Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,055)

Search Parameters:
Keywords = miR-136-3p

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3801 KB  
Review
Molecular Signature in Focal Cortical Dysplasia: A Systematic Review of RNA and Protein Data
by Jalleh Shakerzadeh, Radim Jaroušek, Zita Goliášová and Milan Brázdil
Int. J. Mol. Sci. 2025, 26(20), 9909; https://doi.org/10.3390/ijms26209909 (registering DOI) - 11 Oct 2025
Abstract
Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy, yet its molecular basis remains poorly understood. Numerous studies have analyzed RNA, protein, and microRNA alterations, but results are often inconsistent across subtypes and methodologies. To address this gap, we conducted a [...] Read more.
Focal cortical dysplasia (FCD) is a major cause of drug-resistant epilepsy, yet its molecular basis remains poorly understood. Numerous studies have analyzed RNA, protein, and microRNA alterations, but results are often inconsistent across subtypes and methodologies. To address this gap, we conducted a systematic review integrating transcriptomic, proteomic, and microRNA data from 117 human studies of FCD subtypes I–III. Differentially expressed factors were extracted, categorized by subtype, and analyzed using pathway enrichment and network approaches. Our integrative analysis revealed convergent dysregulation of neuroinflammatory, synaptic, cytoskeletal, and metabolic pathways across FCD subtypes. Consistently altered genes, including IL1B, TLR4, BDNF, HMGCR, and ROCK2, together with dysregulated microRNAs such as hsa-miR-21-5p, hsa-miR-155-5p, and hsa-miR-132-3p, were linked to PI3K–Akt–mTOR, Toll-like receptor, and GABAergic signaling, emphasizing shared pathogenic mechanisms. Importantly, we identified overlapping transcript–protein patterns and subtype-specific molecular profiles that may refine diagnosis and inform therapeutic strategies. This review provides the first cross-omics molecular framework of FCD, demonstrating how convergent pathways unify heterogeneous findings and offering a roadmap for biomarker discovery and targeted interventions. Full article
(This article belongs to the Section Macromolecules)
13 pages, 6985 KB  
Article
Investigation of the Role of miR-1236-3p in Heat Tolerance of American Shad (Alosa sapidissima) by Targeted Regulation of hsp90b1
by Mingkun Luo, Ying Liu, Wenbin Zhu, Bingbing Feng, Wei Xu and Zaijie Dong
Int. J. Mol. Sci. 2025, 26(20), 9908; https://doi.org/10.3390/ijms26209908 (registering DOI) - 11 Oct 2025
Abstract
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating [...] Read more.
High temperatures are one of the most important abiotic stressors affecting the survival and growth of American shad (Alosa sapidissima). Building on previous omics sequencing studies of A. sapidissima liver and gills under high temperature stress, this study focused on investigating the regulatory role of miR-1236-3p and its target gene hsp90b1. The results indicate that the full-length cDNA of the hsp90b1 gene is 2023 bp and comprises a 5’ end of 58 bp, a 3’ end of 84 bp, and a coding region of 1881 bp, encoding 626 amino acids. Sequence alignment and phylogenetic tree analysis reveal that the hsp90b1 sequence is highly conserved across species. In situ hybridization showed that hsp90b1 is mainly localized in the cytoplasm. Software prediction identified a potential binding site between miR-1236-3p and hsp90b1. Through the construction of wild-type and mutant 3’UTR hsp90b1 dual luciferase reporter plasmids, the targeted relationship between the two was confirmed. In addition, the spatiotemporal expression levels of the hsp90b1 was found to be highest in the multicellular stage and liver tissue at a cultivation temperature of 27 °C; miR-1236-3P was highly expressed in the hatching stage and heart tissue at 30 °C. These findings provide a theoretical foundation for further investigating the regulatory role of non-coding RNA in A. sapidissima heat stress and offer data for subsequent molecular breeding studies. Full article
Show Figures

