Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = micro-tensile bond strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 915 KB  
Systematic Review
The Effect of Laser Surface Treatment on the Bond Strength of Adhesive Materials to Primary Teeth: A Systematic Review
by Witold Świenc, Jan Kiryk, Mateusz Michalak, Zuzanna Majchrzak, Marzena Laszczyńska, Sylwia Kiryk, Natalia Grychowska-Gąsior, Izabela Nawrot-Hadzik, Jacek Matys and Maciej Dobrzyński
Materials 2025, 18(22), 5212; https://doi.org/10.3390/ma18225212 - 18 Nov 2025
Viewed by 201
Abstract
This systematic review aimed to evaluate the effect of laser surface treatment on the bond strength of adhesive restorative materials to primary teeth. A comprehensive literature search was conducted in PubMed, Scopus, Embase, Web of Science and WorldCat up to July 2025 using [...] Read more.
This systematic review aimed to evaluate the effect of laser surface treatment on the bond strength of adhesive restorative materials to primary teeth. A comprehensive literature search was conducted in PubMed, Scopus, Embase, Web of Science and WorldCat up to July 2025 using the keywords primary teeth, deciduous teeth, milk teeth, laser, adhesion, bond strength. Twenty-six studies met the inclusion criteria, including 22 shear bond strength (SBS), three microtensile bond strength (µTBS) and one microshear bond strength (µSBS) investigations. Most studies evaluated erbium lasers (Er:YAG, Er,Cr:YSGG), while fewer assessed diode, Nd:YAG or KTP devices. In dentin, erbium lasers at low-to-moderate energy levels consistently produced smear-free, micro-retentive surfaces with open tubules and bond strengths comparable to bur-prepared controls. High-energy irradiation, however, frequently caused microcracks, tubule collapse and reduced adhesion. In enamel, phosphoric acid etching remained the most effective conditioning method, although combined laser–acid pretreatment often improved bonding of sealants and composites. Material-dependent effects were also evident: resin composites generally outperformed glass ionomers, hybrids and bioactive restorative materials. Phosphoric acid etching remains indispensable for enamel conditioning, while dentin benefits from carefully controlled erbium laser irradiation in combination with suitable adhesive systems. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Graphical abstract

15 pages, 917 KB  
Article
Effect of Remineralization Products on the Microtensile Strength of Universal Dentin Bonding Systems
by Andra Claudia Tărăboanță-Gamen, Cristian Marius Toma, Vasilica Toma, Ionuț Tărăboanță, Simona Stoleriu, Veronica Serban Pintiliciuc and Sorin Andrian
Dent. J. 2025, 13(11), 493; https://doi.org/10.3390/dj13110493 - 24 Oct 2025
Viewed by 308
Abstract
Background/Objectives: Adhesion to caries-affected dentin remains challenging due to its altered structure and composition. Remineralizing agents have been proposed to strengthen this substrate and improve bonding. This study evaluated the effect of three remineralization treatments, CPP-ACP, self-assembling peptide P11-4, and silver diamine [...] Read more.
Background/Objectives: Adhesion to caries-affected dentin remains challenging due to its altered structure and composition. Remineralizing agents have been proposed to strengthen this substrate and improve bonding. This study evaluated the effect of three remineralization treatments, CPP-ACP, self-assembling peptide P11-4, and silver diamine fluoride (SDF), on the microtensile bond strength (μTBS) of universal adhesive systems applied to caries-affected dentin, using both etch-and-rinse and self-etch strategies. Methods: Seventy human molars were sectioned and artificially demineralized to simulate caries-affected dentin. Samples were divided into ten groups: four untreated and six treated with CPP-ACP (MI Paste™), P11-4 (Curodont™ Protect), or SDF (Riva Star™). Universal adhesives were applied via etch-and-rinse or self-etch mode, followed by composite restoration. Microtensile bond strength was measured using a universal testing machine, and results were statistically analyzed with ANOVA and t-tests (p < 0.05). Results: Untreated caries-affected dentin showed significantly lower μTBS than sound dentin (C3: 18.3 ± 5.4 MPa vs. C1: 41.3 ± 2.7 MPa). Remineralization agents improved μTBS considerably. CPP-ACP achieved the highest recovery (S1: 31.8 ± 2.6 MPa; S2: 29.2 ± 4.6 MPa), nearing sound dentin levels. P11-4 yielded moderate gains (S3: 24.4 ± 6.5 MPa; S4: 24.1 ± 4.7 MPa), while SDF provided the lowest, yet significant, improvements (S5: 23.7 ± 7.5 MPa; S6: 21.3 ± 5.3 MPa). Etch-and-rinse generally produced higher μTBS than self-etch, but differences were not statistically significant (p > 0.05). Conclusions: Pre-treatment of caries-affected dentin with CPP-ACP, P11-4, or SDF enhances universal adhesive bond strength, with CPP-ACP showing the most pronounced effect. Remineralization protocols represent a valuable adjunct in restorative procedures involving compromised dentin. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Graphical abstract

