Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = micromagnetism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 619 KB  
Article
Sensitivity of the Threshold Current for Switching of a Magnetic Tunnel Junction to Fabrication Defects and Its Application in Physical Unclonable Functions
by Jacob Huber, Rahnuma Rahman and Supriyo Bandyopadhyay
Appl. Sci. 2025, 15(17), 9548; https://doi.org/10.3390/app15179548 (registering DOI) - 30 Aug 2025
Viewed by 50
Abstract
A physical unclonable function (PUF) leverages the unclonable random variations in device behavior due to defects incurred during manufacturing to produce a unique “biometric” that can be used for authentication. Here, we show that the threshold current for the switching of a magnetic [...] Read more.
A physical unclonable function (PUF) leverages the unclonable random variations in device behavior due to defects incurred during manufacturing to produce a unique “biometric” that can be used for authentication. Here, we show that the threshold current for the switching of a magnetic tunnel junction via spin transfer torque is sensitive to the nature of structural defects introduced during manufacturing and hence can be the basis of a PUF. We use micromagnetic simulations to study the threshold currents for six different defect morphologies at two different temperatures to establish the viability of a PUF. We also derive the challenge–response set at the two different temperatures to calculate the inter- and intra-Hamming distances for a given challenge. Full article
(This article belongs to the Special Issue Nanoscale Electronic Devices: Modeling and Applications)
Show Figures

Figure 1

10 pages, 11710 KB  
Communication
Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers
by Milad Jalali, Kai Wang, Haoxiang Xu, Yaowen Liu and Sylvain Eimer
Materials 2025, 18(17), 4008; https://doi.org/10.3390/ma18174008 - 27 Aug 2025
Viewed by 273
Abstract
The interfacial Dzyaloshinskii–Moriya interaction (DMI) plays a pivotal role in stabilising and controlling the motion of chiral spin textures, such as Néel-type bubble domains, in ultrathin magnetic films—an essential feature for next-generation spintronic devices. In this work, we investigate domain wall (DW) dynamics [...] Read more.
The interfacial Dzyaloshinskii–Moriya interaction (DMI) plays a pivotal role in stabilising and controlling the motion of chiral spin textures, such as Néel-type bubble domains, in ultrathin magnetic films—an essential feature for next-generation spintronic devices. In this work, we investigate domain wall (DW) dynamics in magnetron-sputtered Ta(3 nm)/Pt(3 nm)/Co(1 nm)/RuO2(1 nm) [Ru(1 nm)]/Pt(3 nm) multilayers, benchmarking their behaviour against control stacks. Vibrating sample magnetometry (VSM) was employed to determine saturation magnetisation and perpendicular magnetic anisotropy (PMA), while polar magneto-optical Kerr effect (P-MOKE) measurements provided coercivity data. Kerr microscopy visualised the expansion of bubble-shaped domains under combined perpendicular and in-plane magnetic fields, enabling the extraction of effective DMI fields. Brillouin light scattering (BLS) spectroscopy quantified the asymmetric propagation of spin waves, and micromagnetic simulations corroborated the experimental findings. The Pt/Co/RuO2 system exhibits a Dzyaloshinskii–Moriya interaction (DMI) constant of ≈1.08 mJ/m2, slightly higher than the Pt/Co/Ru system (≈1.03 mJ/m2) and much higher than the Pt/Co control (≈0.23 mJ/m2). Correspondingly, domain walls in the RuO2-capped films show pronounced velocity asymmetry under in-plane fields, whereas the symmetric Pt/Co/Pt shows negligible asymmetry. Despite lower depinning fields in the Ru-capped sample, its domain walls move faster than those in the RuO2-capped sample, indicating reduced pinning. Our results demonstrate that integrating RuO2 significantly alters interfacial spin–orbit interactions. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

14 pages, 4107 KB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 302
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

