Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = microdistribution characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2254 KB  
Article
Modeling the Joint Influence of Milk Fat Particle Size Micro-Distribution and Absorption on Optical Scattering and Composition Determination
by Siqi Zhang, Linghao Wu, Ang Li, Jiaan Wang and Xu Yang
Processes 2025, 13(9), 2846; https://doi.org/10.3390/pr13092846 - 5 Sep 2025
Viewed by 464
Abstract
Optical scattering techniques often lead to simplified assumptions about secondary factors, such as neglecting the absorption effect of particles or the residual particle size micro-distribution after homogenization; these are made to enhance measurement efficiency. However, such simplifications can introduce systematic errors in precise [...] Read more.
Optical scattering techniques often lead to simplified assumptions about secondary factors, such as neglecting the absorption effect of particles or the residual particle size micro-distribution after homogenization; these are made to enhance measurement efficiency. However, such simplifications can introduce systematic errors in precise detection. This study uses the scattering–transmission ratio composition determination method as an example, revises the basic scattering–transmission ratio model to incorporate absorption effects, and demonstrates the coefficient calculation process. Furthermore, Mie key coefficients, including the particle size micro-distribution—which are core parameters of this method—are derived. Based on these models, effective particles from image processing are analyzed to assess the impact of these two factors. The results demonstrate the joint influence of the micro-distribution and absorption characteristics of milk fat particles on Mie key coefficients and composition determination, exhibiting non-uniform enhancement and reduction effects. Specifically, at a wavelength of 800 nm, the scattering–transmission ratio of the modified model increases by a factor of 1.56 compared to the traditional model at a volume concentration of 0.5%, while at 3.3% concentration, the scattering–transmission ratio of the modified model is approximately one-third of the traditional model. These findings provide a theoretical basis for developing dairy product quality assessment technologies. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

21 pages, 15103 KB  
Article
Analysis of Waterflooding Oil Recovery Efficiency and Influencing Factors in the Tight Oil Reservoirs of Jilin Oilfield
by Jie Cao, Zhou Liu, Zhipeng Zhang, Yuezhi Wang and Liangliang Wang
Processes 2025, 13(5), 1490; https://doi.org/10.3390/pr13051490 - 13 May 2025
Cited by 1 | Viewed by 1182
Abstract
During the waterflooding recovery process, water is injected into the hydrocarbon reservoirs and displaces a portion of the oil and gas, thereby improving oil and gas recovery rates and extending the production life of the reservoir. The macro benefits of waterflooding technology are [...] Read more.
During the waterflooding recovery process, water is injected into the hydrocarbon reservoirs and displaces a portion of the oil and gas, thereby improving oil and gas recovery rates and extending the production life of the reservoir. The macro benefits of waterflooding technology are widely recognized; however, the micro-scale effects of water on the reservoir’s pore structure and fluid distribution during the injection process remain underexplored. Therefore, this study aims to analyze the micro-distribution characteristics of fluids in the reservoir during the oil–water displacement process. To further investigate the micro-mechanisms of waterflooding recovery and the factors influencing recovery efficiency, the study focuses on the impact of permeability, pressure gradient, injection volume, and reverse displacement on oil recovery efficiency. A combined qualitative and quantitative analysis approach was employed, using techniques such as nuclear magnetic resonance (NMR), CT scanning, and fluid distribution tomography to comprehensively analyze the fluid evolution patterns within the reservoir. The results show the following: (1) The movable fluids in the oilfield are primarily distributed within pores ranging from 0.1 to 40 μm; the remaining oil is mainly distributed within pores of 0.1 to 10 μm, accounting for over 85% of the total distribution, and these pores serve as the main space for extracting remaining oil in later stages. (2) Increasing the injection volume significantly improves the oil recovery efficiency in pores ranging from 0.1 to 10 μm. Increasing the displacement pressure gradient effectively reduces remaining oil in pores of 0.1 to 5 μm. However, for reservoirs with permeability greater than 10 mD, once the injection volume exceeds 1 PV or the displacement pressure gradient exceeds 1.8 MPa/m, the increase in oil recovery efficiency becomes marginal. (3) With increasing water injection multiples, the oil displacement efficiency of cores with varying permeability levels shows an overall upward trend. However, the extent of improvement varies significantly, with low-permeability cores exhibiting a markedly greater enhancement in displacement efficiency compared to high-permeability cores. (4) Reverse displacement can reduce the remaining oil in pores ranging from 0.1 to 10 μm, and the increase in oil recovery efficiency is more significant in cores with lower permeability than in those with higher permeability. Therefore, increased production cannot solely rely on improving the production pressure differential to develop remaining oil. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