12 pages, 1334 KB  
Article
Improving Bonding Durability in Dental Restorations: The Impact of Bioactive and Reinforcement Particles on Universal Adhesives
by William Cunha Brandt, Isaías Donizeti Silva, Andreia Carneiro Matos, Flávia Gonçalves and Leticia Boaro
Materials 2025, 18(19), 4433; https://doi.org/10.3390/ma18194433 - 23 Sep 2025
Viewed by 476
Abstract
Objective: This study aimed to evaluate the effect of incorporating bioactive particles (montmorillonite loaded with chlorhexidine, MMT/CHX) and different concentrations of silica nanoparticles (0%, 3%, 5%, 7%, 10%, and 15 wt%) into a universal dental adhesive on its degree of conversion, bond strength, [...] Read more.
Objective: This study aimed to evaluate the effect of incorporating bioactive particles (montmorillonite loaded with chlorhexidine, MMT/CHX) and different concentrations of silica nanoparticles (0%, 3%, 5%, 7%, 10%, and 15 wt%) into a universal dental adhesive on its degree of conversion, bond strength, water sorption, solubility, and antimicrobial activity. Materials and Methods: A universal adhesive was modified with 1 wt% MMT/CHX and varying amounts of silica nanoparticles. Degree of conversion was analyzed by Fourier transform infrared spectroscopy (FTIR), and microtensile bond strength was evaluated at 24 h, 6 months, and 12 months after water storage. Water sorption and solubility were measured according to ISO 4049, and antibacterial activity was tested against Streptococcus mutans using the agar diffusion method. Results: All experimental adhesives containing ≥7% silica showed significantly reduced water sorption and solubility. The presence of MMT/CHX imparted consistent antimicrobial activity across all experimental groups. Degree of conversion remained stable across all groups and storage periods. Notably, after 12 months, only the experimental groups maintained or improved bond strength, while the control group showed a significant reduction. Failure mode analysis indicated increased mechanical integrity with higher filler content. Conclusions: Incorporating 1 wt% MMT/CHX and ≥7 wt% silica into a universal adhesive improved long-term bond strength, reduced degradation, and introduced antibacterial properties without compromising polymer conversion. These findings support the potential of developing durable, bioactive adhesive systems for restorative dentistry. Clinical Significance: The incorporation of bioactive and reinforcing nanoparticles into universal adhesives enhances bond durability and introduces antibacterial properties without compromising polymerization. This innovation may lead to longer-lasting restorations and reduced risk of secondary caries in clinical practice. Full article
(This article belongs to the Special Issue Recent Research in Restorative Dental Materials)
Show Figures

