Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = microplastic in soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2380 KB  
Review
Microalgae in Mitigating Industrial Pollution: Bioremediation Strategies and Biomagnification Potential
by Renu Geetha Bai, Salini Chandrasekharan Nair, Liina Joller-Vahter and Timo Kikas
Biomass 2025, 5(4), 61; https://doi.org/10.3390/biomass5040061 - 2 Oct 2025
Abstract
The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental [...] Read more.
The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental matrices, such as water, air, and soil, is bioremediation, an approach utilizing biological agents. Microalgae, as the primary producers of the aquatic environment, offer a versatile bioremediation platform, where their metabolic processes break down and convert pollutants into less harmful substances, thereby mitigating the negative ecological impact. Besides the CO2 sequestration potential, microalgae are a source of renewable energy and numerous high-value biomolecules. Additionally, microalgae can mitigate various toxic chemicals through biosorption, bioaccumulation, and biodegradation. These remediation strategies propose a sustainable and eco-friendly approach to address environmental pollution. This review evaluates the microalgal mitigation of major environmental contaminants—heavy metals, pharmaceuticals and personal care products (PPCPs), persistent organic pollutants (POPs), flue gases, microplastics, and nanoplastics—linking specific microalgae removal mechanisms to pollutant-induced cellular responses. Each section explicitly addresses the effects of these pollutants on microalgae, microalgal bioremediation potential, bioaccumulation process, the risks of trophic transfer, and biomagnification in the food web. Herein, we highlight the current status of the microalgae-based bioremediation prospects, pollutant-induced microalgal toxicity, bioaccumulation, and consequential biomagnification. The novelty of this review lies in integrating biomagnification risks with the bioremediation potential of microalgae, providing a comprehensive perspective not yet addressed in the existing literature. Finally, we identify major research gaps and outline prospective strategies to optimize microalgal bioremediation while minimizing the unintended trophic transfer risks. Full article
Show Figures

Figure 1

24 pages, 2672 KB  
Article
Reassessing Whether Biodegradable Microplastics Are Environmentally Friendly: Differences in Earthworm Physiological Responses and Soil Carbon Function Impacts
by Yuze Li, Dongxing Zhou, Hongyan Wang, Wenfei Zhu, Rui Wang and Yucui Ning
Antioxidants 2025, 14(10), 1197; https://doi.org/10.3390/antiox14101197 - 1 Oct 2025
Abstract
Biodegradable plastics are not a primary solution to plastic pollution, and empirical evidence on whether they are environmentally friendly remains lacking. In this study, we systematically compared the toxic effects of traditional microplastics (polypropylene, PP; polystyrene, PS) with biodegradable microplastics (polylactic acid, PLA; [...] Read more.
Biodegradable plastics are not a primary solution to plastic pollution, and empirical evidence on whether they are environmentally friendly remains lacking. In this study, we systematically compared the toxic effects of traditional microplastics (polypropylene, PP; polystyrene, PS) with biodegradable microplastics (polylactic acid, PLA; polyhydroxyalkanoates, PHA) on the haplic phaeozem ecosystem. Through mathematical modeling analysis, it was found that earthworms initially rely on antioxidant enzymes to resist stress, mid-term activation of detoxifying enzymes to repair damage, and maintaining physiological balance through metabolic regulation and immune enhancement in later stages. We elucidated their mechanism differences: PLA and PP caused severe damage to the antioxidant system and cell membrane, with PLA mainly relying on POD to clear peroxides and PP relying on GST. In addition, PLA and PS can induce early neurotoxicity (AChE), while PHA induces late neurotoxicity. Furthermore, this study provides direct evidence proving that biodegradable microplastics are not environmentally friendly by breaking through the one-way research framework of “microplastic biotoxicity” and innovatively constructing a path analysis model that links biological physiological responses with soil ecological functions. We also provide a scientific basis to evaluate the ecological risks of microplastic pollution in soil and the whether biodegradable plastics are truly environmentally friendly. Full article
Show Figures

