Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (465)

Search Parameters:
Keywords = micro-holes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3886 KB  
Article
Investigation of Laser Macro- and Micro-Polishing on Fine-Grained Niobium Material for Superconducting Radio Frequency Cavities
by Florian Brockner, Laura Kreinest, Edgar Willenborg and Dirk Lützenkirchen-Hecht
Materials 2025, 18(21), 5034; https://doi.org/10.3390/ma18215034 - 5 Nov 2025
Viewed by 197
Abstract
Fine-grained Nb metal sheets were successively laser macro- and micro-polished for a potential use of the so-prepared materials in superconducting radiofrequency cavities in particle accelerators. The laser-treated Nb surfaces were investigated by a combination of white light interferometry, optical profilometry, electron microscopy with [...] Read more.
Fine-grained Nb metal sheets were successively laser macro- and micro-polished for a potential use of the so-prepared materials in superconducting radiofrequency cavities in particle accelerators. The laser-treated Nb surfaces were investigated by a combination of white light interferometry, optical profilometry, electron microscopy with X-ray spectroscopy, and X-ray diffraction to study the influence of the conditions during the laser treatments on the resulting surface topography, the crystallographic structure, and the chemical composition of the material samples. For optimum polishing conditions, smooth, wavy surfaces with a minimum surface roughness could be achieved. However, local defects such as carbon contamination, as well as holes and cracks in the surface, were found. For the different prepared surfaces, the maximum acceleration field gradients, i.e., the onset fields for field emission (EOn), were determined, indicating that for smooth surface regions without defects, EOn may reach values of up to almost 1 GV/m, while for the pristine, rough surface and local defects such as particles and cracks, EOn is limited to values around 100 MV/m or less. The present study suggests that laser polishing should be considered as an alternative to conventional polishing strategies of niobium accelerator cavities. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Graphical abstract

16 pages, 4244 KB  
Article
Case Study on Investigation of Electrical Cabinet Fire Caused by Poor Electrical Contact
by Jing Zhang, Changzheng Li, Guofeng Su and Wenzhong Mi
Fire 2025, 8(11), 412; https://doi.org/10.3390/fire8110412 - 24 Oct 2025
Viewed by 862
Abstract
Electrical cabinet fire is a prevalent type of electrical fire. It can result in significant casualties and major damage to residential dwellings, chemical plants, or other facilities. This study proposes an investigation methodology for electrical cabinet fires. It includes evidence collection and reasoning [...] Read more.
Electrical cabinet fire is a prevalent type of electrical fire. It can result in significant casualties and major damage to residential dwellings, chemical plants, or other facilities. This study proposes an investigation methodology for electrical cabinet fires. It includes evidence collection and reasoning inference, reverse deduction, and comprehensive analysis. Using a cabinet fire as a case study, macro and micro trace analyses are performed utilizing a stereomicroscope, a scanning electron microscope, and an energy-dispersive spectrometer. The typical characteristics of traces, encompassing melting marks, arc beads, and displacement, are summarized. The evidence suggests that poor electrical contact is the primary cause. A thermal–electrical–mechanical coupling model is developed to simulate poor contact on copper busbars. The results reveal that thermal stress caused by local overheating can lead to the deformation and displacement of the busbar. The calculation indicates that the temperature rise triggered by poor contact can reach 1040 °C. The maximum displacement of the busbar caused by thermal stress is 6.2 mm. Force analysis indicates that one busbar will descend under gravity and come into contact with another busbar of a different phase. The short circuit triggered by direct contact caused fire. To prevent such accidents, it is essential to verify that the specifications of bolts correspond to those of screw holes to avoid poor contact. Furthermore, insulating plates should be installed between distinct-phase busbars to prevent short circuits. Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 2nd Edition)
Show Figures