Figure 1

18 pages, 10487 KB  
Article
Design and Characterization of Durable Glass Fibre (GF)-Reinforced PLA and PEEK Biomaterials
by Asit Kumar Gain and Liangchi Zhang
Polymers 2025, 17(18), 2536; https://doi.org/10.3390/polym17182536 - 19 Sep 2025
Viewed by 559
Abstract
Poly(lactic acid) (PLA) and poly(ether-ether ketone) (PEEK) are widely recognized for their biocompatibility and processability in orthopaedic applications. However, PLA suffers from brittleness and limited thermal and mechanical stability, while PEEK, despite its better strength, does not fully replicate the mechanical and tribological [...] Read more.
Poly(lactic acid) (PLA) and poly(ether-ether ketone) (PEEK) are widely recognized for their biocompatibility and processability in orthopaedic applications. However, PLA suffers from brittleness and limited thermal and mechanical stability, while PEEK, despite its better strength, does not fully replicate the mechanical and tribological performance of natural bone. This study explores the enhancement of structural and tribological properties in PLA- and PEEK-based composites reinforced with short glass fibres (S-GF) via additive manufacturing. Microstructural analysis confirms uniform GF dispersion within both polymer matrices, with no evidence of agglomeration, fibre pull-out, or interfacial debonding, suggesting strong fibre–matrix adhesion. The incorporation of GF significantly improved mechanical performance: microhardness increased by 38.3% in PLA and 36.3% in PEEK composites, while tensile strength increased by 25.1% and 13.4%, respectively, compared to plain polymers. These enhancements are attributed to effective stress transfer enabled by uniform fibre distribution and strong interfacial bonding. Tribological tests further demonstrate enhanced wear resistance, reduce damage propagation, and improved surface integrity under micro-scratching. These findings highlight the potential of GF-reinforced PLA and PEEK composites as high-performance materials for load-bearing biomedical applications, offering a balanced combination of mechanical strength and wear resistance aligned with the functional requirements of bioimplants. Full article
(This article belongs to the Special Issue Additive Manufacturing of (Bio)Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

16 pages, 4889 KB  
Article
Biomimetic Filler Strategy for Two-Step Universal Dental Adhesives Using PA–ACP/MSN: Effects on Wettability, Immediate Microtensile Bond Strength, and Cytocompatibility
by Yasir Alnakib and Manhal A. Majeed
Polymers 2025, 17(18), 2501; https://doi.org/10.3390/polym17182501 - 16 Sep 2025
Viewed by 807
Abstract
This study evaluated a biomimetic filler strategy for two-step universal dental adhesives by integrating amine-functionalized mesoporous silica nanoparticles (MSNs) loaded with polyacrylic acid-stabilized amorphous calcium phosphate (PA–ACP) into the primer phase. MSNs were synthesized and characterized by FTIR, N2 sorption (BET), and [...] Read more.
This study evaluated a biomimetic filler strategy for two-step universal dental adhesives by integrating amine-functionalized mesoporous silica nanoparticles (MSNs) loaded with polyacrylic acid-stabilized amorphous calcium phosphate (PA–ACP) into the primer phase. MSNs were synthesized and characterized by FTIR, N2 sorption (BET), and HRTEM to confirm structural integrity and effective PA–ACP loading. Two commercial adhesives (G2 Bond and OptiBond eXTRa) were modified by incorporating different volumes fractions (10, 15, 20 vol%) of PA–ACP/MSN. Wettability (contact angle), microtensile bond strength (μTBS), and cytotoxicity (indirect MTT assay using human periodontal ligament fibroblasts, HPLFs) were assessed. The results demonstrated that incorporating up to 15 vol% PA–ACP/MSN maintained favorable wettability and bond strength, comparable to those of the unmodified controls. At 20 vol%, significant increases in contact angles and reductions in bond strength indicated impaired primer infiltration. Cytotoxicity testing confirmed high fibroblast viability (>70%) across all tested concentrations, verifying the biocompatibility of PA–ACP/MSN-filled primers. This work confirms the feasibility of a biomimetic adhesive design using PA–ACP/MSN in the primer phase without compromising immediate wettability and immediate μTBS up to 15 vol%. Remineralization is a potential capability that requires verification in future studies. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