Figure 1

23 pages, 2884 KB  
Article
The Role of miR-144/Nrf2 Pathway in Muscle Oxidative Stress Induced by Oxidized Fish Oil in Megalobrama amblycephala, with an Emphasis on Protein Oxidation
by Jie Yang, Xiaochuan Zheng, Qunlan Zhou, Changyou Song, Hongyan Tian, Aimin Wang, Xiangfei Li, Bo Liu and Cunxin Sun
Antioxidants 2025, 14(10), 1223; https://doi.org/10.3390/antiox14101223 (registering DOI) - 11 Oct 2025
Abstract
This study investigated the role of miR-144 in mitigating oxidized fish oil (OFO)-induced muscle oxidative stress and quality deterioration in Megalobrama amblycephala. The feeding trial was conducted for 5 weeks, and four experimental diets were formulated, namely NC (fresh fish oil), OF [...] Read more.
This study investigated the role of miR-144 in mitigating oxidized fish oil (OFO)-induced muscle oxidative stress and quality deterioration in Megalobrama amblycephala. The feeding trial was conducted for 5 weeks, and four experimental diets were formulated, namely NC (fresh fish oil), OF (OFO), OF + ago (OFO and miR-144 agomir), and OF + anta (OFO and miR-144 antagomir). Histological results showed that OFO significantly reduced myofiber density (from 758.00 ± 13.69 to 636.57 ± 13.44 N/mm2) and decreased the percentage of myofibers with diameters > 50 μm (from 53.45% to 38.52%). OFO intake significantly increased the content of malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP), and 3-nitrotyrosine (3-NT), and significantly decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in muscle. OFO treatment significantly up-regulated the expression of inflammatory factors (NF-κB, TNF-α, HO-1, and IL-6), significantly down-regulated NQO1. Moreover, OFO reduced muscle differentiation and maturation by down-regulating the expression of MyoG, MYHC1, and protein synthesis genes (AKT3, TOR, and S6K1), and up-regulating the expression of protein hydrolysis genes (FoxO3a, MuRF1, HSP70, Beclin-1, P62, and ATG8). Moreover, miR-144 agomir exacerbated OFO-induced muscle damage by suppressing Nrf2, whereas miR-144 antagomir mitigated these effects. Silencing miR-144 re-activates Nrf2, alleviating oxidative damage, enhancing protein deposition, and improving muscle quality. These findings suggest that targeting the miR-144/Nrf2 axis could counteract OFO-induced muscle deterioration. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
16 pages, 1716 KB  
Review
The Impact of Non-Coding RNA on Inflammation and Airway Remodeling in Asthma Related to Obesity: State-of-the-Art and Therapeutic Perspectives
by Maria Kachel, Wojciech Langwiński and Aleksandra Szczepankiewicz
J. Clin. Med. 2025, 14(20), 7161; https://doi.org/10.3390/jcm14207161 (registering DOI) - 11 Oct 2025
Abstract
Asthma is a chronic respiratory disease affecting over 262 million people worldwide, with obesity-associated asthma emerging as a distinct endotype of increasing prevalence characterized by metabolic inflammation and airway remodeling. Unlike allergic asthma, this phenotype is driven by chronic low-grade inflammation, originating from [...] Read more.
Asthma is a chronic respiratory disease affecting over 262 million people worldwide, with obesity-associated asthma emerging as a distinct endotype of increasing prevalence characterized by metabolic inflammation and airway remodeling. Unlike allergic asthma, this phenotype is driven by chronic low-grade inflammation, originating from hypertrophic and hypoxic adipose tissue. This dysregulated state leads to the activation of pro-inflammatory pathways and the secretion of cytokines, contributing to airway dysfunction and remodeling. Recent evidence highlights non-coding RNAs (ncRNAs) as key regulators of these processes. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) influence inflammation and remodeling by modulating immune cell polarization, cytokine secretion, extracellular matrix composition, and airway smooth muscle cell (ASMC) proliferation. Notably, H19, MEG3, GAS5, miR-26a-1-3p, and miR-376a-3p have been implicated in both asthma and obesity, suggesting their role in linking metabolic dysfunction with airway pathology. Moreover, ncRNAs regulate Treg/Th17 balance, fibroblast activation, and autophagy-related pathways, further influencing airway remodeling. Our in silico analysis highlighted the IGF1R signaling pathway as a key enriched mechanism, linking selected ncRNAs with metabolic dysregulation and inflammation in obesity-related asthma. This paper reviews how ncRNAs regulate inflammation and airway remodeling in obesity-associated asthma, emphasizing their potential molecular links between metabolic dysfunction and airway pathology. Full article
(This article belongs to the Special Issue New Clinical Advances in Chronic Asthma)
Show Figures