Figure 1

14 pages, 2702 KB  
Article
Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers
by Ines Tavoletta, Ricardo Oliveira, Filipa Sequeira, Catarina Cardoso Novo, Luigi Zeni, Giancarla Alberti, Nunzio Cennamo and Rogerio Nunes Nogueira
Sensors 2025, 25(20), 6456; https://doi.org/10.3390/s25206456 - 18 Oct 2025
Viewed by 402
Abstract
Albendazole (ABZ) is a broad-spectrum anthelmintic drug whose residual presence in food and the environment raises public health concerns, requiring rapid and sensitive methods of detection. In this work, a sensitive Fabry–Pérot interferometer (FPI) probe was fabricated by realizing a cavity located at [...] Read more.
Albendazole (ABZ) is a broad-spectrum anthelmintic drug whose residual presence in food and the environment raises public health concerns, requiring rapid and sensitive methods of detection. In this work, a sensitive Fabry–Pérot interferometer (FPI) probe was fabricated by realizing a cavity located at the tip of a single-mode optical fiber core with a molecularly imprinted polymer (MIP) for ABZ detection. The fabrication process involved the development of a photoresist-based micro-hole filled by the specific MIP via thermal polymerization. Interferometric measurements obtained using the proposed sensor system have demonstrated a limit of detection (LOD) of 27 nM, a dynamic concentration range spanning from 27 nM (LOD) to 250 nM, and a linear response at the nanomolar level (27 nM–100 nM). The selectivity test demonstrated no signal when interfering molecules were present, and the application of the sensor for ABZ quantification in a commercial pharmaceutical sample provided good recovery, in accordance with bioanalytical validation standard methods. These results demonstrate the capability of a MIP layer-based FPI probe to provide low-cost and selective optical-sensing strategies, proposing a competitive approach to traditional analytical techniques for ABZ monitoring. Full article
Show Figures

Figure 1

22 pages, 3283 KB  
Article
Enhanced Near-Surface Flaw Detection in Additively Manufactured Metal Ti-5Al-5V-5Mo-3Cr Using the Total Focusing Method
by Kate van Herpt, Mohammad E. Bajgholi, P. Ross Underhill, Catalin Mandache and Thomas W. Krause
Sensors 2025, 25(20), 6425; https://doi.org/10.3390/s25206425 - 17 Oct 2025
Viewed by 394
Abstract
Additive manufacturing (AM) enables the fabrication of complex components with high geometric freedom, but it can introduce near-surface flaws due to rapid solidification, resulting in porosity and lack of fusion. In addition, localized melting and steep thermal gradients favor the formation of micro-cracks. [...] Read more.
Additive manufacturing (AM) enables the fabrication of complex components with high geometric freedom, but it can introduce near-surface flaws due to rapid solidification, resulting in porosity and lack of fusion. In addition, localized melting and steep thermal gradients favor the formation of micro-cracks. Conventional ultrasonic techniques have shortcomings in detecting such flaws because of front-wall interference, further affected by surface roughness and anisotropy. This study evaluates the effectiveness of the Total Focusing Method (TFM), an advanced ultrasonic imaging technique implemented in Full Matrix Capture (FMC), for near-surface flaw detection in Laser Powder Bed Fusion (LPBF) AM components. To assess TFM performance, subsurface side-drilled holes (SDHs) in AM Ti-5Al-5V-5Mo-3Cr (Ti-5553) material were used as the reference reflectors and compared with Phased Array Ultrasonic Testing (PAUT) under identical conditions. Results showed that TFM achieved higher spatial resolution and more reliable detection of shallow flaws, successfully detecting features as shallow as 0.40 ± 0.05 mm below the surface, whereas PAUT was limited to greater depths. These findings demonstrate TFM as a reliable non-destructive evaluation method for shallow flaws in AM parts, while contributing one of the first systematic comparative datasets of PAUT and TFM for shallow SDHs in LPBF titanium alloys. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

11 pages, 23271 KB  
Article
Experimental Study of Glow Discharge Polymer Film Ablation with Shaped Femtosecond Laser Pulse Trains
by Qinxin Wang, Weiwei Xu, Xue Wang, Dandan Shi, Jingyuan Wang, Liyan Zhao, Yasong Cui, Mingyu Zhang, Jia Liu and Zhan Hu
Materials 2025, 18(20), 4761; https://doi.org/10.3390/ma18204761 - 17 Oct 2025
Viewed by 378
Abstract
A glow discharge polymer (GDP) has unique physical properties—transparency, brittleness, and hardness—that pose challenges for traditional mechanical machining techniques. We have investigated the microhole fabrication of GDP films using shaped femtosecond laser pulses to study the influence of pulse shape, delay between subpulses, [...] Read more.
A glow discharge polymer (GDP) has unique physical properties—transparency, brittleness, and hardness—that pose challenges for traditional mechanical machining techniques. We have investigated the microhole fabrication of GDP films using shaped femtosecond laser pulses to study the influence of pulse shape, delay between subpulses, and focusing position on processing precision and efficiency. By precisely controlling pulse characteristics, such as duration, energy, and subpulse intervals, the efficiency, hole morphology, and processing quality were significantly improved. The experimental results demonstrated that femtosecond lasers with subpulses produce smaller and more uniform microholes compared to transform-limited pulses. Furthermore, both the pulse shape and focusing position of the laser were found to further influence ablation efficiency. This study establishes, for the first time, the critical role of temporal pulse shaping in optimizing the femtosecond laser drilling of GDP films, which provides valuable information on optimizing femtosecond laser parameters for precision processing of polymer films and advances the potential for microhole fabrication in industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

14 pages, 4396 KB  
Article
Experimental Study on AE Response and Mechanical Behavior of Red Sandstone with Double Prefabricated Circular Holes Under Uniaxial Compression
by Ansen Gao, Jie Fu, Kuan Jiang, Chengzhi Qi, Sunhao Zheng, Yanjie Feng, Xiaoyu Ma and Zhen Wei
Processes 2025, 13(10), 3270; https://doi.org/10.3390/pr13103270 - 14 Oct 2025
Viewed by 280
Abstract
Natural rock materials, containing micro-cracks and pore defects, significantly alter their mechanical behavior. This study investigated fracture interactions of red sandstone containing double close-round holes (diameter: 10 mm; bridge angle: 30°, 45°, 60°, 90°) using acoustic emission (AE) monitoring and the discrete element [...] Read more.
Natural rock materials, containing micro-cracks and pore defects, significantly alter their mechanical behavior. This study investigated fracture interactions of red sandstone containing double close-round holes (diameter: 10 mm; bridge angle: 30°, 45°, 60°, 90°) using acoustic emission (AE) monitoring and the discrete element simulations method (DEM), which was a novel methodology for revealing dynamic failure mechanisms. The uniaxial compression tests showed that hole geometry critically controlled failure modes: specimens with 0° bridge exhibited elastic–brittle failure with intense AE energy releases and large fractures, while 45° arrangements displayed elastic–plastic behaviors with stable AE signal responses until collapse. The quantitative AE analysis revealed that the fracture-type coefficient k had a distinct temporal clustering characteristic, demonstrating the spatiotemporal synchronization of tensile and shear crack initiation and propagation. Furthermore, numerical simulations identified a critical stress redistribution phenomenon, that axial compressive force chains concentrated along the loading axis, forming continuous longitudinal compression zones, while radial tensile dispersion dominated hole peripheries. Crucially, specimens with 45° and 90° bridges induced prominently symmetric tensile fractures (85° to horizontal direction) and shear-dominated failure near junctions. These findings can advance damage prediction in discontinuous geological media and offer direct insights for optimizing excavation sequences and support design in cavern engineering. Full article
Show Figures

Figure 1

17 pages, 12944 KB  
Article
Experimental Study on Backwater-Assisted Picosecond Laser Trepanning of 304 Stainless Steel
by Liang Wang, Rui Xia, Jie Zhou, Yefei Rong, Changjian Wu, Long Xu, Xiaoxu Han and Kaibo Xia
Metals 2025, 15(10), 1138; https://doi.org/10.3390/met15101138 - 13 Oct 2025
Viewed by 351
Abstract
This study focuses on the high-precision microhole machining of 304 stainless steel and explores a backwater-assisted picosecond laser trepanning technique. The laser used is a 30 W green picosecond laser with a wavelength of 532 nm, a repetition rate of 1000 kHz, and [...] Read more.
This study focuses on the high-precision microhole machining of 304 stainless steel and explores a backwater-assisted picosecond laser trepanning technique. The laser used is a 30 W green picosecond laser with a wavelength of 532 nm, a repetition rate of 1000 kHz, and a pulse width of less than 15 ps. Experiments were conducted under both water-based and non-water-based laser processing environments to systematically investigate the effects of laser power and scanning cycles on hole roundness, taper, and overall hole quality. The experimental results further confirm the advantages of the backwater-assisted technique in reducing slag accumulation, minimizing roundness variation, and improving hole uniformity. In addition, thermal effects during the machining process were analyzed, showing that the water-based environment effectively suppresses the expansion of the heat-affected zone and mitigates recast layer formation, thereby enhancing hole wall quality. Compared with conventional non-water-based methods, the backwater-assisted approach demonstrates superior processing stability, better hole morphology, and more efficient thermal management. This work provides a reliable technical route and theoretical foundation for precision microhole machining of stainless steel and exhibits strong potential for engineering applications. Full article
(This article belongs to the Special Issue Laser Processing of Metallic Material)
Show Figures

Figure 1

18 pages, 28866 KB  
Article
The Zebrafish miR-183 Family Regulates Endoderm Convergence and Heart Development via S1Pr2 Signaling Pathway
by Ting Zeng, Ling Liu, Jinrui Lv, Hao Xie, Qingying Shi, Guifang Tao, Xiaoying Zheng, Lin Zhu, Lei Xiong and Huaping Xie
Biomolecules 2025, 15(10), 1434; https://doi.org/10.3390/biom15101434 - 10 Oct 2025
Viewed by 434
Abstract
MicroRNA (miRNA), as a key post-transcriptional regulatory factor, plays a crucial role in embryonic development. The coordination of endoderm cell convergence and cardiac precursor cell (CPC) migration is critical for cardiac tube fusion. Defects in endoderm can impair the normal migration of CPCs [...] Read more.
MicroRNA (miRNA), as a key post-transcriptional regulatory factor, plays a crucial role in embryonic development. The coordination of endoderm cell convergence and cardiac precursor cell (CPC) migration is critical for cardiac tube fusion. Defects in endoderm can impair the normal migration of CPCs towards the midline, leading to cardia bifida. Although the role of the microRNA-183 family (miR-183, miR-96 and miR-182) in cardiovascular diseases has been reported, the mechanism by which they regulate early heart development remains unclear. In this study, we used zebrafish as a model to elucidate the roles of the microRNA-183 family in early heart development. miRNA mimics were injected into Tg (cmlc2: eGFP) and Tg (sox17: eGFP) transgenic embryos to overexpress the miR-183 family. The results showed that, at 36 hpf, single or co-injection of miR-183/96/182 mimics caused defects in endoderm convergence, with a hole in the endoderm, and a significant down-regulation of the endoderm marker gene sox32. Additionally, embryos with single or co-injection of miR-183/96/182 mimics exhibited cardia bifida and tail blisters, with significantly down-regulated expression levels of genes related to heart development, including cmlc2, vmhc, amhc, nppa, gata4, gata5, nkx2.5, bmp2b, and bmp4. The phenotype caused by overexpression of the miR-183 family is highly consistent with loss of the sphingosine 1-phosphate receptor S1Pr2. Bioinformatics analysis result found that miR-183 can bind to 3′-UTR of the s1pr2 to regulate its expression; overexpression of miR-183 led to a significant decrease in the expression of the s1pr2 gene. Dual luciferase assay results suggest that s1pr2 is a bona fide target of miR-183. In summary, the miR-183 family regulates endoderm convergence and cardiac precursor cell migration via the S1Pr2 signaling pathway. This study reveals that the miR-183 family is a key regulatory factor in endoderm convergence and cardiac precursor cell migration during the early zebrafish development, elucidating the molecular mechanisms underlying early cardiac precursor cell and endoderm cell movement. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 9364 KB  
Article
Experimental Study on Mechanical Properties of Rock Formations After Water Injection and Optimization of High-Efficiency PDC Bit Sequences
by Yusheng Yang, Qingli Zhu, Jingguang Sun, Dong Sui, Shuan Meng and Changhao Wang
Processes 2025, 13(10), 3204; https://doi.org/10.3390/pr13103204 - 9 Oct 2025
Viewed by 505
Abstract
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism [...] Read more.
The deterioration of rocks’ mechanical properties during the late stage of water injection development significantly reduces the rock-breaking efficiency of PDC bits. In this study, X-ray diffraction mineral composition analysis and triaxial compression mechanics tests were used to systematically characterize the weakening mechanism of water injection on reservoir rocks. Based on an analysis of mechanical experimental characteristics, this study proposes a multi-scale collaborative optimization method: establish a single tooth–rock interaction model at the micro-scale through finite element simulation to optimize geometric cutting parameters; at the macro scale, adopt a differential bit design scheme. By comparing and analyzing the rock-breaking energy consumption characteristics of four-blade and five-blade bits, the most efficient rock-breaking configuration can be optimized. Based on Fluent simulation on the flow field scale, the nozzle configuration can be optimized to improve the bottom hole flow field. The research results provide important theoretical guidance and technical support for the personalized design of drill bits in the later stage of water injection development. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

21 pages, 5385 KB  
Article
Research on the Mechanism and Process of Water-Jet-Guided Laser Annular Cutting for Hole Making in Inconel 718
by Qian Liu, Guoyong Zhao, Yugang Zhao, Shuo Yu and Guiguan Zhang
Micromachines 2025, 16(10), 1090; https://doi.org/10.3390/mi16101090 - 26 Sep 2025
Viewed by 679
Abstract
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable [...] Read more.
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable potential in the realm of gas film hole fabrication; however, its engineering application is hindered by the lack of synergy between processing quality and efficiency. To tackle this issue, this study achieves efficient coupling between a 1064 nm high-power laser and a stable water jet, leveraging a multi-focal water–light coupling mode. Furthermore, an “inside-to-outside” multi-pass ring-cutting drilling strategy is introduced, and the controlled variable method is employed to investigate the influence of laser single-pulse energy, scanning speed, and pulse frequency on the surface morphology and geometric accuracy of micro-holes. Building upon this foundation, micro-holes fabricated using optimized process parameters are analyzed and validated using scanning electron microscopy and energy-dispersive spectroscopy. The findings reveal that single-pulse energy is a pivotal parameter for achieving micro-hole penetration. By moderately increasing the scanning speed and pulse frequency, melt deposition and thermal accumulation effects can be effectively mitigated, thereby enhancing the surface morphology and machining precision of micro-holes. Specifically, when the single-pulse energy is set at 0.8 mJ, the scanning speed at 25 mm/s, and the pulse frequency at 300 kHz, high-quality micro-holes with an entrance diameter of 820 μm and a taper angle of 0.32° can be fabricated in approximately 60 s. The micro-morphology and element distribution of the micro-holes affirm that water-jet-guided laser processing exhibits exceptional performance in minimizing recast layers, narrowing the heat-affected zone, and preserving the smoothness of the hole wall. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

15 pages, 7089 KB  
Article
Investigation on the Effect of Dynamic Focus Feeding and Widening Path in Nanosecond Laser Drilling
by Jianke Di and Jian Li
Micromachines 2025, 16(10), 1081; https://doi.org/10.3390/mi16101081 - 25 Sep 2025
Viewed by 388
Abstract
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous [...] Read more.
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous drilled trench. Dynamic focus feeding and widening path can be employed to lessen the occlusion effect and both of them are always employed in laser helical drilling. However, Widening the trench needs to remove more volume of material and may bring certain negative effects such as lowering the recoil pressure as well as less splashing melt due to the limited constraint of trench wall. The effects of dynamic feeding the focal plane and widening the scanning path on the quality and efficiency in the nanosecond laser drilling process were investigated through laser drilling holes with diameter of 500 μm on a 300 μm thick GH4169 plate. Results show that dynamic focus feeding is beneficial in both drilling efficiency and drilling quality. Through laser helical drilling with dynamic focus feeding, micro through-hole can be fabricated in 5 s, and both smaller tilting angle of 0.073 rad and smaller heat-affected zone of 0.63 mm in radius can be obtained. Widening scanning path is helpful to perforating rapidly but leads to much more recast layer coating. the quality of the micro through-holes depends not only on the utilization efficiency of the laser energy, but also on high temperature spatter deposition, which is the source of the difference between different drilling strategies. Due to the low cost in equipment and the better hole quality, the laser drilling, especially laser helical drilling, has potential applications ranging from aerospace fields to normal fields such as the agricultural machinery industry. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

30 pages, 48007 KB  
Article
Advantages of Femtosecond Laser Microdrilling PDMS Membranes over Conventional Methods for Organ-on-a-Chip
by Chahinez Berrah, Daniel Sanchez-Garcia, Javier Rodriguez Vazquez Aldana and Andres Sanz-Garcia
J. Manuf. Mater. Process. 2025, 9(9), 300; https://doi.org/10.3390/jmmp9090300 - 1 Sep 2025
Viewed by 922
Abstract
Organ-on-a-chip (OoC) technology aims to replicate the functions of human organs and tissues. This study evaluates femtosecond laser micromachining (FLM) for producing PDMS membranes with controlled porosity as an alternative approach to conventional microfabrication for OoCs. Membranes of varying thicknesses were microdrilled, and [...] Read more.
Organ-on-a-chip (OoC) technology aims to replicate the functions of human organs and tissues. This study evaluates femtosecond laser micromachining (FLM) for producing PDMS membranes with controlled porosity as an alternative approach to conventional microfabrication for OoCs. Membranes of varying thicknesses were microdrilled, and the influence of laser parameters on microhole geometry was assessed, showing that pulse energy strongly affected hole diameter, whereas exposure time had a lesser impact. The heat-affected zone (HAZ) and taper angle, key indicators of microhole geometric quality, were also analyzed and found to be strongly dependent on membrane thickness. Prediction models were developed to guide parameter selection for future laser-based ablation processes. A numerical model that predicts plasma shielding effects provided further insight into the physics of PDMS laser ablation, revealing that higher pulse energies led to a marked increase in crater diameter. The fabricated membranes were integrated into an OoC device, onto which human mesenchymal stem cells were seeded. The results demonstrated strong cell adhesion, the rapid formation of a homogeneous monolayer, and no evidence of cytotoxicity. These findings confirm that FLM is a versatile and flexible technique for microdrilling PDMS membranes, enabling their effective integration into OoC. Full article
Show Figures

Figure 1

17 pages, 8385 KB  
Article
Flow Field Simulation and Experimental Study of Electrode-Assisted Oscillating Electrical Discharge Machining in the Cf-ZrB2-SiC Micro-Blind Hole
by Chuanyang Ge, Sirui Gong, Junbo He, Kewen Wang, Jiahao Xiu and Zhenlong Wang
Materials 2025, 18(17), 3944; https://doi.org/10.3390/ma18173944 - 22 Aug 2025
Viewed by 569
Abstract
In the micro-EDM blind-hole machining of Cf-ZrB2-SiC ceramics, defects such as bottom surface protrusion and machining fillets are often encountered. The implementation of an electrode-assisted oscillating device has proven effective in improving machining outcomes. To unravel the fundamental reasons [...] Read more.
In the micro-EDM blind-hole machining of Cf-ZrB2-SiC ceramics, defects such as bottom surface protrusion and machining fillets are often encountered. The implementation of an electrode-assisted oscillating device has proven effective in improving machining outcomes. To unravel the fundamental reasons behind the optimization enabled by this auxiliary oscillating device, this paper presents fluid simulation research, providing a quantitative comparison of the differences in machining gap flow field characteristics and debris motion behaviors under conditions with and without the assistance of the oscillating device. Firstly, this paper briefly describes the characteristics of Cf-ZrB2-SiC discharge products and flow field deficiencies during conventional machining and introduces the working principle of electrode-assisted oscillation devices to establish the background and objectives of the simulation study. Subsequently, this research established simulation models for both conventional machining and oscillating machining based on actual processing conditions. CFD numerical simulations were conducted to compare flow field differences between conditions with and without auxiliary machining devices. The results demonstrate that, compared to conventional machining, electrode oscillation not only increases the maximum velocity of the working fluid by nearly 32% but also provides a larger debris accommodation space, effectively preventing secondary discharge. Regarding debris agglomeration, oscillating machining resolves the low-velocity zone issues present in conventional modes, increasing debris velocity from 0 mm/s to 7.5 mm/s and ensuring continuous debris motion. Furthermore, the DPM was used to analyze particle distribution and motion velocities, confirming that vortex effects form within the hole under oscillating conditions. These vortices effectively draw bottom debris outward, preventing local accumulation. Finally, from the perspective of debris distribution, the formation mechanisms of micro-hole morphology and the tool electrode wear patterns were explained. Full article
Show Figures

Graphical abstract

31 pages, 9907 KB  
Article
The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation
by Jingfei Luan, Anan Liu, Liang Hao, Boyang Liu and Hengchang Zeng
Nanomaterials 2025, 15(16), 1290; https://doi.org/10.3390/nano15161290 - 21 Aug 2025
Cited by 1 | Viewed by 842
Abstract
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5 [...] Read more.
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5Yb0.5O1.5 heterojunction photocatalyst (HBHP) was fabricated using a solvothermal method. The crystal structure, surface morphology, and physicochemical properties of the samples were characterized using XRD, a micro-Raman spectrometer, FT-IR, XPS, ultraviolet photoelectron spectroscopy (UPS), TEM, and SEM. The results showed that Ho2FeSbO7 possessed a pyrochlore-type cubic crystal structure (space group Fd-3m, No. 227), while Bi0.5Yb0.5O1.5 featured a fluorite-type cubic structure (space group Fm-3m, No. 225). The results of the degradation experiment indicated that when HBHP, Ho2FeSbO7, or Bi0.5Yb0.5O1.5 was employed as a photocatalytic nanomaterial, following 140 min of visible light irradiation, the removal efficiency of ciprofloxacin (CIP) reached 99.82%, 86.15%, or 73.86%, respectively. This finding strongly evidenced the remarkable superiority of HBHP in terms of photocatalytic performance. Compared to the individual catalyst Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, the removal efficiency of CIP by HBHP was 1.16 times, 1.36 times, or 2.52 times higher than that by Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, respectively. The radical trapping experiments indicated that in the CIP degradation process, the hydroxyl radical owned the strongest oxidation ability, followed by the superoxide anion and the photoinduced hole. These studies are of great significance for the degradation of antibiotics and environmental protection. Full article
Show Figures

Graphical abstract

22 pages, 6027 KB  
Article
Study on the Process Characteristics of Picosecond Laser Trepan Cutting Hole Manufacturing for Heat-Resistant Steel
by Liang Wang, Long Xu, Changjian Wu, Yefei Rong and Kaibo Xia
Metals 2025, 15(8), 917; https://doi.org/10.3390/met15080917 - 19 Aug 2025
Viewed by 598
Abstract
Picosecond laser drilling offers high precision and quality, and compared to femtosecond lasers, it also balances processing efficiency, making it widely used across various fields. However, existing drilling processes still face issues such as roundness and taper. Therefore, further research into the processing [...] Read more.
Picosecond laser drilling offers high precision and quality, and compared to femtosecond lasers, it also balances processing efficiency, making it widely used across various fields. However, existing drilling processes still face issues such as roundness and taper. Therefore, further research into the processing characteristics of picosecond laser technology is needed to improve processing quality. This paper uses ANSYS software to conduct numerical simulations of picosecond laser ring-cutting drilling, analyzing the temperature field of microholes under ring-cutting scanning paths as parameters change. Experimental studies were conducted using AISI 310S heat-resistant stainless steel as the base material. This material exhibits excellent high-temperature oxidation resistance and strength retention, making it suitable for laser thermal processing. Using a single-factor method, the study investigated the influence of equidistant concentric circular paths and inner-dense-outer-sparse concentric circular paths on microhole morphology characteristics. The results show that the laser energy distribution is different under different paths. The entrance aperture of the equidistant concentric circle path is larger than that of the inner dense and outer sparse concentric circle path, while the exit aperture is smaller than the latter. Moreover, the roundness is also better than that of the inner dense and outer sparse concentric circle path. The taper of the inner dense and outer sparse concentric circle path is better than that of the equidistant concentric circle path. This study can provide a reference for the optimization of different processing paths in the future. Full article
(This article belongs to the Special Issue High-Energy Beam Machining of Metals)
Show Figures

Figure 1

Back to TopTop