18 pages, 2817 KB  
Article
A Comparative Study on Acoustic Characteristics of Methane and Tetrahydrofuran Hydrate-Bearing Sediments
by Wengao Zhao, Qingtao Bu, Zihao Wang, Tong Liu, Qingguo Meng, Yapeng Zhao and Gaowei Hu
J. Mar. Sci. Eng. 2024, 12(12), 2239; https://doi.org/10.3390/jmse12122239 - 5 Dec 2024
Viewed by 1075
Abstract
Laboratory acoustic measurements of hydrate-bearing sediments serve as an important reference for the geological interpretation of seismic exploration data. Tetrahydrofuran (THF) hydrates are relatively easy to form with precise control of hydrate saturation, and they overcome the long time it takes for methane [...] Read more.
Laboratory acoustic measurements of hydrate-bearing sediments serve as an important reference for the geological interpretation of seismic exploration data. Tetrahydrofuran (THF) hydrates are relatively easy to form with precise control of hydrate saturation, and they overcome the long time it takes for methane in sediments to form hydrate. However, when THF hydrates are used as a substitute for methane hydrate, their acoustic properties yield different results. This study reports the results of a series of laboratory experiments on the formation of methane and THF hydrate in quartz sand and the evaluation of their acoustic properties. It compares the experimental results with the results of calculations from micro-distribution models of the four hydrates using effective medium theory (EMT). Methane hydrate formed by the excess gas method has higher acoustic velocities than THF hydrate at 0–80% saturation, but at 80–100% saturation, the situation reverses, with THF hydrate having a higher wave velocity. The methane hydrate synthesis process follows a mixed micro-distribution, with grain coating predominating at low saturations, the pore-filling mixing mode dominating at medium saturations, and grain coating dominating at high saturations. In addition, THF hydrate has a slow-velocity growth at low saturation and is dominated by a pore-filling model and a load-bearing model at high saturation. We compared our experimental data with a compilation of similar published results to confirm their reliability and support our conclusions. Both hydrate types exhibit distinct micro-distributions across different saturations. Therefore, when testing the elastic characteristics of hydrate sediments, the distinct hydrate synthesis methods and micro-distribution should be considered, especially when using THF hydrate as an alternative to methane hydrate. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 9891 KB  
Article
Microdistribution and Mode of Rare Earth Element Occurrence in the Zhijin Rare Earth Element-Bearing Phosphate Deposit, Guizhou, China
by Canjuan Xiong, Hong Xie, Yuhang Wang, Changjian Wang, Zhi Li and Chenglong Yang
Minerals 2024, 14(3), 223; https://doi.org/10.3390/min14030223 - 23 Feb 2024
Cited by 6 | Viewed by 2315
Abstract
Rare-earth elements (REEs) are often highly concentrated in sedimentary phosphate deposits, and the microdistribution characteristics and occurrence state of rare earth in these deposits play a crucial role in the overall development and utilization of mineral resources. This study aims to analyze the [...] Read more.
Rare-earth elements (REEs) are often highly concentrated in sedimentary phosphate deposits, and the microdistribution characteristics and occurrence state of rare earth in these deposits play a crucial role in the overall development and utilization of mineral resources. This study aims to analyze the microdistribution of REEs in REE-bearing phosphate deposits in the Zhijin region of Guizhou at the microstructural level and investigate their occurrence modes. Specifically, rock and mineral identification, X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM-EDS), and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) were utilized to analyze the samples. The correlation between the distribution of REEs and phosphorus was examined. In addition, the microdistribution of REEs in specific mineral phases and the locations of their occurrence were investigated. The analysis revealed that no REEs existed independently in the deposit. Instead, the distribution of REEs was highly consistent and significantly positively correlated with that of phosphorus. In the microarea structure, REEs were predominantly found both in particles, such as bioclasts, sand debris, and