13 pages, 1581 KB  
Article
Micro-Tensile Bond Strength of a Mesoporous Bioactive Glass-Containing Universal Adhesive: An In Vitro Study on the Effects of Artificial Aging
by Jiyoung Kwon, Soyoung Park, Gil-Joo Ryu and Duck-Su Kim
Materials 2025, 18(18), 4256; https://doi.org/10.3390/ma18184256 - 11 Sep 2025
Viewed by 528
Abstract
Background: We evaluated the immediate and artificially aged micro-tensile bond strengths (μTBS) of Hi-Bond Universal, a universal adhesive containing mesoporous bioactive glass (MBG). Methods: Human dentin specimens were bonded using the following four application modes: Hi-Bond Universal in etch-and-rinse mode, Hi-Bond Universal in [...] Read more.
Background: We evaluated the immediate and artificially aged micro-tensile bond strengths (μTBS) of Hi-Bond Universal, a universal adhesive containing mesoporous bioactive glass (MBG). Methods: Human dentin specimens were bonded using the following four application modes: Hi-Bond Universal in etch-and-rinse mode, Hi-Bond Universal in self-etch mode, Single Bond 2 in etch-and-rinse mode, and G-ænial Bond in self-etch mode. Specimens were tested either immediately or after artificial aging (thermocycling or water storage). μTBS values were analyzed statistically, and the resin–dentin interfaces were examined using FE-SEM (Field-emission scanning electron microscopy). Results: Results showed that both aging and adhesive mode significantly affected the μTBS (p < 0.0001). Immediately after bonding, etch-and-rinse modes produced significantly higher μTBS than the self-etch modes (p < 0.0001). Artificial aging reduced bond strength by approximately 30–50%; however, the μTBS of Hi-Bond Universal decreased less than that of Single Bond 2 after water storage. FE-SEM analysis also revealed detachment of the hybrid layer in most adhesives following aging; however, Hi-Bond Universal in the etch-and-rinse mode maintained a relatively intact adhesive layer after water storage. Conclusion: Etch-and-rinse application of MBG-containing adhesive may enhance the long-term durability of adhesive restorations. Full article
(This article belongs to the Special Issue The Application of Bioactive Glasses to Dental Restorative Materials)
Show Figures

Figure 1

14 pages, 1954 KB  
Article
Microtensile Bond Strength of Composite Restorations: Direct vs. Indirect Techniques Using Cohesive Zone Models
by Maria A. Neto, Ricardo Branco, Ana M. Amaro and Ana Messias
J. Compos. Sci. 2025, 9(9), 475; https://doi.org/10.3390/jcs9090475 - 2 Sep 2025
Viewed by 652
Abstract
The purpose of this in silico study was to evaluate the main difference of the adhesion strength of direct and semi-direct composite resin restorations in dentin using micro-tensile testing (μTBS) and finite element analysis (FEA). This in silico study employed cohesive zone traction [...] Read more.
The purpose of this in silico study was to evaluate the main difference of the adhesion strength of direct and semi-direct composite resin restorations in dentin using micro-tensile testing (μTBS) and finite element analysis (FEA). This in silico study employed cohesive zone traction and shear laws to investigate interfacial damage in both restoration groups. Tridimensional finite element models of both restoration specimens were created. A 20 μm thick resin cement layer was created for the semi-direct case. The Clearfil SE Bond 2 adhesive system and the restorative material, Ceram X Spectra ST HV composite resin, were used on both restorations. The numerical bond strength of both restoration techniques was evaluated using two different analysis assumptions. In the first assumption, the numerical analysis procedure included only the non-linear behavior of dentin and the von Mises damage criterion, whereas cohesive zone models were included in the second analysis assumption. The influence of dentin-adhesive cohesive mechanical properties was studied using values reported in the literature, and a sensitivity study helped improve the correlation between experimental and numerical results. The mechanical properties of the composite cohesive zone were defined assuming that the interface strength of dentin and composite follows the values reported by the manufacturer of Spectra ST. Damage initiation and progression were analyzed, and strains and stresses of the cohesive zone models (CZM) were compared with the corresponding perfect bonded models. The experimental µTBS results for the direct restoration strategy showed an adhesive strength of 38.156 ± 10.750 MPa, while the CZM predicted a slightly higher value of 40.4 ± 10.8 MPa. For the indirect restoration strategy, the experimental adhesive strength was 25.449 ± 10.193 MPa, compared to a numerically predicted strength of 28.1 ± 9.3 MPa. Overall, the CZM tends to overestimate the adhesive strength relative to experimental values. The statistical analysis of dentin extension strains for direct (DR) and semi-direct (SR) group models reveals that the SR configuration yields higher strain levels. Hence, these results suggest that, assuming identical dentin properties across both restoration groups, the material configuration in the direct restoration offers better mechanical protection to the dentin. These findings highlight the critical role of incorporating damage mechanics to more accurately characterize stress distribution during tooth rehabilitation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