Figure 1

24 pages, 3529 KB  
Review
Impacts of Nano- and Microplastic Contamination on Soil Organisms and Soil–Plant Systems
by Davi R. Munhoz and Nicolas Beriot
Microplastics 2025, 4(4), 68; https://doi.org/10.3390/microplastics4040068 - 1 Oct 2025
Abstract
Microplastic (MPL) and nanoplastic (NPL) contamination in soils is widespread, impacting soil invertebrates, microbial communities, and soil–plant systems. Here, we compiled the information from 100 research articles from 2018 onwards to enhance and synthesize the status quo of MPLs’ and NPLs’ impacts on [...] Read more.
Microplastic (MPL) and nanoplastic (NPL) contamination in soils is widespread, impacting soil invertebrates, microbial communities, and soil–plant systems. Here, we compiled the information from 100 research articles from 2018 onwards to enhance and synthesize the status quo of MPLs’ and NPLs’ impacts on such groups. The effects of these pollutants depend on multiple factors, including polymer composition, size, shape, concentration, and aging processes. Research on soil invertebrates has focused on earthworms and some studies on nematodes and collembolans, but studies are still limited to other groups, such as mites, millipedes, and insect larvae. Beyond soil invertebrates, plastics are also altering microbial communities at the soil–plastic interface, fostering the development of specialized microbial assemblages and shifting microbial functions in ways that remain poorly understood. Research has largely centered on bacterial interactions with MPLs, leaving understudied fungi, protists, and other soil microorganisms. Furthermore, MPLs and NPLs also interact with terrestrial plants, and their harmful effects, such as adsorption, uptake, translocation, and pathogen vectors, raise public awareness. Given the complexity of these interactions, well-replicated experiments and community- and ecosystem-level studies employing objective-driven technologies can provide insights into how MPLs and NPLs influence microbial and faunal diversity, functional traits, and soil ecosystem stability. Full article
Show Figures

Figure 1

22 pages, 4578 KB  
Article
Effects of Plastic Film and Gravel-Sand Mulching on Soil Moisture and Yield of Wolfberry Under Ridge-Furrow Planting in an Arid Desert Region of China’s Loess Plateau
by Xiaojuan Ma, Zhi Wang, Bo Ma, Luyao Zhang, Juncang Tian and Jinyu He
Agronomy 2025, 15(10), 2312; https://doi.org/10.3390/agronomy15102312 - 30 Sep 2025
Abstract
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, [...] Read more.
In arid areas, the combined use of plastic sheeting under gravel-sand mulch on ridge-furrow planting systems is an emerging practice to minimize soil water evaporation and micro-plastic pollution. In this study, we conducted a two-year field experiment near Gobi-Tengger Desert in Ningxia, China, to evaluate the effects of a plastic film underneath a layer of pure sand (MS1), pure gravel (MS2) and mixed gravel-and-sand (MS3) mulch on the soil hydrothermal properties, water use efficiency, yield, and fruit quality of wolfberry, compared to bare soil (CK). The results showed that mulching significantly increased soil temperature and water content in the 0–20 cm surface layer, though the effects varied with soil depth and water availability between a supplemental irrigated year (2022) and a rain-fed year (2023). Mulching markedly altered soil water dynamics, enhancing the capture and retention of light-to-heavy rainfall events. Consequently, all mulches significantly increased seasonal water consumption (ET) and water use efficiency (WUE) compared to CK. The MS1 treatment consistently achieved the highest yield and WUE, and the highest accumulation of beneficial fruit compounds like polysaccharides and flavonoids. However, this treatment also resulted in elevated soil salinity. Our findings demonstrate that combined mulching, especially MS1, is a highly effective strategy for optimizing soil conditions, water productivity, and fruit quality in wolfberry cultivation, although long-term salinity management requires attention. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 1027 KB  
Review
Understanding the Flows of Microplastic Fibres in the Textile Lifecycle: A System Perspective
by Beatrice Dal Pio Luogo and Gaetano Cascini
Sustainability 2025, 17(19), 8726; https://doi.org/10.3390/su17198726 - 28 Sep 2025
Abstract
Microplastics released from synthetic garments pose a complex challenge to society and the environment. Textiles contribute to microplastic pollution throughout their entire lifecycle—from design and production to washing and use to their disposal—and can enter the environment through wastewater, soil, and air. The [...] Read more.
Microplastics released from synthetic garments pose a complex challenge to society and the environment. Textiles contribute to microplastic pollution throughout their entire lifecycle—from design and production to washing and use to their disposal—and can enter the environment through wastewater, soil, and air. The detachment of fibre fragments and their fate in the environment has received attention in the recent literature but lacks a harmonised research methodology and a holistic approach to the topic. This work presents a model to estimate the flows of microplastic fibres and synthetic garments in geographical Europe, expressed in tonnes per year. It was developed through a search of the literature to provide an estimate of synthetic fibres entering the environment and to identify the connections between the stakeholders involved. A first-level multicriteria decision analysis was conducted to recognise relevant pollution flows: the study revealed significant but poorly understood pathways, such as the flow of microplastics in the indoor and outdoor air during garment wear. Also, the flow of microplastics from the combined sewer overflow of untreated water during heavy precipitation and the flow to the agricultural land from the application of sewage sludge result in relevant pathways to water and soil, respectively. By fostering collaboration across multiple actors, the transition toward sustainable textile practices can significantly reduce fibre pollution. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

26 pages, 703 KB  
Review
Eco-Friendly Biocatalysts: Laccase Applications, Innovations, and Future Directions in Environmental Remediation
by Hina Younus, Masood Alam Khan, Arif Khan and Fahad A. Alhumaydhi
Catalysts 2025, 15(10), 921; https://doi.org/10.3390/catal15100921 - 26 Sep 2025
Abstract
Laccases, a class of multicopper oxidases found in diverse biological sources, have emerged as key green biocatalysts with significant potential for eco-friendly pollutant degradation. Their ability to drive electron transfer reactions using oxygen, converting pollutants into less harmful products, positions laccases as promising [...] Read more.
Laccases, a class of multicopper oxidases found in diverse biological sources, have emerged as key green biocatalysts with significant potential for eco-friendly pollutant degradation. Their ability to drive electron transfer reactions using oxygen, converting pollutants into less harmful products, positions laccases as promising tools for scalable and sustainable treatment of wastewater, soil, and air pollution. This review explores laccase from a translational perspective, tracing its journey from laboratory discovery to real-world applications. Emphasis is placed on recent advances in production optimization, immobilization strategies, and nanotechnology-enabled enhancements that have improved enzyme stability, reusability, and catalytic efficiency under complex field conditions. Applications are critically discussed for both traditional pollutants such as synthetic dyes, phenolics, and pesticides and emerging contaminants, including endocrine-disrupting chemicals, pharmaceuticals, personal care products, microplastic additives, and PFAS. Special attention is given to hybrid systems integrating laccase with advanced oxidation processes, bioelectrochemical systems, and renewable energy-driven reactors to achieve near-complete pollutant mineralization. Challenges such as cost–benefit limitations, limited substrate range without mediators, and regulatory hurdles are evaluated alongside solutions including protein engineering, mediator-free laccase variants, and continuous-flow bioreactors. By consolidating recent mechanistic insights, this study underscores the translational pathways of laccase, highlighting its potential as a cornerstone of next-generation, scalable, and eco-friendly remediation technologies aligned with circular bioeconomy and low-carbon initiatives. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
24 pages, 5860 KB  
Review
Mapping the Rise in Machine Learning in Environmental Chemical Research: A Bibliometric Analysis
by Bojana Stanic and Nebojsa Andric
Toxics 2025, 13(10), 817; https://doi.org/10.3390/toxics13100817 - 26 Sep 2025
Abstract
Machine learning (ML) is reshaping how environmental chemicals are monitored and how their hazards are evaluated for human health. Here, we mapped this landscape by analyzing 3150 peer-reviewed articles (1985–2025) from the Web of Science Core Collection. Co-citation, co-occurrence, and temporal trend analyses [...] Read more.
Machine learning (ML) is reshaping how environmental chemicals are monitored and how their hazards are evaluated for human health. Here, we mapped this landscape by analyzing 3150 peer-reviewed articles (1985–2025) from the Web of Science Core Collection. Co-citation, co-occurrence, and temporal trend analyses in VOSviewer and R reveal an exponential publication surge from 2015, dominated by environmental science journals, with China and the United States leading in output. Eight thematic clusters emerged, centered on ML model development, water quality prediction, quantitative structure–activity applications, and per-/polyfluoroalkyl substances, with XGBoost and random forests as the most cited algorithms. A distinct risk assessment cluster indicates migration of these tools toward dose–response and regulatory applications, yet keyword frequencies show a 4:1 bias toward environmental endpoints over human health endpoints. Emerging topics include climate change, microplastics, and digital soil mapping, while lignin, arsenic, and phthalates appear as fast-growing but understudied chemicals. Our findings expose gaps in chemical coverage and health integration. We recommend expanding the substance portfolio, systematically coupling ML outputs with human health data, adopting explainable artificial intelligence workflows, and fostering international collaboration to translate ML advances into actionable chemical risk assessments. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

18 pages, 1736 KB  
Article
Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction
by Hongjia Peng, Bolun Yu, Zuhong Lin and Haipu Li
Toxics 2025, 13(9), 795; https://doi.org/10.3390/toxics13090795 - 18 Sep 2025
Viewed by 214
Abstract
The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study [...] Read more.
The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study investigated how DMPs affect the adsorption–desorption behavior of Cu2+ in soil and the underlying mechanisms via batch equilibrium experiments and characterization analyses. The experiments revealed that ion exchange (accounting for 33.6–34.3%), oxygen-containing functional group complexation, and electrostatic interactions were the primary adsorption driving forces, with chemical adsorption playing the main role. Compared to the soil, the PBAT and PLA had smaller specific surface areas and pore volumes, fewer oxygen-containing functional groups, and especially lacked O-metal functional groups. They can dilute soil, clog its pores, and cover its active sites. 1% DMPs significantly reduced the soil’s equilibrium adsorption capacity (Qe) (3.7–4.7%) and increased equilibrium desorption capacity (QDe) (1.7–2.6%), thereby increasing the mobility and ecological risk of Cu2+. PBAT and PLA had no significant difference in effects on the adsorption, but their specific mechanisms were somewhat distinct. Faced with the prevalent, worsening coexistence of DMPs and heavy metals in soil, these findings contribute to the ecological risk assessment of DMPs. Full article
Show Figures

Graphical abstract

28 pages, 3493 KB  
Review
Unseen Hazards—Toxicological Effects and Human Health Impacts of Nanoplastics and Microplastics
by Kornelia Kadac-Czapska, Justyna Ośko, Natalia Nowak, Katarzyna Jażdżewska, Piotr Kowalczyk and Małgorzata Grembecka
Appl. Sci. 2025, 15(18), 10146; https://doi.org/10.3390/app151810146 - 17 Sep 2025
Viewed by 890
Abstract
Environmental pollution with microplastics (MPs) and nanoplastics (NPs) continues to increase. These pollutants have been found in the environment (water, soil, and air) as well as in human tissues and biological fluids. Oral, inhalation, and dermal pathways play key roles in human exposure [...] Read more.
Environmental pollution with microplastics (MPs) and nanoplastics (NPs) continues to increase. These pollutants have been found in the environment (water, soil, and air) as well as in human tissues and biological fluids. Oral, inhalation, and dermal pathways play key roles in human exposure to plastic particles. The primary sources of exposure are foods, beverages, air, and dust. Polymers can penetrate the skin primarily via endocytosis, exocytosis, passages through cell-to-cell junctions, and interaction with the extracellular matrix. However, the health effects of dermal exposure remain poorly understood. Microplastics and NPs have been detected in the gastrointestinal, respiratory, circulatory, urinary, reproductive, and nervous systems, causing detrimental effects in each. Such effects include oxidative stress, inflammation, cellular damage, and protein aggregation. Furthermore, their presence has been linked to cardiovascular and neurodegenerative diseases. However, standardized protocols for analyzing NPs and MPs in human organs and tissues have not yet been established or legally regulated. Further research is needed to fully determine exposure thresholds, but legislative and lifestyle changes can already be implemented. Full article
(This article belongs to the Special Issue Advanced Research on Microplastics, Human Exposure and Food Safety)
Show Figures

Figure 1

11 pages, 1576 KB  
Article
Methodological Approach for Detecting Polypropylene Microplastics in Agricultural Soil in Southern Portugal
by Pedro Almeida, Joana Antunes, Filipe Pedra, Rita Ventura and Corina Carranca
Pollutants 2025, 5(3), 30; https://doi.org/10.3390/pollutants5030030 - 16 Sep 2025
Viewed by 325
Abstract
Plastics have been widely used in agriculture, particularly as mulching materials, due to their ability to improve soil conditions and enhance productivity. However, their degradation into microplastics (MPs) raises significant environmental and agronomic concerns, as these particles may change soil properties, affect microbial [...] Read more.
Plastics have been widely used in agriculture, particularly as mulching materials, due to their ability to improve soil conditions and enhance productivity. However, their degradation into microplastics (MPs) raises significant environmental and agronomic concerns, as these particles may change soil properties, affect microbial communities, and pose risks to surrounding ecosystems. While methodologies for MP detection in aquatic environments are well established, the analysis of MPs in soils remains challenging due to the complexity and heterogeneity of soil matrices. Currently, there is no standardized protocol for the determination of MPs in soils. This study critically evaluated and compared three different pre-treatment methods for removing organic matter from soil prior to MP analysis in an agricultural soil, and proposes a comprehensive methodology comprising two main phases: (i) organic matter removal, a crucial step of MP particles, and (ii) density separation of MP particles. Three distinct removal chemical methods were tested using samples from an agricultural soil in Southern Portugal. The most effective method was then applied to assess MP particles in an experimental field, using soil samples collected before mulching and 14 months later beneath a polyethylene-based soil cover. This was one of the first studies contributing to the establishment of a routine methodology for monitoring MPs in soils, particularly the agricultural soils, ensuring compliance with the future “Directive for Soil Monitoring”. Full article
(This article belongs to the Section Plastic Pollution)
Show Figures

Figure 1

15 pages, 2198 KB  
Article
Extraction and Characterization of Microplastics in Soil: A Case Study from the Hetao Irrigation District
by Chia Min Ho, Weiying Feng, Yuxin Deng, Xiaofeng Li and Su Kong Ngien
Water 2025, 17(18), 2700; https://doi.org/10.3390/w17182700 - 12 Sep 2025
Viewed by 288
Abstract
Microplastics (MPs) pollution has become a global environmental issue. Soil, as a key environmental medium, serves as an important sink and carrier of MPs. Accurate and efficient extraction of MPs from soil matrices is essential for understanding their distribution, composition, and environmental behavior. [...] Read more.
Microplastics (MPs) pollution has become a global environmental issue. Soil, as a key environmental medium, serves as an important sink and carrier of MPs. Accurate and efficient extraction of MPs from soil matrices is essential for understanding their distribution, composition, and environmental behavior. This study presents a refined extraction method that combines two-step density separation with sodium chloride (NaCl, 1.20 g/cm3), hydrogen peroxide (H2O2) digestion for organic matter removal and a Fractionated Filtration Method (FFM) to capture MPs across multiple particle size ranges. Polymer identification and size characterization were performed using the high-throughput Agilent 8700 Laser Direct Infrared (LDIR) imaging system. Method validation demonstrated a recovery rate of 85% based on 100 μm MPs standards spiked into soil and minimal background contamination of 5–8 particles in blank controls, confirming the reliability of the workflow. Applying this method to agricultural soils from the Hetao Irrigation District revealed widespread MP contamination, with concentrations ranging from 5778 to 31,489 particles/kg and an average of 16,461 ± 8097 particles/kg. More than 99% of MPs were smaller than 500 μm, with the 10–30 μm fraction dominating the distribution. Polypropylene (PP), polyamide (PA), and polyethylene (PE) accounted for over 90% of detected MPs. This refined method enables reproducible extraction and accurate characterization of fine MPs in complex soil environments and provides a practical foundation for advancing standardized soil MP monitoring protocols. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

18 pages, 2863 KB  
Article
The Ecological Trap: Biodegradable Mulch Film Residue Undermines Soil Fungal Network Stability
by Maolu Wei, Yiping Wang, Feiyu Xie, Qian Sun, Huanhuan Shao, Xiaojie Cheng, Xiaoyan Wang, Xiang Tao, Xinyi He, Bin Yong and Dongyan Liu
Microorganisms 2025, 13(9), 2137; https://doi.org/10.3390/microorganisms13092137 - 12 Sep 2025
Viewed by 476
Abstract
Biodegradable mulching films are promoted as alternatives to traditional polyethylene films, but their environmental impacts remain controversial. This study investigates how biodegradable films affect microplastic pollution of soil, fungal community structure, and ecological network stability. We conducted a maize field experiment comparing conventional [...] Read more.
Biodegradable mulching films are promoted as alternatives to traditional polyethylene films, but their environmental impacts remain controversial. This study investigates how biodegradable films affect microplastic pollution of soil, fungal community structure, and ecological network stability. We conducted a maize field experiment comparing conventional polyethylene (CF, PE) and biodegradable (BF, PLA + PBAT) film residues. We used scanning electron microscopy and high-throughput sequencing of fungal ITS genes. We assessed soil properties, microplastic release, fungal communities, and network stability through co-occurrence analysis. BF degraded rapidly, releasing microplastic concentrations much higher than CF. BF increased soil carbon and nitrogen and substantially enhanced maize biomass. However, it significantly reduced soil pH and decreased key functional fungi (saprotrophs and symbionts) abundance. The fungal ecological network complexity and stability declined significantly. Correlation analysis revealed positive associations between saprotrophic and symbiotic fungi abundance and network stability. In contrast, CF reduced some nutrient levels but improved fungal network complexity and stability. This study reveals that biodegradable films create an “ecological trap.” Short-term nutrient benefits mask systematic damage to soil microbial network stability. Our findings challenge the notion that “biodegradable equals environmentally friendly.” Environmental assessments of agricultural materials must extend beyond degradability to include microplastic release, functional microbial responses, and ecological network stability. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology, 2nd Edition)
Show Figures

Figure 1

16 pages, 3251 KB  
Article
Regulatory Mechanisms of Plant Growth-Promoting Bacteria in Alleviating Microplastic and Heavy Metal Combined Pollution: Insights from Plant Growth and Metagenomic Analysis
by Yan Chen, Han Liu, Yu-Bo Sun, Meng Wang, Yue-Liang Meng, Yong-Qi Liu, Xue-Min Ren, Bai-Lian Larry Li, Xue-Mei Han, Ling Liu and Zhao-Jin Chen
Agronomy 2025, 15(9), 2168; https://doi.org/10.3390/agronomy15092168 - 11 Sep 2025
Viewed by 258
Abstract
The co-occurrence of microplastics and heavy metals in soil can lead to synergistic interactions that may exert more pronounced toxic effects on plant growth. Previous studies have demonstrated the promising potential of plant growth-promoting bacteria (PGPB) in mitigating the combined toxicity of microplastics [...] Read more.
The co-occurrence of microplastics and heavy metals in soil can lead to synergistic interactions that may exert more pronounced toxic effects on plant growth. Previous studies have demonstrated the promising potential of plant growth-promoting bacteria (PGPB) in mitigating the combined toxicity of microplastics and heavy metals. However, the rhizosphere microbial mechanisms underlying this alleviation remain unclear. Metagenomic sequencing offers significant advantages for microbial functional analysis, yet it has been underutilized in studies involving combined microplastic and heavy metal contamination. In this study, a pot experiment was conducted to evaluate the effects of inoculating sorghum with two plant growth-promoting bacterial (PGPB) strains, Bacillus sp. SL-413 and Enterobacter sp. VY-1, on plant tolerance to co-contamination with 13 μm polyethylene (PE) microplastics (0.5%, w/w) and cadmium (Cd, 10 mg kg−1). The impact on rhizosphere microbial community structure and function was assessed using metagenomic analysis. The results showed that PE-Cd co-contamination, compared to Cd alone, caused varying degrees of reduction in sorghum height and biomass, indicating an enhanced toxic effect due to the combined pollutants. Inoculation with PGPB effectively alleviated the PE-Cd combined toxicity, resulting in increases in sorghum height by 4.81–12.50%, biomass by 0.43–38.40%, and Cd accumulation by 6.20–38.07%. Both Cd and PE-Cd treatments, as well as PGPB inoculation, significantly altered the composition of rhizosphere soil bacterial communities, particularly affecting the relative abundances of Ramlibacter, Solirubrobacter, and Streptomyces. Metagenomic analysis further revealed that PE-Cd co-contamination suppressed microbial functional potential in the rhizosphere. However, inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the functional stress induced by PE-Cd co-contamination and significantly enhanced microbial gene functions in the soil. Specifically, genes involved in nitrogen and phosphorus cycling increased by 3.35–5.32% and 2.26–7.38%, respectively, compared to the PE-Cd treatment without inoculation. This study provides fundamental data and scientific evidence for understanding the ecotoxicological effects of microplastic and heavy metal co-contamination, as well as the potential for microbial remediation using PGPB. Full article
Show Figures

Figure 1

29 pages, 1619 KB  
Review
Combined Toxicity of Microplastics and Antimicrobials on Animals: A Review
by Kuok Ho Daniel Tang
Antibiotics 2025, 14(9), 896; https://doi.org/10.3390/antibiotics14090896 - 5 Sep 2025
Viewed by 733
Abstract
Background/Objectives: Microplastics are ubiquitous pollutants that pose physical toxicity and serve as vectors for antimicrobial agents, altering their bioavailability and toxicity. Unlike previous reviews that focus solely on antibiotics and terrestrial or aquatic ecosystems, this review integrates recent findings on the combined [...] Read more.
Background/Objectives: Microplastics are ubiquitous pollutants that pose physical toxicity and serve as vectors for antimicrobial agents, altering their bioavailability and toxicity. Unlike previous reviews that focus solely on antibiotics and terrestrial or aquatic ecosystems, this review integrates recent findings on the combined impacts of microplastics and antimicrobials on both aquatic and terrestrial animals, highlighting their biological responses. Methods: Recent experimental studies involving aquatic and terrestrial animals published in peer-reviewed journals were reviewed. These studies employed co-exposure designs using microplastics of different sizes, aging conditions, and surface chemistries in combination with antimicrobial compounds. Results: Microplastics combined with antimicrobials cause species-specific and often synergistic toxicity in aquatic organisms, affecting reproduction, immunity, oxidative stress, gene expression, and microbiota, with co-exposure often amplifying adverse physiological and developmental effects. Similarly, co-exposure to microplastics and antimicrobials in rodents, amphibians, birds, and soil invertebrates frequently leads to synergistic toxicity, oxidative stress, disrupted gut microbiota, and enhanced accumulation and bioavailability of pollutants, promoting inflammation, neurotoxicity, metabolic dysfunction, and increased antibiotic resistance gene propagation. Particle size, aging, and antimicrobial type influence toxicity severity. Certain microplastic-antimicrobial combinations can exhibit antagonistic effects, though less frequently reported. Conclusions: The interactions between microplastics and antimicrobials pose heightened risks to the health of organisms and ecological stability. These findings underscore the need to revise current risk assessment protocols to consider pollutant mixtures and microplastics-mediated transport. Future research should focus on environmentally relevant exposures, mechanistic studies using omics tools, and long-term ecological impacts. Integrated regulatory strategies are essential to address the compounded effects of microplastics and chemical contaminants. Full article
Show Figures

Graphical abstract

22 pages, 2438 KB  
Article
Assessment of Soil Microplastics and Their Relation to Soil and Terrain Attributes Under Different Land Uses
by John Jairo Arévalo-Hernández, Eduardo Medeiros Severo, Angela Dayana Barrera de Brito, Diego Tassinari and Marx Leandro Naves Silva
AgriEngineering 2025, 7(9), 281; https://doi.org/10.3390/agriengineering7090281 - 31 Aug 2025
Viewed by 609
Abstract
The assessment of microplastics (MPs) in terrestrial ecosystems has garnered increasing global attention due to their accumulation and migration in soils, which may have potential impacts on soil health, biodiversity, and agricultural productivity. However, research on their distribution and interactions in soil remains [...] Read more.
The assessment of microplastics (MPs) in terrestrial ecosystems has garnered increasing global attention due to their accumulation and migration in soils, which may have potential impacts on soil health, biodiversity, and agricultural productivity. However, research on their distribution and interactions in soil remains limited, especially in tropical regions. This study aimed to characterize MPs extracted from tropical soil samples and relate their abundance to soil and terrain attributes under different land uses (forest, grassland, and agriculture). Soil samples were collected from an experimental farm in Lavras, Minas Gerais, Southeastern Brazil, to determine soil physical and chemical attributes and MP abundance in a micro-watershed. These locations were also used to obtain terrain attributes from a digital elevation model and the normalized difference vegetation index (NDVI). The majority of microplastics found in all samples were identified as polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and vinyl polychloride (PVC). The spatial distribution of MP was rather heterogeneous, with average abundances of 3826, 2553, and 3406 pieces kg−1 under forest, grassland, and agriculture, respectively. MP abundance was positively related to macroporosity and sand content and negatively related to clay content and most chemical attributes. Regarding terrain attributes, MP abundance was negatively correlated with plan curvature, convergence index, and vertical distance to channel network, and positively related to topographic wetness index. These findings indicate that continuous water fluxes at both the landscape and soil surface scales play a key role, suggesting a tendency for higher MP accumulation in lower-lying areas and soils with greater porosity. These conditions promote MP transport and accumulation through surface runoff and facilitate their entry into the soil. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

Back to TopTop