Figure 1

17 pages, 885 KB  
Article
Diagnostic Relevance of miR-185, miR-141, and miR-21 in Colon Carcinoma: Insights into Tumor Sidedness and Reference Gene Selection
by Dorian Kršul, Ema Prenc, Lidija Požgaj, Dora Štefok, Paula Pongrac, Marija Podolski, Andrea Paravić Radičević, Damir Karlović, Ante Jerković, Marin Golčić, Ivan Dražić, Sandra Glavaš Kršul, Dora Fučkar Čupić, Vesna Eraković Haber and Marko Zelić
Biomedicines 2025, 13(10), 2460; https://doi.org/10.3390/biomedicines13102460 - 10 Oct 2025
Abstract
Background/Objectives: MicroRNAs (miRNAs) regulate gene expression and are proposed as biomarkers in colorectal cancer (CRC). This study evaluated miR-185-5p, miR-141-5p, and miR-21-5p expression in CRC tissues; their association with tumor location, histopathology, and clinical outcomes; and the suitability of miR-16-5p and miR-151a-3p as [...] Read more.
Background/Objectives: MicroRNAs (miRNAs) regulate gene expression and are proposed as biomarkers in colorectal cancer (CRC). This study evaluated miR-185-5p, miR-141-5p, and miR-21-5p expression in CRC tissues; their association with tumor location, histopathology, and clinical outcomes; and the suitability of miR-16-5p and miR-151a-3p as housekeeping controls. Previous reports suggest tumor-suppressive roles for miR-185 and miR-141 and an oncogenic function for miR-21, though findings remain inconsistent. Methods: Paired tumor and adjacent normal tissues from 70 CRC patients were analyzed. RNA was extracted from FFPE samples, and miRNA expression quantified by RT-qPCR. Relative expression values were normalized to miR-151a-3p. Tumor–normal differences, localization effects, and associations with clinicopathological and outcome variables were assessed using repeated-measures ANOVA and non-parametric tests. Results: miR-185-5p and miR-141-5p were significantly reduced in tumors compared with normal mucosa while miR-21-5p was upregulated. miR-16-5p showed higher expression in normal tissue, indicating its instability and unsuitability as a housekeeping control. A modest but significant localization effect was observed for miR-185, while other miRNAs were minimally influenced by location. Baseline asymmetry between non-tumor samples, observed for miR-185-5p, further indicated sidedness effects. None of the miRNAs were associated with stage, histological type, grade, invasion, immune infiltration, progression, or five-year survival. Conclusions: miR-185-5p, miR-141-5p, and miR-21-5p show robust tumor–normal differences, supporting their diagnostic potential, while miR-16-5p is unsuitable as a housekeeper. Modest but significant localization effect was observed for miR-185 in right-sided tumors. None showed prognostic value in stage I–III CRC. Larger, location-stratified studies are warranted. Full article
Show Figures

Figure 1

24 pages, 13395 KB  
Article
Identification and Validation of Iron Metabolism-Related Biomarkers in Endometriosis: A Mendelian Randomization and Single-Cell Transcriptomics Study
by Juan Du, Zili Lv and Xiaohong Luo
Curr. Issues Mol. Biol. 2025, 47(10), 831; https://doi.org/10.3390/cimb47100831 - 9 Oct 2025
Abstract
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed [...] Read more.
Studies have shown that the iron concentration in the peritoneal fluid of women is associated with the severity of endometriosis. Therefore, investigation of iron metabolism-related genes (IM-RGs) in endometriosis holds significant implications for both prevention and therapeutic strategies in affected patients. Differentially expressed IM-RGs (DEIM-RGs) were identified by intersecting IM-RGs with differentially expressed genes derived from GSE86534. Mendelian randomization analysis was employed to determine DEIM-RGs causally associated with endometriosis, with subsequent verification through sensitivity analyses and the Steiger test. Biomarkers associated with IM-RGs in endometriosis were validated using expression data from GSE86534 and GSE105764. Functional annotation, regulatory network construction, and immunological profiling were conducted for these biomarkers. Single-cell RNA sequencing (scRNA-seq) (GSE213216) was utilized to identify distinctively expressed cellular subsets between endometriosis and controls. Experimental validation of biomarker expression was performed via reverse transcription–quantitative polymerase chain reaction (RT-qPCR). BMP6 and SLC48A1, biomarkers indicative of cellular BMP response, were influenced by a medicus variant mutation that inactivated PINK1 in complex I, concurrently enriched by both biomarkers. The lncRNA NEAT1 regulated BMP6 through hsa-mir-22-3p and hsa-mir-124-3p, while SLC48A1 was modulated by hsa-mir-423-5p, hsa-mir-19a-3p, and hsa-mir-19b-3p. Immune profiling revealed a negative correlation between BMP6 and monocytes, whereas SLC48A1 displayed a positive correlation with activated natural killer cells. scRNA-seq analysis identified macrophages and stromal stem cells as pivotal cellular components in endometriosis, exhibiting altered self-communication networks. RT-qPCR confirmed elevated expression of BMP6 and SLC48A1 in endometriosis samples relative to controls. Both BMP6 and SLC48A1 were consistently overexpressed in endometriosis, reinforcing their potential as biomarkers. Moreover, macrophages and stromal stem cells were delineated as key contributors. These findings provide novel insights into therapeutic and preventive approaches for patients with endometriosis. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