agglomerates, and in phosphate cement, where the main mineral components were collophane and apatite. Conversely, the content of REEs in dolomitized sand debris edges, sparry dolomitic cement, and siliceous cement was considerably lower. Based on these findings, it is speculated that REEs primarily occur within the lattice defects of apatite or on the surface of collophanite. There is a notable contrast in the REE content between the unaltered sand debris at the periphery and the dolomitized sand debris, indicating that the dolomitization in the diagenetic stage resulted in a depletion of REE abundance in the ore. Obviously, the dominant gangue mineral, dolomite, does not serve as the primary host for REEs. Furthermore, the highest concentration of REEs was inside organisms. This finding suggests that the high content of REEs in biological soft tissue may remain under the influence of waves and tides, and REE-bearing apatite may be preferentially separated and fill the cavities of deceased organisms. The second highest content of REEs was found in the shells of organisms, indicating that small shelly organisms absorb phosphorus materials through their life activities to construct their shells, resulting in REE enrichment. Quantitative analysis through sequential extraction procedures displayed that most REEs were present in the residual state, with a smaller portion combined with organic matter. These results confirm that REEs in the Zhijin phosphate deposits primarily exist as isomorphic substitutions in the lattice defects of apatite, with a secondary occurrence as organic matter-bound REEs. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 52758 KB  
Article
Pore Distribution Characteristics of Different Lithofacies Shales: Evidence from Scanning Electron Microscopy
by Junjie Wang, Shuangfang Lu, Pengfei Zhang, Qi Zhi and Hongsheng Huang
Processes 2023, 11(4), 1120; https://doi.org/10.3390/pr11041120 - 5 Apr 2023
Cited by 4 | Viewed by 2136
Abstract
To disclose the pore distribution characteristics of different lithofacies lacustrine shales, ten samples collected from the Shahejie Formation, Dongying Sag, Bohai Bay Basin, China, were examined using argon ion beam milling–scanning electron microscopy (SEM). A quantitative method was adopted to characterize shale pore [...] Read more.
To disclose the pore distribution characteristics of different lithofacies lacustrine shales, ten samples collected from the Shahejie Formation, Dongying Sag, Bohai Bay Basin, China, were examined using argon ion beam milling–scanning electron microscopy (SEM). A quantitative method was adopted to characterize shale pore distributions based on the SEM images. Mercury intrusion capillary pressure was employed to determine the pore throat size distributions of the shales. The SEM images indicated that in shale reservoirs, interparticle pores at the edges of brittle particles and intraparticle pores in clay mineral aggregates primarily contribute to the reservoir spaces and that in calcite-rich shales, dissolution pores provide secondary reservoir space. Among the morphologies of dissolution, intraparticle, and interparticle pores, the morphology of the dissolution pores is the simplest, followed by those of intraparticle and interparticle pores in that order. Clay and felsic minerals primarily control the shale pore sizes and the larger the clay mineral content in the shales, the smaller their pore size; the felsic minerals demonstrate the opposite behavior. The image-based point counting data indicate that shale pore sizes are mostly between 20 nm and 2 μm. In contrast, most pore throats are less than 20 nm in diameter, implying that the pores in the nanometer to micrometer scales are connected by tiny throats. Among the four lithofacies shales, felsic-rich shales are favorable for shale oil accumulation and seepage because of their large pore sizes and throats their ability to form intercalated shale oil adjacent to organic-rich shales. Calcareous shales with a large number of dissolution pores and a large content of organic matter could produce self-generation and self-storage matrix shale oil and would typically develop fractures, thereby creating a seepage channel for shale oil. This study presents the micro-distributions of different lithofacies of shale pores, which would help in understanding the occurrence and seepage of oil in shale reservoirs. Full article
Show Figures

