Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,266)

Search Parameters:
Keywords = microstructure and recrystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2334 KB  
Article
Effect of Imposed Shear During Oval-Caliber Rolling on the Properties of Mn–Si Low-Alloy Steel
by Kairosh Nogayev, Maxat Abishkenov, Zhassulan Ashkeyev, Gulzhainat Akhmetova, Saltanat Kydyrbayeva and Ilgar Tavshanov
Eng 2025, 6(10), 265; https://doi.org/10.3390/eng6100265 (registering DOI) - 4 Oct 2025
Abstract
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and [...] Read more.
The present study examines the effect of a modified oval–round rolling scheme incorporating inclined oval calibers on the mechanical behavior and microstructural evolution of Mn–Si low-alloy steel (25G2S). Cylindrical billets were hot rolled through both classical and modified sequences under identical thermal and kinematic conditions. Tensile testing demonstrated that, relative to the unrolled condition (σ0.2 ≈ 269 MPa; σᵤ ≈ 494 MPa), the classical route increased yield and ultimate strengths to ~444 MPa and ~584 MPa, respectively, whereas the modified scheme yielded comparable values (~433 MPa and ~572 MPa) while providing superior ductility (δ ≈ 26.8%, ψ ≈ 68.6%). Vickers microhardness decreased systematically from 244 HV (unrolled) to 213 HV (classical) and 184 HV (modified), with the modified scheme exhibiting the lowest scatter (±4.8 HV), confirming enhanced structural uniformity. Scanning electron microscopy revealed ferrite–pearlite refinement under both rolling sequences, with the modified scheme producing finer equiaxed ferrite grains (~3–5 µm) and attenuated longitudinal banding. These features are indicative of shear-assisted dynamic recrystallization, activated by the inclined oval calibers. The findings highlight that the modified rolling strategy achieves a favorable strength–ductility balance and improved homogeneity, suggesting its applicability for advanced thermomechanical processing of low-alloy steels. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

17 pages, 5074 KB  
Article
Dynamic Recrystallization and Microstructural Evolution During Hot Deformation of Al-Cu-Mg Alloy
by Fangyan He, Xiaolan Wu, Zhizheng Rong, Xueqin Zhang, Xiangyuan Xiong, Shengping Wen, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Metals 2025, 15(10), 1100; https://doi.org/10.3390/met15101100 - 1 Oct 2025
Abstract
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing [...] Read more.
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing maps were established to predict the flow behavior of the alloy. The hot deformation mechanisms were investigated through microstructural characterization using inverse pole figure (IPF), grain boundary (GB), and grain orientation spread (GOS) analysis. The results demonstrate that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur during hot deformation. At high lnZ values (high strain rates and low deformation temperatures), discontinuous dynamic recrystallization (DDRX) dominates. Under middle lnZ conditions (low strain rate or high deformation temperature), both continuous dynamic recrystallization (CDRX) and DDRX are the primary mechanisms. Conversely, at low lnZ values (low strain rates and high temperatures), CDRX and geometric dynamic recrystallization (GDRX) become predominant. The DRX process in the Al-Cu-Mg alloy is controlled by the deformation temperature and strain rate. Full article
Show Figures