24 pages, 700 KB  
Systematic Review
Wet vs. Dry Dentin Bonding: A Systematic Review and Meta-Analysis of Adhesive Performance and Hybrid Layer Integrity
by Mircea Popescu, Mădălina Malița, Andrei Vorovenci, Andreea Angela Ștețiu, Viorel Ștefan Perieanu, Radu Cătălin Costea, Mihai David, Raluca Mariana Costea, Maria Antonia Ștețiu, Andi Ciprian Drăguș, Cristina Maria Șerbănescu, Andrei Burlibașa, Oana Eftene and Mihai Burlibașa
Oral 2025, 5(3), 63; https://doi.org/10.3390/oral5030063 - 28 Aug 2025
Viewed by 2513
Abstract
Objective: This systematic review and meta-analysis aimed to evaluate the effects of moisture control strategies (including wet-bonding techniques, universal adhesives, and etching type) on dentin bonding performance in restorative dentistry. Methods: A comprehensive literature search was conducted across PubMed, Scopus, and [...] Read more.
Objective: This systematic review and meta-analysis aimed to evaluate the effects of moisture control strategies (including wet-bonding techniques, universal adhesives, and etching type) on dentin bonding performance in restorative dentistry. Methods: A comprehensive literature search was conducted across PubMed, Scopus, and Google Scholar, following PRISMA guidelines. Only in vitro and ex vivo studies comparing wet- and dry-bonding protocols, using human dentin substrates, and reporting microtensile bond strength (μTBS) were included. The data were synthesized using a random-effects meta-analysis and the methodological quality was assessed using the MINORS tool. Certainty of evidence was evaluated using the GRADE framework. Results: Nine studies met the inclusion criteria, eight of which were included in this meta-analysis. The moisture control strategies significantly influenced the bonding outcomes, with ethanol and acetone wet bonding yielding higher μTBS and enhanced hybrid layer morphology. The universal adhesives performed effectively under both moist and dry conditions, although their performance varied by the adhesive composition and solvent system. The meta-analysis revealed a statistically significant advantage for hydrated dentin (SMD = +1.20; 95% CI: 0.52 to 1.86; p < 0.001), with the moist and ethanol-treated substrates outperforming the dry and over-wet surfaces. The long-term durability was better preserved with ethanol and acetone pretreatments and the adjunctive use of chlorhexidine. Conclusions: Moisture conditions influence dentin bond strength, but modern universal adhesives show consistent bonding performance across different moisture conditions. Solvent-wet-bonding protocols, particularly with ethanol or acetone, enhance the immediate and long-term performance. While the current evidence is limited by the in vitro designs and heterogeneity, the findings demonstrate protocol flexibility and highlight strategies to optimize adhesion in clinical practice. Future clinical trials are necessary to validate these approaches under real-world conditions. Full article
Show Figures