24 pages, 3865 KB  
Article
miR-21-5p Alleviates Retinal Ischemia–Reperfusion Injury by Inhibiting M1 Polarization of Microglia via Suppression of STAT3 Signaling
by Liangshi Qin, Junle Liao, Cheng Tan, Can Liu, Wenjia Shi and Dan Chen
Biomedicines 2025, 13(10), 2456; https://doi.org/10.3390/biomedicines13102456 - 9 Oct 2025
Abstract
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator [...] Read more.
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator of Transcription 3 (STAT3) in retinal I/R injury. Methods: An acute intraocular hypertension (AIH) rat model was used to induce retinal I/R. The interaction between miR-21-5p and STAT3 was examined by dual-luciferase reporter assays. miR-21-5p and STAT3 expression were quantified by qRT-PCR and Western blotting. Retinal morphology, microglial polarization, and RGC survival were assessed by H&E staining and immunofluorescence. In vitro, microglia and RGCs were subjected to oxygen–glucose deprivation/reperfusion (OGD/R), and microglial-conditioned media (MCM) were applied to RGCs. Results: (1) miR-21-5p ameliorated AIH-induced retinal damage in vivo. (2) Overexpression of miR-21-5p inhibits M1 polarization of RM cultured in vitro. (3) MCM from miR-21-5p-overexpressing microglia attenuated OGD/R-induced RGC death. (4) miR-21-5p downregulates STAT3 expression to inhibit RM M1 polarization. (5) miR-21-5p down-regulation of STAT3 levels inhibits M1 polarization and reduces apoptosis of RGCs in retinal microglia of AIH rats. Conclusions: miR-21-5p alleviates retinal I/R injury by restraining microglial M1 polarization through direct repression of STAT3, thereby promoting RGC survival. These findings identify the miR-21-5p/STAT3 axis as a potential therapeutic target for ischemic retinal diseases. Full article
14 pages, 1353 KB  
Article
Advanced Stress Echocardiography with Cardiopulmonary Exercise Testing After Myocardial Infarction
by Nektarios Lampros Afthonidis, Vasiliki Michou, Maria Anyfanti, Anastasios Dalkiranis, George Panayiotou, Nikolaos Koutlianos, Evangelia Kouidi and Asterios Deligiannis
J. Funct. Morphol. Kinesiol. 2025, 10(4), 393; https://doi.org/10.3390/jfmk10040393 - 9 Oct 2025
Abstract
Background: A thorough post-myocardial infarction (MI) evaluation is essential for prognosis and rehabilitation. While cardiopulmonary exercise testing (CPET) is the standard for assessing functional capacity, combining it with dynamic stress echocardiography (DSE) may offer a more comprehensive assessment. Aim: This study examined the [...] Read more.
Background: A thorough post-myocardial infarction (MI) evaluation is essential for prognosis and rehabilitation. While cardiopulmonary exercise testing (CPET) is the standard for assessing functional capacity, combining it with dynamic stress echocardiography (DSE) may offer a more comprehensive assessment. Aim: This study examined the role of stress echocardiography (SE) in male post-MI patients by evaluating left ventricular function with conventional indices and the change in global longitudinal strain (ΔGLS) at rest and during maximal treadmill CPET. A secondary aim was to determine whether ΔGLS could provide additional value to traditional measures in post-MI care. Methods: Eighteen men with a recent MI [15 ST-elevation MI, three non-ST-elevation MI; mean age 53.2 ± 5.9 years, mean body mass index (BMI) 27.9 ± 2.2, 44.4% with a smoking history) and 18 age-matched male controls (mean age 50.1 ± 10.8 years, mean BMI 26.5 ± 2.4, 39.0% with smoking history) were enrolled. All MI patients were under optimal medical therapy, including β-blockers, which were withheld on the test day. Most underwent percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG) n = 2, or PCI for non-ST-elevation MI (NSTEMI) n = 3. Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) were measured at rest and at peak effort and correlated with CPET parameters. Results: Post-MI patients had lower LVEF (50.6% vs. 60.7% at rest; 55.3% vs. 67.4% at peak, both p < 0.001), impaired GLS (–14.7% vs. –20.2% at rest, p = 0.003; –15.8% vs. –22.7% at peak, p = 0.001), and reduced VO2peak (29.2 vs. 41.9 mL/kg/min, p < 0.001) compared with controls. In the MI group, ΔGLS correlated with VO2peak (r = –0.645, p = 0.003) and VE/VCO2 (r = 0.539, p = 0.020), indicating its potential as a marker of functional reserve. Conclusions: Combined CPET and SE offered comprehensive insights into functional and myocardial performance, identifying ΔGLS as a useful non-invasive index for risk stratification and rehabilitation after MI, with high feasibility and safety. Full article
Show Figures