Figure 1

16 pages, 6331 KB  
Article
Microstructural Analysis of Hot-Compressed Mg-Nd-Zr-Ca Alloy with Low Rare-Earth Content
by Yiquan Li, Bingchun Jiang, Rui Yang, Lei Jing and Liwei Lu
Materials 2025, 18(19), 4490; https://doi.org/10.3390/ma18194490 - 26 Sep 2025
Abstract
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze [...] Read more.
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze slip systems, twinning mechanisms, dynamic recrystallization (DRX), and precipitate phases in the hot-compressed alloy. The results demonstrated that the equivalent strain distribution within compressed specimens exhibits heterogeneity, with a larger equivalent strain in the core. After thermal compression, the original microscopic structure formed a necklace-like structure. The primary DRX mechanisms comprise continuous dynamic recrystallization (CDRX), twin-induced dynamic recrystallization (TDRX), and particle-stimulated nucleation (PSN). Pyramidal slip and recrystallization constitute primary contributors to peak texture weakening and tilting. Mg41Nd5 and α-Zr phases enhanced dislocation density by impeding dislocation motion and promoting cross-slip activation. Hot compression provided the necessary thermal activation energy and stress conditions for solute atom diffusion and clustering, triggering dynamic precipitation of Mg41Nd5 phases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 2123 KB  
Article
Mechanisms of Quality Preservation in Golden Pomfret Fish Balls Treated with Ultra-High Pressure During Freeze–Thaw Cycles
by Jiawen Liu, Xinyao Zeng, Jiaqi Zhao, Yunfeng Chi, Lin Xiu, Mingzhu Zheng and Huimin Liu
Foods 2025, 14(19), 3342; https://doi.org/10.3390/foods14193342 - 26 Sep 2025
Abstract
The rising demand for convenient, nutritious foods necessitates improved freeze–thaw (F-T) stability in frozen fish balls; however, traditional thermal processing fails to prevent moisture loss, textural degradation, and oxidation. Therefore, this study systematically investigated the effect of ultra-high pressure (UHP) treatment on the [...] Read more.
The rising demand for convenient, nutritious foods necessitates improved freeze–thaw (F-T) stability in frozen fish balls; however, traditional thermal processing fails to prevent moisture loss, textural degradation, and oxidation. Therefore, this study systematically investigated the effect of ultra-high pressure (UHP) treatment on the quality of golden pomfret fish balls (Trachinotus ovatus) using two-step heating as a control during the F-T cycles. The results showed that compared to two-step heating, UHP significantly reduced the thawing loss (0.68 times) and centrifugal water loss (2.43 times) by enhancing the water-binding capacity (15–20%) and forming denser gel networks. Microstructural analysis revealed that UHP resulted in a more compact internal structure, reduced porosity, altered ice-crystal geometry, and a slower recrystallization rate of the fish balls. Furthermore, UHP effectively reduced protein oxidation (34.53% lower carbonyl increase) and lipid peroxidation (15.6% lower TBARS value) after five F-T cycles compared to the control. Correlation analysis confirmed the dual role of UHP in the regulation of oxidative and structural stability. These findings provide a new technological approach for processing and storing fish balls. Full article
(This article belongs to the Special Issue Nutrition, Safety and Storage of Seafoods)
Show Figures