Figure 1

9 pages, 428 KB  
Article
Effect of Surface Treatments on Repair Bond Strength of Aged Bulk-Fill Resin Composites
by Mashael Binhasan, Faisal Althobaiti, Rakan Alyami, Khalid Aljabri, Talal Alabbas and Haifa Barakah
Polymers 2025, 17(17), 2326; https://doi.org/10.3390/polym17172326 - 28 Aug 2025
Cited by 1 | Viewed by 866
Abstract
This study evaluated the influence of different surface treatments and composite materials on the microtensile bond strength (μTBS) of repaired aged bulk-fill resin composite restorations, aligning with the principles of minimal intervention dentistry. Seventy-two specimens of bulk-fill resin composite (Tetric EvoCeram) were prepared, [...] Read more.
This study evaluated the influence of different surface treatments and composite materials on the microtensile bond strength (μTBS) of repaired aged bulk-fill resin composite restorations, aligning with the principles of minimal intervention dentistry. Seventy-two specimens of bulk-fill resin composite (Tetric EvoCeram) were prepared, sectioned into bars (1 × 1 × 5 mm), and subjected to thermocycling to simulate aging. Specimens were randomly allocated into six groups (n = 12) based on surface treatment and repair material: phosphoric acid etching followed by repair with either Tetric EvoCeram (Group 1) or Filtek Z350 XT (Group 2); diamond bur roughening followed by repair with Tetric EvoCeram (Group 3) or Filtek Z350 XT (Group 4); and air abrasion followed by repair with Tetric EvoCeram (Group 5) or Filtek Z350 XT (Group 6). μTBS testing was performed using a universal testing machine, and failure patterns were examined under a stereomicroscope at 40× magnification. The highest bond strength values were observed in Groups 5 and 6 (air abrasion), followed by Group 3 (diamond bur). Groups 1, 2, and 4 showed significantly lower bond strength values (p < 0.05). No significant differences in failure modes were reported across groups. These findings suggest that air abrasion is a superior surface treatment for repairing aged bulk-fill resin composites, as it significantly enhanced μTBS compared to phosphoric acid etching and diamond bur roughening. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

12 pages, 1143 KB  
Article
Adaptation and Bonding of Bulk-Fill Composites in Deep Preparations
by Juman Al-Haddad, Nafiseh Najmafshar, Andre V. Ritter and Alireza Sadr
Materials 2025, 18(16), 3790; https://doi.org/10.3390/ma18163790 - 12 Aug 2025
Viewed by 2087
Abstract
Polymerization shrinkage in resin-based composites can lead to gap formation at the tooth–restoration interface, potentially compromising the long-term success of restorations. Bulk-fill composites have been developed to reduce shrinkage stress, but their adaptation and bond strength—especially in deep cavities—remain areas of concern. This [...] Read more.
Polymerization shrinkage in resin-based composites can lead to gap formation at the tooth–restoration interface, potentially compromising the long-term success of restorations. Bulk-fill composites have been developed to reduce shrinkage stress, but their adaptation and bond strength—especially in deep cavities—remain areas of concern. This study investigated the adaptation and bond strength of a newly developed dual-cure bulk-fill composite in 4 mm deep preparations compared to light-cured and self-adhesive bulk-fill composites in six groups. Standard composite molds were used to observe and measure sealed floor area (SFA%) of the composite after the polymerization process under optical coherence tomography (OCT) imaging. Micro-tensile bond strength (MTBS) testing was conducted in extracted human teeth. OCT showed that the prototype dual-cure composites had the lowest gap formation during polymerization (SFA 91%), while the self-adhesive composite demonstrated the highest debonding from the cavity floor (SFA 26%, p < 0.001). For MTBS analysis, the lowest mean bond strength was recorded for the self-adhesive composite (~21 MPa) and the highest for a light-cured bulk-fill (~50 MPa, p < 0.05). Overall, the dual-cure bulk-fill composites exhibited less gap formation than the light-cured ones. The prototype dual-cure material with 90 s waiting before light-curing showed the best adaptation. However, these differences were not reflected in the bond strength values to the cavity floor dentin using the universal adhesive used in the current study, as the light-cured composite showed the highest bond strength values. The self-adhesive composite showed the poorest results in both experiments, indicating that the application of a bonding system is still necessary for better adaptation and bonding to the cavity floor dentin. Full article
(This article belongs to the Special Issue Mechanical Properties of Dental Materials)
Show Figures