Figure 1

12 pages, 3785 KB  
Article
Differences in Vaginal Microbiota Composition Between Infertile and Fertile Patients: A Prospective Study
by Pei-Chen Chen, Shih-Fen Chen, Wei-Tung Hung, Yu-Ying Lin, Ling-Chun Lin, Jen-Hung Wang and Pao-Chu Chen
Diagnostics 2025, 15(19), 2544; https://doi.org/10.3390/diagnostics15192544 - 9 Oct 2025
Abstract
Background/Objectives: Dysbiosis of the vaginal microbiota, particularly the loss of Lactobacillus spp. dominance, is linked to female infertility. While community state types (CSTs) I–III and V have been studied extensively, CST IV remains underexplored. The aim of this prospective study was to [...] Read more.
Background/Objectives: Dysbiosis of the vaginal microbiota, particularly the loss of Lactobacillus spp. dominance, is linked to female infertility. While community state types (CSTs) I–III and V have been studied extensively, CST IV remains underexplored. The aim of this prospective study was to compare vaginal microbiota composition—specifically CST IVA and IVB—between fertile and infertile women. Methods: Vaginal samples were collected from 22 women (15 infertile, 7 fertile) using cervical brushes and analyzed via 16S rRNA gene sequencing. DNA was extracted, and V3–V4 regions were sequenced using the Illumina MiSeq platform. Taxonomic classification was performed with QIIME 2 and the Greengenes database. Differences in microbial composition were assessed using the Wilcoxon rank-sum test (p < 0.05) in SPSS v21.0. Results: Infertile women showed lower relative abundances of Lactobacillus spp. (31.54% vs. 42.32%) and Oscillospira spp. relative to fertile women. CST IV was more frequent in the infertile group (29.75% vs. 21.61%). Within CST IV, CST IVA accounted for a higher proportion in infertile women (7.0% vs. 0.94%), with Prevotella spp. representing 95.18% of CST IVA in infertile subjects, as opposed to the figure of 69.77% in fertile counterparts. No clear differences in CST IVB were observed between groups. Conclusions: Increased prevalence of Prevotella spp. in CST IVA may contribute to an unfavorable vaginal environment in infertile women, potentially affecting sperm viability. The presence of Oscillospira spp. in fertile women suggests it is associated with a healthy vaginal microbiota profile. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

18 pages, 6821 KB  
Article
Multi-Omics Integration Reveals PBDE-47 as an Environmental Risk Factor for Intracranial Aneurysm via F2R-Mediated Metabolic and Epigenetic Pathways
by Hongjun Liu, Jinliang You, Junsheng Bai, Dilaware Khan and Sajjad Muhammad
Brain Sci. 2025, 15(10), 1091; https://doi.org/10.3390/brainsci15101091 - 9 Oct 2025
Abstract
Background: Intracranial aneurysm (IA) rupture is a life-threatening cerebrovascular event with a mortality rate of up to 40%, affecting approximately 500,000 people globally each year. Although environmental pollutants such as 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) have been implicated in the pathogenesis of IA, the causal [...] Read more.
Background: Intracranial aneurysm (IA) rupture is a life-threatening cerebrovascular event with a mortality rate of up to 40%, affecting approximately 500,000 people globally each year. Although environmental pollutants such as 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) have been implicated in the pathogenesis of IA, the causal relationship and underlying mechanisms remain unclear. This study aims to systematically explore the potential causal role of PBDE-47 in the development of IA by integrating multi-omics approaches. Methods: We utilized the UK Biobank Drug Proteomics Project (UKB-PPP) genome-wide association study (GWAS) data, including 2940 plasma proteins and 1400 metabolites, along with IA genetic data from 456,348 individuals, to perform a two-sample Mendelian randomization (MR) analysis. Instrumental variables were selected based on genome-wide significance (p < 5 × 10−8) or suggestive thresholds (p < 5 × 10−5). Analytical methods included inverse variance weighting (IVW), MR-Egger, weighted median, MR-PRESSO, and Steiger filtering for sensitivity analysis. Molecular docking and 100-nanosecond molecular dynamics simulations were used to evaluate interactions between PBDE-47 and proteins. Mediation analysis assessed the roles of plasma metabolites and miRNAs, and SMR-HEIDI tests were used to verify causal relationships. Results: MR analysis identified 93 plasma proteins potentially causally associated with IA, including 53 protective factors and 40 risk factors. By integrating PBDE-47 targets, IA-related genes, and metabolite-related genes, we identified 15 hub genes. Molecular docking revealed potential binding between PBDE-47 and F2R (binding energy: −5.516 kcal/mol), and SMR-HEIDI testing supported F2R as a potential causal risk factor for IA. Molecular dynamics simulations indicated the stability of the complex structure. Mediation analysis suggested that F2R may influence IA risk through eight plasma metabolites, and miR-130b-3p may indirectly promote IA development by upregulating F2R. Conclusions: Our findings suggest that exposure to PBDE-47 may have a potential causal relationship with IA risk, potentially mediated through the “PBDE–47–F2R–metabolite–miRNA” regulatory axis. These results provide preliminary evidence for early diagnostic biomarkers and targeted interventions for IA. The multi-omics analytical framework established in this study offers new insights into environmental determinants of neurovascular diseases, although further validation is needed to address potential limitations. Full article
(This article belongs to the Section Environmental Neuroscience)
Show Figures

Figure 1

24 pages, 3057 KB  
Article
Venous Thrombogenesis and Cervical Cancer: Plasma MicroRNAs as Prognostic Indicators of Tumor Behavior
by Mariana Teixeira Costa, Beatriz Vieira Neto, José Brito da Silva, Luísa Carvalho, Lurdes Salgado, Deolinda Pereira, Filomena Adega, Valéria Tavares and Rui Medeiros
Int. J. Mol. Sci. 2025, 26(19), 9796; https://doi.org/10.3390/ijms26199796 - 8 Oct 2025
Viewed by 240
Abstract
Cervical cancer (CC) is the fourth most common cancer among women globally, with venous thromboembolism (VTE) representing a life-threatening complication. Cancer-associated thrombosis (CAT) arises from tumor-driven activation of hemostasis, worsening prognosis. Recently, circulating microRNAs (miRNAs) have emerged as potential biomarkers for both CAT [...] Read more.
Cervical cancer (CC) is the fourth most common cancer among women globally, with venous thromboembolism (VTE) representing a life-threatening complication. Cancer-associated thrombosis (CAT) arises from tumor-driven activation of hemostasis, worsening prognosis. Recently, circulating microRNAs (miRNAs) have emerged as potential biomarkers for both CAT and cervical tumorigenesis. Thus, this study aimed to assess the implications of five miRNAs—miR-20a-5p, -23a-3p, -125b-5p, -145-5p, and -616-3p—in CC-related VTE context. These miRNAs were quantified by RT-qPCR in plasma from 69 CC patients before treatment. Briefly, VTE occurred in nine patients, decreasing overall survival (OS) [log-rank test, p = 0.005; hazard ratio (HR) = 4.78; 95% confidence interval (CI), 1.42–16.05]. Lower miR-20a-5p levels predicted VTE (ꭓ2 test, p = 0.027) and, in subgroup analyses, they were linked to cervical squamous cell carcinoma (CSCC) and older age (ꭓ2 test, p = 0.003 and p = 0.043, respectively). In VTE patients, miR-145-5p downregulation was associated with improved OS (log-rank test, p = 0.018), an effect also observed in the adenocarcinoma (ADC) subgroup (log-rank test, p = 0.039). The remaining miRNAs showed subtype-specific links to clinicopathological features and survival. These findings highlight the potential value of circulating miRNAs in thrombotic risk and prognosis assessment in CC. Full article
Show Figures