14 pages, 2951 KB  
Article
Magnetic Properties of an Ensemble of Core-Shell Fe/FeOX Nanoparticles: Experimental Study and Micromagnetic Simulation
by Grigory Yu. Melnikov, Ekaterina A. Burban, Andrey V. Svalov and Galina V. Kurlyandskaya
Magnetochemistry 2025, 11(7), 57; https://doi.org/10.3390/magnetochemistry11070057 - 2 Jul 2025
Viewed by 449
Abstract
Spherical magnetic nanoparticles consisting of an iron core and iron oxide shell (α-Fe/FeOX) were fabricated by the electric explosion of the wire technique (EEW). The structure and magnetic properties of synthesized nanoparticles were experimentally investigated. Magnetic properties of an iron nanoparticle [...] Read more.
Spherical magnetic nanoparticles consisting of an iron core and iron oxide shell (α-Fe/FeOX) were fabricated by the electric explosion of the wire technique (EEW). The structure and magnetic properties of synthesized nanoparticles were experimentally investigated. Magnetic properties of an iron nanoparticle ensemble for individual defect-free, non-interacting iron-based nanoparticles having different diameters were calculated using micromagnetic modeling. Experimental and calculated magnetic hysteresis loops were comparatively analyzed. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

13 pages, 4780 KB  
Article
Impact of Chirality on the Dynamic Susceptibility of Concentric Nanotori
by Ulises Guevara, Eduardo Saavedra, Liliana Pedraja-Rejas, Miguel-Angel Garrido-Tamayo, Solange Aranzubia, Eduardo Cisternas, Pablo Díaz and David Laroze
Nanomaterials 2025, 15(13), 989; https://doi.org/10.3390/nano15130989 - 26 Jun 2025
Viewed by 344
Abstract
This study investigates the influence of chirality on the dynamic susceptibility of concentric nanotori via micromagnetic simulations. The aim is to analyze the ferromagnetic resonance characteristics of coupled nanotori structures and compare them across various ring separation distances, thus providing an insight into [...] Read more.
This study investigates the influence of chirality on the dynamic susceptibility of concentric nanotori via micromagnetic simulations. The aim is to analyze the ferromagnetic resonance characteristics of coupled nanotori structures and compare them across various ring separation distances, thus providing an insight into how vortex configurations with identical or differing chiralities affect their dynamic properties. We analyze the energetic differences between the two vortex configurations and find them to be negligible; however, these minor differences suffice to explain the significant discrepancies in the demagnetization field observed between the nanotori. We examine the dynamic susceptibility spectrum and the spatial localization of the ferromagnetic resonance modes for different nanotori separations. Our findings demonstrate that the resonant oscillation frequencies are significantly influenced by the magnetostatic interactions between the nanotori, which can be effectively modulated by varying the distance between them. Furthermore, for smaller separations, the frequency peaks in the dynamic susceptibility markedly diverge between the two vortex configurations, demonstrating that the observed differences in the demagnetization field between the rings strongly influence the frequency response. In summary, our results indicate that both the inter-ring distance and the vortex configuration play a crucial role in determining the frequency response of the system. Full article
(This article belongs to the Special Issue Theoretical Chemistry and Computational Simulations in Nanomaterials)
Show Figures

Figure 1

19 pages, 14453 KB  
Article
Non-Destructive Evaluation of Microstructural Changes Induced by Thermo-Mechanical Fatigue in Ferritic and Ferritic/Martensitic Steels
by Madalina Rabung, Kevin Schmitz, Oguzhan Sanliturk, Patrick Lehner, Bastian Blinn and Tilmann Beck
Appl. Sci. 2025, 15(9), 4969; https://doi.org/10.3390/app15094969 - 30 Apr 2025
Viewed by 357
Abstract
Non-destructive evaluation (NDE) is highly relevant to assessing micro- and macrostructural changes in ferritic and ferritic/martensitic steels subjected to high temperature loading. These materials are widely used in energy generation, where they undergo extreme thermal and mechanical loads. This study examines the feasibility [...] Read more.
Non-destructive evaluation (NDE) is highly relevant to assessing micro- and macrostructural changes in ferritic and ferritic/martensitic steels subjected to high temperature loading. These materials are widely used in energy generation, where they undergo extreme thermal and mechanical loads. This study examines the feasibility of micromagnetic NDE techniques, i.e., micromagnetic measurements, supported by machine learning methods, to identify and characterize the micro- and macrostructural changes caused by the mechanical loading at high temperatures of power plant steels, i.e., ferritic/martensitic P91 and the high chromium ferritic steel HiperFer-17Cr2. While the P91 did not show any systematic changes in micromagnetic measurements, which generally correlate with the evolution of the microstructure and the mechanical properties, for the HiperFer-17Cr2, pronounced changes in the micromagnetic properties were observed. In correlation with the evolution of the hardness and cyclic deformation behavior, which are both mainly attributed to Laves phase precipitation, the micromagnetic measurements significantly changed depending on the temperature, number of load cycles and load amplitude applied. Thus, these NDE methods can be used for early diagnosis and preventive maintenance strategies for HiperFer-17Cr2, potentially extending the lifespan of the components and mitigating safety risks. Full article
Show Figures