Graphical abstract

19 pages, 6779 KB  
Article
Tailoring Strength and Corrosion Resistance in Al–Zn–Mg–Cu Alloys by Total (Zn + Mg) Content and Multi-Directional Forging Process
by Junfu Lin, Tangjian Liu, Mingdong Wu, Shuo Yuan, Zeyu Li, Yang Huang, Xiao Yin, Lanping Huang, Wensheng Liu and Daihong Xiao
Materials 2025, 18(19), 4476; https://doi.org/10.3390/ma18194476 - 25 Sep 2025
Abstract
The effects of (Zn + Mg) total content (9.6–11.7 wt.%) combined with multi-directional forging (MDF) on the microstructure and properties of high-strength Al–Zn–Mg–Cu alloys were systematically investigated. Our results demonstrate that the alloy obtains significant grain refinement, which is attributed to the dynamic [...] Read more.
The effects of (Zn + Mg) total content (9.6–11.7 wt.%) combined with multi-directional forging (MDF) on the microstructure and properties of high-strength Al–Zn–Mg–Cu alloys were systematically investigated. Our results demonstrate that the alloy obtains significant grain refinement, which is attributed to the dynamic recrystallization in the MDF process. Specifically, Al-8.6Zn-1.55Mg-1.9Cu-0.11Zr (Zn + Mg = 10.15 wt.%) obtains the maximum recrystallization ratio (51.8%) and the weakest texture strength, and also forms the mortise and tenon nested grain structure. Increasing the total (Zn + Mg) content can achieve significant performance enhancement, which is attributed to the refinement of the η′ phase; however, a higher total (Zn + Mg) content will lead to the continuous distribution of coarse η-MgZn2 phases formed along the grain boundary, accompanied by the broadening of precipitate-free precipitation zones (PFZs). Compared with other alloys, Al-8.6Zn-1.55Mg-1.9Cu-0.11Zr (Zn + Mg = 10.15 wt.%) maintains high strength while ensuring desirable plasticity due to its mortise and tenon nested grain structure. In addition, its desirable grain boundary precipitation behavior makes it exhibit the best corrosion resistance. These findings indicate that maintaining the total (Zn + Mg) content around 10 wt.% achieves a balance between strength and corrosion resistance, offering a theoretical foundation for the design of high-strength and corrosion-resistant Al–Zn–Mg–Cu alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 5648 KB  
Article
Microstructure and Mechanical Properties of Hot-Rolled ZrAl14Ti3 and ZrAl14Ti9 Alloys
by Xing Zhang, Yujing Yang, Mingchao Yang, Wang Li and Zhixin Li
Materials 2025, 18(19), 4459; https://doi.org/10.3390/ma18194459 - 24 Sep 2025
Viewed by 30
Abstract
This study systematically investigated the microstructure and mechanical properties of hot-rolled and quenched ZrAl14Ti3 and ZrAl14Ti9 (at.%) alloys. Microstructural analysis revealed that both alloys consisted of equiaxed α-Zr and Zr3Al grains. Increasing Ti content lowered [...] Read more.
This study systematically investigated the microstructure and mechanical properties of hot-rolled and quenched ZrAl14Ti3 and ZrAl14Ti9 (at.%) alloys. Microstructural analysis revealed that both alloys consisted of equiaxed α-Zr and Zr3Al grains. Increasing Ti content lowered the dissolution temperature of Zr3Al in α-Zr, enhancing the solubility of Al in α-Zr under identical thermal conditions and decreasing the Zr3Al phase fraction. Moreover, higher Ti content in the ZrAl14Ti9 alloy significantly promoted Zr3Al recrystallization and α-Zr globularization, leading to grain refinement and complete elimination of the α-Zr basal texture. Mechanical property evaluation showed that the ZrAl14Ti3 alloy exhibited offset yield and tensile strengths of 888 ± 12 MPa and 1056 ± 19 MPa, respectively, with a fracture elongation of 23 ± 1%. The ZrAl14Ti9 alloy displayed enhanced strength without compromising ductility, achieving a 110 MPa increase in offset yield strength (998 ± 6 MPa) while maintaining the same fracture elongation (23 ± 2%). The strengthening effects observed in the ZrAl14Ti9 alloy stemmed from multiple synergistic mechanisms: solid-solution strengthening due to increased Ti content in α-Zr, refinement of both Zr3Al and α-Zr grains, a higher proportion of the harder α-Zr phase, and orientation hardening resulting from the elimination of the α-Zr basal texture. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 3069 KB  
Article
The Metadynamic Recrystallization Role in Ultrafast <111> Fiber Texture Evolution During Short-Term Holding in β-Forged Ti-6242
by Haodong Rao, Dong Liu, Jianguo Wang, Yaqi Lai and Yu Zhang
Materials 2025, 18(19), 4447; https://doi.org/10.3390/ma18194447 - 23 Sep 2025
Viewed by 154
Abstract
The Ti-6242 titanium alloy samples were forged at 1020 °C (slightly above the β-transus) and subjected to ultra-short isothermal holding (0–320 s) prior to quenching to investigate the rapid microstructural evolution in the parent β phase. Electron backscatter diffraction (EBSD) with parent β-phase [...] Read more.
The Ti-6242 titanium alloy samples were forged at 1020 °C (slightly above the β-transus) and subjected to ultra-short isothermal holding (0–320 s) prior to quenching to investigate the rapid microstructural evolution in the parent β phase. Electron backscatter diffraction (EBSD) with parent β-phase reconstruction reveals that within only 1–3 s of holding, a pronounced <111> fiber texture develops along the forging axis, superseding the original <100> deformation fiber. This ultrafast texture change is attributed to metadynamic recrystallization (MDRX)—the post-deformation growth of nuclei formed during dynamic deformation. The newly formed <111>-oriented β grains still contain residual substructure, indicating incomplete strain release consistent with MDRX. Longer holds (tens of seconds) lead to more extensive static recrystallization and normal grain growth, which dilute the strong <111> fiber as grains of other orientations form and coarsen. These findings demonstrate that even a brief pause after forging can markedly alter the prior β texture via a MDRX mechanism. This insight highlights a novel approach to microtexture control in Ti-6242: by leveraging MDRX during short holds, one can potentially disrupt the formation of aligned α colony microtextured regions (MTRs, or “macrozones”) upon subsequent cooling, thereby mitigating dwell-fatigue susceptibility. The study revises the interpretation of the recrystallization mechanism in short-term holds and provides guidance for optimizing β-phase processing to improve fatigue performance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 8633 KB  
Article
Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing
by Peng Zhang, Dehao Liu, Linfu Zhang, Kang Liu, Jie Zhang, Yuxiao Si, Gang Chen and Qiang Zhu
Metals 2025, 15(9), 1037; https://doi.org/10.3390/met15091037 - 19 Sep 2025
Viewed by 177
Abstract
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% [...] Read more.
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% thickness reduction) followed by annealing, combined with multiscale characterization techniques (EBSD/TEM) and mechanical tests. The results reveal that the as-rolled microstructure was characterized by the presence of strong Brass, Goss/Brass, and S textures, along with the formation of high-density dislocation walls (DDWs) and dislocation cells (DCs). As the annealing temperature increased, recrystallized grains preferentially nucleated at grain boundaries with higher stress concentrations and dislocation densities. The grain size decreased from 120.33 μm in the as-rolled state to 10.26 μm after annealing at 1000 °C. Low-angle grain boundaries (LAGBs) progressively transformed into high-angle grain boundaries (HAGBs), while the fraction of Σ3 twin boundaries initially decreased and subsequently increased, reaching a maximum of 43.7% after annealing at 1000 °C. At annealing temperatures exceeding 800 °C, deformed grains became equiaxed, with partial retention of primary texture components observed. After annealing at 1000 °C, the yield strength and tensile strength decreased compared to the as-rolled state, while the elongation significantly increased from 17.2% to 69.8% Simultaneously, the yield ratio decreased by 53%, and the strain-hardening capacity was enhanced. Ultimately, a constitutive model integrating the influences of dislocation mean free path and twin boundary obstruction was developed, providing microscopic explanations for the inverse relationship between strength and recrystallization fraction. Full article
(This article belongs to the Special Issue Sheet Metal Forming Processes)
Show Figures

Figure 1

21 pages, 15695 KB  
Article
Microstructure Evolution of Keyhole Repair Using Refilling Friction Stir Spot Welding of 6082 Aluminum Alloys
by Liangliang Zhang and Guijie Yue
Metals 2025, 15(9), 1029; https://doi.org/10.3390/met15091029 - 17 Sep 2025
Viewed by 201
Abstract
The keyhole defect located at the termination of the friction stir welding (FSW) seam of 6082 aluminum alloys was repaired utilizing the refilling friction stir spot technique. This study examined the impact of the plunge depths on the microstructure of the welding spot. [...] Read more.
The keyhole defect located at the termination of the friction stir welding (FSW) seam of 6082 aluminum alloys was repaired utilizing the refilling friction stir spot technique. This study examined the impact of the plunge depths on the microstructure of the welding spot. The results show that under the action of shear stress introduced by the pin, the (111)[11¯0] shear texture and (112)[111¯] Copper texture were formed. The formation of (001)[100] Cube and (001)[310] CubeND textures was due to the occurrence of discontinuous dynamic recrystallization. When the plunge depth of the sleeve was 1.0 mm, the volume fraction of deformed grains in the welding spot reached 45%, and the tensile strength of the welding spots was 184 MPa. When the plunge depth of the sleeve was 1.5 mm, the tensile strength of the repaired spot welding was 210 MPa, which was basically equal to the strength of the FSW seam. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