Figure 1

17 pages, 2080 KB  
Article
Identification of Proteins and MicroRNAs with Prognostic Value for Assisted Reproduction Technology Outcomes in Follicular Fluid of Women with Endometriosis: A Pilot Study
by Ana Catarina Neto, Cláudia Freitas, Ângela Ribeiro, Adriana R. Rodrigues, João L. Silva-Carvalho, Henrique Almeida and Delminda Neves
Int. J. Mol. Sci. 2025, 26(19), 9752; https://doi.org/10.3390/ijms26199752 - 7 Oct 2025
Viewed by 135
Abstract
This study aims to identify molecular markers with prognostic value for biochemical pregnancy in follicular fluid (FF) samples from women with endometriosis after assisted reproductive technology (ART) intervention. Levels of growth differentiation factor-9 (GDF-9), bone morphogenetic protein-15 (BMP-15), and anti-Mullerian hormone (AMH) proteins [...] Read more.
This study aims to identify molecular markers with prognostic value for biochemical pregnancy in follicular fluid (FF) samples from women with endometriosis after assisted reproductive technology (ART) intervention. Levels of growth differentiation factor-9 (GDF-9), bone morphogenetic protein-15 (BMP-15), and anti-Mullerian hormone (AMH) proteins were semi-quantified by Western blotting and microRNAs 20a_1, 145_1, 320a_1, 125-b-5p, 212-3p, and 199_a by qPCR in FF samples from women submitted to ART with a previous diagnosis of endometriosis (n = 20) or male factor infertility (controls) (n = 44). An increase in GDF-9 and BMP-15 and a decrease in AMH mature protein were observed, as well as an increase in miR20a_1 (p = 0.04), miR145_1 (p = 0.003), and miR320a_1 (p = 0.006) in FF samples collected from women with endometriosis compared with controls. A reduction was observed in miR125b-5p (p = 0.004) and 212-3p (p = 0.02) in endometriosis. Receiver operating characteristic (ROC) curve analysis indicated that miR125b-5p, miR212-3p, and miR-145_1 are potential predictors of endometriosis, and miR145_1 and miR320a_1 of biochemical pregnancy in controls. Although limited by a small sample size, the current study demonstrated alterations in AMH, BMP-15, GDF-9, and specific miRNA levels in FF samples harvested from women with endometriosis, emphasizing their potential roles in endometriosis-related infertility. These microRNAs, dysregulated in women with endometriosis, unveil their biomarker properties and their predictive value for ART success. Full article
(This article belongs to the Special Issue Endometriosis and Infertility)
Show Figures

Figure 1

17 pages, 3749 KB  
Article
Exploring Low Energy Excitations in the d5 Iridate Double Perovskites La2BIrO6 (B = Zn, Mg)
by Abhisek Bandyopadhyay, Dheeraj Kumar Pandey, Carlo Meneghini, Anna Efimenko, Marco Moretti Sala and Sugata Ray
Condens. Matter 2025, 10(4), 53; https://doi.org/10.3390/condmat10040053 - 6 Oct 2025
Viewed by 270
Abstract
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M [...] Read more.
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M = Mg compound shows an antiferromagnetic-like linear field-dependent isothermal magnetization below its transition temperature, whereas the M = Zn counterpart displays a clear hysteresis loop followed by a noticeable coercive field, indicative of ferromagnetic components arising from a non-collinear Ir spin arrangement. The local structure studies authenticate perceptible M/Ir antisite disorder in both systems, which complicates the magnetic exchange interaction scenario by introducing Ir-O-Ir superexchange pathways in addition to the nominal Ir-O-B-O-Ir super-superexchange interactions expected for an ideally ordered structure. While spin–orbit coupling (SOC) plays a crucial role in establishing insulating behavior for both these compounds, the rotational and tilting distortions of the IrO6 (and MO6) octahedral units further lift the ideal cubic symmetry. Finally, by measuring the Ir-L3 edge resonant inelastic X-ray scattering (RIXS) spectra for both the compounds, giving evidence of spin–orbit-derived low-energy inter-J-state (intra t2g) transitions (below ~1 eV), the charge transfer (O 2p → Ir 5d), and the crystal field (Ir t2geg) excitations, we put forward a qualitative argument for the interplay among effective SOC, non-cubic crystal field, and intersite hopping in these two compounds. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