Figure 1

20 pages, 5035 KB  
Article
Magnetic, Electronic Structure and Micromagnetic Properties of Ferrimagnetic DyCo3 as a Platform for Ferrimagnetic Skyrmions
by Radu George Hategan, Andrei Aldea, Razvan Dan Miclea, Razvan Hirian, Ioan Botiz, Roxana Dudric, Lokesh Rasabathina, Olav Hellwig, Georgeta Salvan, Dietrich R. T. Zahn, Romulus Tetean and Coriolan Tiusan
Nanomaterials 2025, 15(8), 606; https://doi.org/10.3390/nano15080606 - 15 Apr 2025
Viewed by 970
Abstract
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by [...] Read more.
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by arc-melting of stoichiometric mixtures under purified argon atmosphere and the thin films by Ultra-High-Vacuum magnetron sputtering from a stoichiometric target. Magnetometry allows us to extract the main magnetic properties of bulk and thin films: the saturation magnetization, the magnetic anisotropy and their variation with temperature. These results are successfully complemented by band structure ab initio DFT calculations. Based on the critical magnetic parameters extracted from experiments, we performed micromagnetic simulations that reveal the skyrmionic potential of our samples in both continuous thin film and nano-patterned architectures. Full article
(This article belongs to the Special Issue Nanoscale Spintronics and Magnetism: From Fundamentals to Devices)
Show Figures

Graphical abstract

16 pages, 6992 KB  
Article
Micromagnetic and Quantitative Prediction of Hardness and Impact Energy in Martensitic Stainless Steels Using Mutual Information Parameter Screening and Random Forest Modeling Methods
by Changjie Xu, Haijiang Dong, Zhengxiang Yan, Liting Wang, Mengshuai Ning, Xiucheng Liu and Cunfu He
Materials 2025, 18(7), 1685; https://doi.org/10.3390/ma18071685 - 7 Apr 2025
Viewed by 533
Abstract
This study proposes a novel modelling approach that integrates mutual information (MI)-based parameter screening with random forest (RF) modelling to achieve an accurate quantitative prediction of surface hardness and impact energy in two martensitic stainless steels (1Cr13 and 2Cr13). Preliminary analyses indicated that [...] Read more.
This study proposes a novel modelling approach that integrates mutual information (MI)-based parameter screening with random forest (RF) modelling to achieve an accurate quantitative prediction of surface hardness and impact energy in two martensitic stainless steels (1Cr13 and 2Cr13). Preliminary analyses indicated that the magnetic parameters derived from Barkhausen noise (MBN), and the incremental permeability (IP) measurements showed limited linear correlations with the target properties (surface hardness and impact energy). To address this challenge, an MI feature screening method has been developed to identify both the linear and non-linear parameter dependencies that are critical for predicting target mechanical properties. The selected features were then fed into an RF model, which outperformed traditional multiple linear regression in handling the complex, non-monotonic relationships between magnetic signatures and mechanical performance. A key advantage of the proposed MI-RF framework lies in its robustness to small sample sizes, where it achieved high prediction accuracy (e.g., R2 > 0.97 for hardness, and R2 > 0.86 for impact energy) using limited experimental data. By leveraging MI’s ability to capture multivariate dependencies and RF’s ensemble learning power, it effectively mitigates overfitting and improves generalisation. In addition to demonstrating a promising tool for the non-destructive evaluation of martensitic steels, this study also provides a transferable paradigm for the quantitative assessment of other mechanical properties by magnetic feature fusion. Full article
Show Figures