Figure 1

15 pages, 1602 KB  
Article
Correlation Analysis of Macro–Micro Parameters of Sandstone Based on PFC3D
by Guohua Zhang, Qingqing Liu, Yubo Li, Zibo Li, Ke Jing and Tao Qin
Appl. Sci. 2025, 15(14), 7878; https://doi.org/10.3390/app15147878 - 15 Jul 2025
Viewed by 568
Abstract
To address the issue of the low compression–tension ratio in the traditional parallel bond model (PBM), this study proposes an improved PBM incorporating a random distribution strategy of strong–weak contact groups. An L27(312) orthogonal experimental design was employed to [...] Read more.
To address the issue of the low compression–tension ratio in the traditional parallel bond model (PBM), this study proposes an improved PBM incorporating a random distribution strategy of strong–weak contact groups. An L27(312) orthogonal experimental design was employed to construct 27 sets of numerical simulation schemes. Combined with Pearson correlation coefficient analysis and multivariate regression, the influence of twelve microscopic parameters on seven of the macroscopic mechanical properties of sandstone was systematically investigated, including elastic modulus (E), Poisson’s ratio (v), uniaxial compressive strength (σc), internal friction angle (φ), cohesion (c), crack damage stress ratio (σcd/σc), and compressive–tensile strength ratio (σc/σt). Based on these analyses, a quantitative relationship model between the macro and micro parameters was established and validated through numerical simulation and experimental comparison. The proposed method provides a theoretical foundation for the mechanical modeling of sandstone and the inversion of microscopic parameters. Full article
Show Figures

Figure 1

15 pages, 4106 KB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 810
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

29 pages, 12425 KB  
Article
Investigation of the Evolutionary Patterns of Pore Structures and Mechanical Properties During the Hydration Process of Basalt-Fiber-Reinforced Concrete
by Junqin Zhao, Xuewei Wang, Fuheng Yan, Xin Cai, Shengcai Xiao, Shengai Cui and Ping Liu
Materials 2025, 18(14), 3212; https://doi.org/10.3390/ma18143212 - 8 Jul 2025
Viewed by 707
Abstract
Recent studies primarily focus on how the fiber content and curing age influence the pore structure and strength of concrete. However, The interfacial bonding mechanism in basalt-fiber-reinforced concrete hydration remains unclear. The lack of a long-term performance-prediction model and insufficient research on multi-field [...] Read more.
Recent studies primarily focus on how the fiber content and curing age influence the pore structure and strength of concrete. However, The interfacial bonding mechanism in basalt-fiber-reinforced concrete hydration remains unclear. The lack of a long-term performance-prediction model and insufficient research on multi-field coupling effects form key knowledge gaps, hindering the systematic optimal design and wider engineering applications of such materials. By integrating X-ray computed tomography (CT) with the watershed algorithm, this study proposes an innovative gray scale threshold method for pore quantification, enabling a quantitative analysis of pore structure evolution and its correlation with mechanical properties in basalt-fiber-reinforced concrete (BFRC) and normal concrete (NC). The results show the following: (1) Mechanical Enhancement: the incorporation of 0.2% basalt fiber by volume demonstrates significant enhancement in the mechanical performance index. At 28 days, BFRC exhibits compressive and splitting tensile strengths of 50.78 MPa and 4.07 MPa, surpassing NC by 19.88% and 43.3%, respectively. The early strength reduction in BFRC (13.13 MPa vs. 22.81 MPa for NC at 3 days) is attributed to fiber-induced interference through physical obstruction of cement particle hydration pathways, which diminishes as hydration progresses. (2) Porosity Reduction: BFRC demonstrates a 64.83% lower porosity (5.13%) than NC (11.66%) at 28 days, with microscopic analysis revealing a 77.5% proportion of harmless pores (<1.104 × 107 μm3) in BFRC versus 67.6% in NC, driven by densified interfacial transition zones (ITZs). (3) Predictive Modeling: a two dimensional strength-porosity model and a three-dimensional age-dependent model are developed. The proposed multi-factor model demonstrates exceptional predictive capability (R2 = 0.9994), establishing a quantitative relationship between pore micro structure and mechanical performance. The innovative pore extraction method and mathematical modeling approach offer valuable insights into the micro-structural evolution mechanism of fiber concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 3142 KB  
Article
The Influence of Drying Time, Application Mode, and Agitation on the Dentin Bond Strength of a Novel Mesoporous Bioactive Glass-Containing Universal Dentin Adhesive
by Jiyoung Kwon, Jungwon Kim, Dongseok Choi and Duck-Su Kim
J. Funct. Biomater. 2025, 16(7), 247; https://doi.org/10.3390/jfb16070247 - 5 Jul 2025
Cited by 1 | Viewed by 1445
Abstract
This study evaluated the influence of drying time, application mode, and agitation on the micro-tensile bond strength (μTBS) of a novel mesoporous bioactive glass-containing universal adhesive (Hi-Bond Universal). Twelve experimental groups were established according to drying time (blot-dry, 10 s dry, or 20 [...] Read more.
This study evaluated the influence of drying time, application mode, and agitation on the micro-tensile bond strength (μTBS) of a novel mesoporous bioactive glass-containing universal adhesive (Hi-Bond Universal). Twelve experimental groups were established according to drying time (blot-dry, 10 s dry, or 20 s dry), application mode (total-etch or self-etch), and agitation (with or without). The μTBS test and failure mode analysis were performed for each experimental group (n = 20), and an adhesive interface was observed using field-emission scanning electron microscopy. The μTBS of all experimental groups was analyzed using a three-way ANOVA and Tukey’s honestly significant difference (HSD) post hoc test (α = 0.05). The total-etch mode yielded higher μTBS than the self-etch mode in the blot-dry and 10 s dry groups (p < 0.05). Agitation also significantly increased the μTBS in the blot-dry and 10 s dry groups for both application modes (p < 0.05). However, application mode and agitation had no effect on the μTBS in the 20 s dry group (p > 0.05). FE-SEM revealed longer and more uniform resin tags after agitation in the blot-dry and 10 s dry groups for both application modes. In conclusion, total-etch mode and agitation effectively increased the bond strength of mesoporous bioactive glass-containing universal adhesives. Full article
(This article belongs to the Special Issue Recent Advancements in Dental Restorative Materials)
Show Figures