16 pages, 3389 KB  
Article
Elevated Serum Levels of miRNA-155 in Children with Atopic Dermatitis: A Potential Biomarker of Disease
by Natalia Gołuchowska, Aldona Ząber, Sylwia Walczewska, Agata Będzichowska, Klaudia Brodaczewska, Aleksandra Majewska, Bolesław Kalicki and Agata Tomaszewska
Int. J. Mol. Sci. 2025, 26(19), 9689; https://doi.org/10.3390/ijms26199689 - 4 Oct 2025
Viewed by 253
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease in the pediatric population. In recent years, the role of microRNAs in inflammatory and immunological mechanisms as specific biomarkers of AD has received growing attention. The aim of the present study was a [...] Read more.
Atopic dermatitis (AD) is the most common inflammatory skin disease in the pediatric population. In recent years, the role of microRNAs in inflammatory and immunological mechanisms as specific biomarkers of AD has received growing attention. The aim of the present study was a quantitative assessment of serum expression levels of miR-100, miR-224 and miR-155 in children with AD compared with healthy peers, and an analysis of their potential associations with clinical disease phenotype, severity of skin lesions (SCORAD), cytokine profile, immunological parameters and the presence of concomitant allergic diseases. The study included 12 children with AD and 9 healthy children. Selected miRNAs were isolated from serum, followed by reverse transcription using universal primers and quantification by qRT-PCR. Children with AD exhibited significantly higher expression levels of miR-155 compared with controls (p = 0.003). No statistically significant differences were observed for miR-100 and miR-224. miR-100 expression was significantly higher in children with a positive history of inhalant allergy compared with those without such a diagnosis (p = 0.014). A positive correlation was observed between miR-100 levels and the percentage of eosinophils (r = 0.599; p = 0.052) as well as absolute eosinophil count (r = 0.600; p = 0.051). MiR-155 is significantly upregulated in children with AD suggesting it as a candidate biomarker worthy of further investigation in larger cohorts. Although miR-100 did not differentiate the groups, its correlation with eosinophilia and inhalant allergy suggests a role in disease phenotyping. Full article
(This article belongs to the Special Issue Molecular Research on Skin Inflammation)
Show Figures

Figure 1

32 pages, 9450 KB  
Systematic Review
Systematic Review and Meta-Analysis of microRNA-7-5p Expression and Biological Significance in Head and Neck Squamous Cell Carcinoma
by Rikki A. M. Brown, Michael Phillips, Andrew J. Woo, Omar Kujan, Stephanie Flukes, Louise N. Winteringham, Larissa C. Dymond, Fiona Wheeler, Brianna Pollock, Dianne J. Beveridge, Elena Denisenko and Peter J. Leedman
Cancers 2025, 17(19), 3232; https://doi.org/10.3390/cancers17193232 - 4 Oct 2025
Viewed by 327
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with poor clinical outcomes. microRNA-7-5p (miR-7-5p) has been described as both a tumour suppressor and an oncomiR depending on the tissue context, but its role in HNSCC remains unclear. This [...] Read more.
Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with poor clinical outcomes. microRNA-7-5p (miR-7-5p) has been described as both a tumour suppressor and an oncomiR depending on the tissue context, but its role in HNSCC remains unclear. This study aimed to clarify the clinical significance and biological function of miR-7-5p in HNSCC by integrating data from multiple sources. Methods: A systematic review of the literature was conducted to identify studies analysing miRNA expression in human head and neck tissues. A meta-analysis of individual patient data from Gene Expression Omnibus (GEO), ArrayExpress, and The Cancer Genome Atlas (TCGA) was performed to assess miR-7-5p expression in tumours and normal tissues, and its associations with clinical parameters and prognostic outcomes. Bioinformatics analyses were used to predict miR-7-5p target genes, classify hub genes, and perform gene ontology enrichment analysis. MicroRNA in situ hybridisation (miRNA ISH) and real-time quantitative PCR (RT-qPCR) were conducted on tissue samples, HNSCC cell lines, and an in vitro model of oral oncogenesis to validate miR-7-5p expression patterns. Results: miR-7-5p was significantly upregulated in tumours compared to normal tissues and associated with larger tumour size, HPV-negative status, poor disease-specific survival, and shorter progression-free intervals. Bioinformatics analysis highlighted miR-7-5p target genes enriched in pathways related to cell growth, survival, and tumourigenesis. Despite evidence supporting the anti-cancer role of exogenous miR-7-5p in preclinical models, the observed endogenous upregulation in tumours suggests that miR-7-5p expression may represent a compensatory or stress-responsive mechanism during tumourigenesis, rather than acting as a primary oncogenic driver. Conclusions: This study provides new insights into the complex role of miR-7-5p in HNSCC, supporting its potential as both a biomarker and a therapeutic target. Understanding the context-specific functions of miR-7-5p is essential for its development as an RNA-based therapeutic in HNSCC. Full article
Show Figures

Figure 1

Back to TopTop