Figure 1

14 pages, 7035 KB  
Article
Effect of Hydrate Microscopic Distribution on Acoustic Characteristics during Hydrate Dissociation: An Insight from Combined Acoustic-CT Detection Study
by Qingtao Bu, Tongju Xing, Chengfeng Li, Jinhuan Zhao, Changling Liu, Zihao Wang, Wengao Zhao, Jiale Kang, Qingguo Meng and Gaowei Hu
J. Mar. Sci. Eng. 2022, 10(8), 1089; https://doi.org/10.3390/jmse10081089 - 9 Aug 2022
Cited by 24 | Viewed by 2462
Abstract
Geophysical detection techniques are important methods in marine gas hydrate exploration and monitoring, because the small-scale distribution of hydrates has a large impact on the wave velocity. The acoustic response characteristics of hydrate micro-distributions have strong significance for monitoring the hydrate dissociation process. [...] Read more.
Geophysical detection techniques are important methods in marine gas hydrate exploration and monitoring, because the small-scale distribution of hydrates has a large impact on the wave velocity. The acoustic response characteristics of hydrate micro-distributions have strong significance for monitoring the hydrate dissociation process. In this paper, experiments simulating the hydrate dissociation process were carried out in a self-developed experimental device combining X-ray computed tomography (X-CT) scanning and ultrasonic detection, which allowed the acoustic wave characteristics and X-CT scanning results to be simultaneously obtained during the hydrate dissociation process. This study found that the hydrate dissociation stage is divided into three stages. The hydrate begins to dissociate at spots where it comes into touch with sand particles early in the dissociation process. The main factor affecting the acoustic wave velocity of hydrates in this stage is changes in the microscopic distribution of hydrate. In the middle stage, a large amount of hydrate decomposes, and the main factor affecting the acoustic wave velocity of hydrate in this stage is the change in hydrate content. In the later stage of hydrate dissociation, the hydrate distribution pattern consists mainly of the pore-filling type, and the hydrate micro-distribution at this stage is the main factor affecting the acoustic wave velocity. This study will be of great significance for understanding the microscopic control mechanism of hydrate reservoir geophysical exploration. Full article
Show Figures

Figure 1

23 pages, 833 KB  
Article
Identifying and Analyzing Dependencies in and among Complex Cyber Physical Systems
by Aida Akbarzadeh and Sokratis Katsikas
Sensors 2021, 21(5), 1685; https://doi.org/10.3390/s21051685 - 1 Mar 2021
Cited by 16 | Viewed by 4324
Abstract
Contemporary Critical Infrastructures (CIs), such as the power grid, comprise cyber physical systems that are tightly coupled, to form a complex system of interconnected components with interacting dependencies. Modelling methodologies have been suggested as proper tools to provide better insight into the dependencies [...] Read more.
Contemporary Critical Infrastructures (CIs), such as the power grid, comprise cyber physical systems that are tightly coupled, to form a complex system of interconnected components with interacting dependencies. Modelling methodologies have been suggested as proper tools to provide better insight into the dependencies and behavioural characteristics of these complex systems. In order to facilitate the study of interconnections in and among critical infrastructures, and to provide a clear view of the interdependencies among their cyber and physical components, this paper proposes a novel method, based on a graphical model called Modified Dependency Structure Matrix (MDSM). The MDSM provides a compact perspective of both inter-dependency and intra-dependency between subsystems of one complex system or two distinct systems. Additionally, we propose four parameters that allow the quantitative assessment of the characteristics of dependencies, including multi-order dependencies in large scale CIs. We illustrate the workings of the proposed method by applying it to a micro-distribution network based on the G2ELAB 14-Bus model. The results provide valuable insight into the dependencies among the network components and substantiate the applicability of the proposed method for analyzing large scale cyber physical systems. Full article
(This article belongs to the Special Issue Cybersecurity and Privacy-Preserving in Modern Smart Grid)
Show Figures

Figure 1

23 pages, 4623 KB  
Article
Mechanistic Modeling of the Relative Biological Effectiveness of Boron Neutron Capture Therapy
by Seth W. Streitmatter, Robert D. Stewart, Gregory Moffitt and Tatjana Jevremovic
Cells 2020, 9(10), 2302; https://doi.org/10.3390/cells9102302 - 15 Oct 2020
Cited by 16 | Viewed by 3869
Abstract
Accurate dosimetry and determination of the biological effectiveness of boron neutron capture therapy (BNCT) is challenging because of the mix of different types and energies of radiation at the cellular and subcellular levels. In this paper, we present a computational, multiscale system of [...] Read more.
Accurate dosimetry and determination of the biological effectiveness of boron neutron capture therapy (BNCT) is challenging because of the mix of different types and energies of radiation at the cellular and subcellular levels. In this paper, we present a computational, multiscale system of models to better assess the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) of several neutron sources as applied to BNCT using boronophenylalanine (BPA) and a potential monoclonal antibody (mAb) that targets HER-2-positive cells with Trastuzumab. The multiscale model is tested against published in vitro and in vivo measurements of cell survival with and without boron. The combined dosimetric and radiobiological model includes an analytical formulation that accounts for the type of neutron source, the tissue- or cancer-specific dose–response characteristics, and the microdistribution of boron. Tests of the model against results from published experiments with and without boron show good agreement between modeled and experimentally determined cell survival for neutrons alone and in combination with boron. The system of models developed in this work is potentially useful as an aid for the optimization and individualization of BNCT for HER-2-positive cancers, as well as other cancers, that can be targeted with mAb or a conventional BPA compound. Full article
(This article belongs to the Special Issue Biology of Boron Neutron Capture Therapy (BNCT))
Show Figures

Figure 1

14 pages, 3721 KB  
Article
Study on Thermal Energy Conversion Theory in Drilling Process of Coal and Rock Mass with Different Stresses
by Pengqi Qiu, Xuehui Li, Jianguo Ning, Jun Wang and Shang Yang
Energies 2019, 12(22), 4282; https://doi.org/10.3390/en12224282 - 10 Nov 2019
Cited by 7 | Viewed by 3433
Abstract
In view of the problem that the evolutionary mechanism of bit temperature during the drilling process is still unclear and the influencing factors are complex, this paper analyzes the causes of heat generation and the factors of heat production when the drill bit [...] Read more.
In view of the problem that the evolutionary mechanism of bit temperature during the drilling process is still unclear and the influencing factors are complex, this paper analyzes the causes of heat generation and the factors of heat production when the drill bit interacts with the coal and rock mass. Considering the stress field distribution of coal and rock mass and the dynamic characteristics of drilling, a three-dimensional mechanical structure model of bit drilling is established in this paper, based on the energy conservation theory and introducing the friction heat micro-distribution mechanism. The corresponding relationship between coal stress and the bit temperature variation rate is obtained in this paper. Therefore, the temperature rise condition model and the coal stress identification model can be verified, combined with the existing experimental data. The result shows that the temperature of bit drilling is affected by factors such as bit geometry and drilling parameters, as well as the strength and stress state of the coal and rock. Without considering other factors, the rate of increase in bit temperature is proportional to the stress of the coal and rock mass. Based on the research results, the temperature rate of the drill bit can be used as an index to identify the stress areas of coal and rock mass. Research results provide a theoretical basis for the identification of high-stress risk areas in coal mines. Full article
(This article belongs to the Special Issue Advanced Technologies for Energy Exploitation of Coals)
Show Figures

Graphical abstract

Back to TopTop