Figure 1

10 pages, 4363 KB  
Article
Temperature-Dependent Compensation Points in GdxFe1−x Ferrimagnets
by Chao Chen, Cuixiu Zheng, Shanshan Hu, Jianwei Zhang and Yaowen Liu
Materials 2025, 18(6), 1193; https://doi.org/10.3390/ma18061193 - 7 Mar 2025
Cited by 1 | Viewed by 923
Abstract
Recent experiments have reported distinct handedness of spin waves across the compensation temperatures of ferrimagnets, offering promising functionalities for ferrimagnet-based magnonic applications with two distinct polarizations. This paper investigates the effects of various factors on the compensation points of GdFe ferrimagnets through atomistic-level [...] Read more.
Recent experiments have reported distinct handedness of spin waves across the compensation temperatures of ferrimagnets, offering promising functionalities for ferrimagnet-based magnonic applications with two distinct polarizations. This paper investigates the effects of various factors on the compensation points of GdFe ferrimagnets through atomistic-level spin dynamics simulations. The results show that as the Gd composition increases, both the magnetization compensation temperature and the angular momentum compensation temperature of the GdFe alloy increase, with a linear relationship observed between the two compensation temperatures. Furthermore, we show that external magnetic fields and antiferromagnetic exchange strength can also modulate the compensation temperatures. Moreover, the antiferromagnetic exchange strength also affects the resonance frequency of ferrimagnetic materials. In the absence of an external field, the resonance frequency of GdFe is divided into two branches and both increase linearly with the increase in antiferromagnetic exchange strength. This study may stimulate fundamental research on compensated ferrimagnets, which may be useful for building chirality-based spintronics. Full article
Show Figures

Graphical abstract

15 pages, 1020 KB  
Article
The Role of Blood Perfusion in the Thermal Interaction Between Magnetic Nanoparticles and Cancerous Tumors: A Computational Study
by Nikolaos Maniotis, Spyridon Mitropoulos, Nikolaos Vordos and Vassilios Tsiantos
Magnetism 2025, 5(1), 6; https://doi.org/10.3390/magnetism5010006 - 5 Mar 2025
Cited by 1 | Viewed by 1412
Abstract
In this study, the role of blood perfusion in modulating the thermal response of tumors during magnetic nanoparticle hyperthermia was investigated through computational modeling. The thermal dissipation of 15 nm magnetite nanoparticles was estimated using micromagnetic simulations of their hysteresis loops under a [...] Read more.
In this study, the role of blood perfusion in modulating the thermal response of tumors during magnetic nanoparticle hyperthermia was investigated through computational modeling. The thermal dissipation of 15 nm magnetite nanoparticles was estimated using micromagnetic simulations of their hysteresis loops under a magnetic field of 20 mT and a frequency of 100 kHz. These calculations provided precise energy loss parameters, serving as inputs to simulate the temperature distribution in a tumor embedded within healthy tissue. Temperature-dependent blood perfusion rates, derived from experimental models, were integrated to differentiate the vascular dynamics in normal and cancerous tissues. The simulations were conducted using a bioheat transfer model on a 2D axisymmetric tumor geometry with magnetite nanoparticles dispersed uniformly in the tumor volume. Results showed that tumor tissues exhibit limited blood perfusion enhancement under hyperthermic conditions compared to healthy tissues, leading to localized heat retention favorable for therapeutic purposes. The computational framework validated these findings by achieving therapeutic tumor temperatures (41–45 °C) without significant overheating of surrounding healthy tissues, highlighting the critical interplay between perfusion and energy dissipation. These results demonstrate the efficacy of combining nanoparticle modeling with temperature-dependent perfusion for optimizing magnetic nanoparticle-based hyperthermia protocols. Full article
(This article belongs to the Special Issue Mathematical Modelling and Physical Applications of Magnetic Systems)
Show Figures

Figure 1

21 pages, 8014 KB  
Article
Harnessing Magnetic Properties for Precision Thermal Control of Vortex Domain Walls in Constricted Nanowires
by Mohammed Al Bahri and Salim Al-Kamiyani
Nanomaterials 2025, 15(5), 372; https://doi.org/10.3390/nano15050372 - 27 Feb 2025
Cited by 1 | Viewed by 754
Abstract
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), [...] Read more.
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), uniaxial magnetic anisotropy (Ku), and nanowire geometry in determining VW thermal stability. The modeled nanowire has dimensions of 200 nm (width), 30 nm (thickness), and a 50 nm constriction length, chosen based on the dependence of VW formation on nanowire geometry. Our results show that increasing Ms and Ku enhances VW pinning, while thermal fluctuations at higher temperatures promote VW depinning. We demonstrate that temperature and magnetic parameters significantly impact VW structural stability, offering insights for designing high-reliability nanowire-based memory devices. These findings contribute to optimizing nanowire designs for thermally stable, energy-efficient spintronic memory systems. Full article
(This article belongs to the Special Issue Research on Ferroelectric and Spintronic Nanoscale Materials)
Show Figures

Figure 1

16 pages, 5225 KB  
Article
The Critical Saturation Magnetization Properties of Nanocrystalline Alloy Under Rectangular Wave Excitation with Adjustable Duty Cycle
by Liang Zou, Sixiao Xin, Zhen Li, Yifan Wang and Zhiyun Han
Materials 2025, 18(4), 735; https://doi.org/10.3390/ma18040735 - 7 Feb 2025
Cited by 1 | Viewed by 722
Abstract
High-frequency transformers are subject to excitation with a changing duty cycle during operation. Due to magnetic relaxation, the duty cycle of the rectangular wave affects the magnetization time of nanocrystalline alloy for the core material, which affects whether the transformer can reach the [...] Read more.
High-frequency transformers are subject to excitation with a changing duty cycle during operation. Due to magnetic relaxation, the duty cycle of the rectangular wave affects the magnetization time of nanocrystalline alloy for the core material, which affects whether the transformer can reach the saturation operating point. Based on the micromagnetic theory, a three-dimensional model of the nanocrystalline alloy is established, and rectangular wave excitation with different duty cycle D is applied to the micro-model. The influence of D on the magnetization process is analyzed in terms of the hysteresis loss Pv and magnetic moment deflection angular velocity ω. The results indicate that when D = 0.5, Pv is the smallest, and when D increases or decreases, Pv increases. Furthermore, Pv remains the same under the rectangular wave excitation that satisfies the sum of different duty cycles of 1. Regarding ω, the smallest value occurs at the rising edge of the excitation when D = 0.1, while the largest value occurs when D = 0.9. During the falling edge stage, ω is smallest when D = 0.9 and largest when D = 0.1. These results demonstrate that the duty cycle D influences the magnetization time of the material. Due to magnetic relaxation, changing the magnetization time determines whether the material can reach saturation magnetization. Therefore, there is a critical state, which is defined as the critical duty cycle Dc. The results show that for D < 0.5, the range of Dc1 is between 0.2 and 0.21, and for D > 0.5, the range of Dc2 is between 0.8 and 0.81. Increasing the amplitude of the excitation source causes a decrease in Dc, while increasing the frequency causes an increase in Dc. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

10 pages, 8113 KB  
Article
Adjustment of Magnetic Characteristics for [Co/Pt] Multilayer Thin Films
by Mikhail V. Dorokhin, Anton V. Zdoroveyshchev, Polina B. Demina, Yurii M. Kuznetsov, Daniil A. Zdoroveyshchev, Alexey V. Kudrin, Marina P. Temiryazeva, Alexei G. Temiryazev, Irina L. Kalentyeva, Mikhail V. Ved’, Ruslan N. Kryukov, Sergey Yu. Zubkov and Dmitry A. Tatarskiy
Coatings 2025, 15(2), 186; https://doi.org/10.3390/coatings15020186 - 6 Feb 2025
Viewed by 754
Abstract
In the present paper, we discuss the results of the study of magnetic properties and micromagnetic structure of the multilayer [Co(4 × t) Å/Pt(5 × t) Å]10 thin films with varied bilayer thickness (t). The structures were fabricated [...] Read more.
In the present paper, we discuss the results of the study of magnetic properties and micromagnetic structure of the multilayer [Co(4 × t) Å/Pt(5 × t) Å]10 thin films with varied bilayer thickness (t). The structures were fabricated by alternating electron beam evaporation of Co and Pt targets. The measurements of the element distribution profile, magnetic field dependence of magnetization, and magnetic force microscopy pictures have shown that varying the t coefficient allows for manipulating the degree Co and Pt layers intermixing, which, in turn, changes the magnetic properties of the films over a wide range. In particular, in structures representing a CoxPt1-x solid solution with a variable composition, magnetic skyrmions were revealed upon magnetization of the films. Varying the Co vs. Pt composition heterogeneity makes it possible to control the skyrmion density. The results are believed to be promising for the fabrication of skyrmion-based memory elements. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

13 pages, 3902 KB  
Article
A Study on the Effect of Plastic Strain on Magnetic Phenomenology and Microstructure
by Mehrija Hasičić, Spyridon Angelopoulos, Aphrodite Ktena and Evangelos Hristoforou
Magnetism 2025, 5(1), 1; https://doi.org/10.3390/magnetism5010001 - 14 Jan 2025
Viewed by 1192
Abstract
The present work aspires to contribute to the discussion on the relationship between macroscopic measurements and microstructure, helping establish a methodology that will allow the quantitative assessment of the effect of strain on magnetic properties in the plastic deformation regime. In particular, we [...] Read more.
The present work aspires to contribute to the discussion on the relationship between macroscopic measurements and microstructure, helping establish a methodology that will allow the quantitative assessment of the effect of strain on magnetic properties in the plastic deformation regime. In particular, we study the effect of strain on the magnetization process as a result of varying the anisotropy profile at the grain level. Results on micromagnetic calculations of hysteresis loops for various configurations of magnetic anisotropy are shown and discussed against the interplay between the energy terms involved in the calculations, namely anisotropy, demagnetizing, and exchange. The results are in line with previously obtained results using vector Preisach modeling with the Stoner–Wohlfarth model acting both as a switching and rotation mechanism. The hysteresis loop phenomenology is consistent with the emergence of a hard phase in the form of a boundary around soft grains which is assumed to be the result of the onset of compressive stresses in the plastic region. Future research will be oriented toward the study of the effect of the secondary peak in differential permeability, which is observed experimentally in the plastic deformation region, and its dependence on the angle of misalignment between the hard boundary and the soft grain. Full article
(This article belongs to the Special Issue Mathematical Modelling and Physical Applications of Magnetic Systems)
Show Figures

Figure 1

17 pages, 4113 KB  
Review
Electron Holography for Advanced Characterization of Permanent Magnets: Demagnetization Field Mapping and Enhanced Precision in Phase Analysis
by Sujin Lee
Nanomaterials 2024, 14(24), 2046; https://doi.org/10.3390/nano14242046 - 20 Dec 2024
Viewed by 1524
Abstract
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on [...] Read more.
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on magnetic flux density. The Hd map within a Nd2Fe14B thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity. Furthermore, this review examines the application of the wavelet hidden Markov model (WHMM) for noise suppression in thin-foiled Nd2Fe14B crystals. The results show significant suppression of artificial phase jumps in the reconstructed phase images due to the poor visibility of electron holograms under the narrowest fringe spacing required for spatial resolution in electron holography. These techniques substantially enhance the precision of phase analysis and are applicable to a wide range of magnetic materials, enabling more accurate magnetic characterization. Full article
(This article belongs to the Special Issue Exploring Nanomaterials through Electron Microscopy and Spectroscopy)
Show Figures

Figure 1

Back to TopTop