Figure 1

18 pages, 5009 KB  
Article
Preparation of Glass Fiber Reinforced Polypropylene Bending Plate and Its Long-Term Performance Exposed in Alkaline Solution Environment
by Zhan Peng, Anji Wang, Chen Wang and Chenggao Li
Polymers 2025, 17(13), 1844; https://doi.org/10.3390/polym17131844 - 30 Jun 2025
Viewed by 726
Abstract
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different [...] Read more.
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different angles in corrosive environment of concrete, including bending bars from 0~90°, and stirrups of 90°, which may lead to long-term performance degradation. Therefore, it is important to evaluate the long-term performance of glass fiber reinforced polypropylene composite bending plates in an alkali environment. In the current paper, a new bending device is developed to prepare glass fiber reinforced polypropylene bending plates with the bending angles of 60° and 90°. It should be pointed out that the above two bending angles are simulated typical bending bars and stirrups, respectively. The plate is immersed in the alkali solution environment for up to 90 days for long-term exposure. Mechanical properties (tensile properties and shear properties), thermal properties (dynamic mechanical properties and thermogravimetric analysis) and micro-morphology analysis (surface morphology analysis) were systematically designed to evaluate the influence mechanism of bending angle and alkali solution immersion on the long-term mechanical properties. The results show the bending effect leads to the continuous failure of fibers, and the outer fibers break under tension, and the inner fibers buckle under compression, resulting in debonding of the fiber–matrix interface. Alkali solution (OH ions) corrode the surface of glass fiber to form soluble silicate, which is proved by the mass fraction of glass fiber decreased obviously from 79.9% to 73.65% from thermogravimetric analysis. This contributes to the highest degradation ratio of tensile strength was 71.6% (60° bending) and 65.6% (90° bending), respectively, compared to the plate with bending angles of 0°. A high curvature bending angle (such as 90°) leads to local buckling of fibers and plastic deformation of the matrix, forming microcracks and fiber–resin interface bonding at the bending area, which accelerates the chemical erosion and debonding process in the interface area, bringing about an additional maximum 10.56% degradation rate of the shear strength. In addition, the alkali immersion leads to the obvious degradation of storage modulus and thermal decomposition temperature of composite plate. Compared with the other works on the long-term mechanical properties of glass fiber reinforced polypropylene, it can be found that the long-term performance of glass fiber reinforced polypropylene composites is controlled by the corrosive media type, bending angle and immersion time. The research results will provide durability data for glass fiber reinforced polypropylene composites used in concrete as stirrups. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop