maintained Proteobacteria and Firmicutes dominance while accumulating low-abundance species (18.06–61.84%), whereas Ascomycota constituted the persistent fungal phylum with Trichoderma, reaching 95.91% dominance at BSP3. Community differentiation primarily arose from stage-specific bacteria Ralstonia, Brevundimonas, and Limnobacter, and dominant fungi Trichoderma and Cladosporium. Bacterial metabolic shifts were predicted to transition from basic energy production to complex organic/aromatic compound utilization, contrasting with fungal transitions from pathogen–saprophyte competition to saprophytic dominance. While the enrichment of Lactobacillus and Trichoderma during mid-to-late stages may suggest potential associations with aromatic compound production and fungal pathogen resistance, these hypotheses require validation through targeted metabolomics and pathogen challenge experiments. This study elucidates microbial community succession patterns during Fengtang plum development; notably, functional predictions were inferred from 16S/ITS sequencing data rather than direct metagenomic or metatranscriptomic analyses, thus limiting mechanistic interpretations, though future work integrating multi-omics approaches would strengthen functional insights. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

Back to TopTop