16 pages, 10863 KB  
Article
Pinless Friction Stir Spot Welding of Pure Copper: Process, Microstructure, and Mechanical Properties
by Xu Zhang, Xiaole Ge, Igor Kolupaev, Zhuangzhuang Shan and Hongfeng Wang
Crystals 2025, 15(9), 804; https://doi.org/10.3390/cryst15090804 - 12 Sep 2025
Viewed by 299
Abstract
Pure copper joints (PCJs) were fabricated using pinless friction stir spot welding (P-FSSW), a solid-state welding technique, to investigate the influence of plunge depth, rotational speed, and dwell time on PCJ performance. Thermal cycles under different welding parameters were recorded, while the microstructure [...] Read more.
Pure copper joints (PCJs) were fabricated using pinless friction stir spot welding (P-FSSW), a solid-state welding technique, to investigate the influence of plunge depth, rotational speed, and dwell time on PCJ performance. Thermal cycles under different welding parameters were recorded, while the microstructure at various locations within the welded zone was characterized using electron backscatter diffraction (EBSD). The microhardness and tensile–shear force (T-SF) of the PCJs were evaluated, and the fracture types together with fracture evolution were analyzed. The experimental results reveal that, under the combined effect of thermal cycles and mechanical stirring, subgrains in the welded zone transformed into recrystallized grains, whereas intense material flow contributed to an increased fraction of deformed grains. At the Hook region and the interface between the upper and lower sheets, grains were tightly bonded, resulting in effective metallurgical joining. Higher microhardness values were observed in the stir zone (SZ), whereas lower values appeared in the heat-affected zone beneath the interface. With increasing plunge depth, rotational speed, and dwell time, the T-SF of the PCJs first increased and then decreased, achieving a relatively high value at a plunge depth of 0.4 mm, a rotational speed of 1500 rpm, and a dwell time of 9 s. The fracture types of the PCJs were shear fracture and plug fracture, with the Hook region identified as the weakest zone. Full article
(This article belongs to the Special Issue Metallurgy-Processing-Properties Relationship of Metallic Materials)
Show Figures

Figure 1

19 pages, 23645 KB  
Article
Investigation of Hot Deformation Behavior for 45CrNi Steel by Utilizing an Improved Cellular Automata Method
by Jinhua Zhao, Shitong Dong, Hongru Lv and Wenwu He
Metals 2025, 15(9), 1015; https://doi.org/10.3390/met15091015 - 12 Sep 2025
Viewed by 285
Abstract
The hot deformation discipline of typical 45CrNi steel under a strain rate ranging from 0.01 s−1 to 1 s−1 and deformation temperature between 850 °C and 1200 °C was investigated through isothermal hot compression tests. The activation energy involved in the [...] Read more.
The hot deformation discipline of typical 45CrNi steel under a strain rate ranging from 0.01 s−1 to 1 s−1 and deformation temperature between 850 °C and 1200 °C was investigated through isothermal hot compression tests. The activation energy involved in the high-temperature deformation process was determined to be 361.20 kJ·mol−1, and a strain-compensated constitutive model, together with dynamic recrystallization (DRX) kinetic models, was successfully established based on the Arrhenius theory. An improved second-phase (SP) cellular automaton (CA) model considering the influence of the pinning effect induced by SP particles on the DRX process was developed, and the established SP-CA model was further utilized to predict the evolution behavior of parent austenite grain in regard to the studied 45CrNi steel. Results show that the average absolute relative error (AARE) associated with the austenite grain size and the DRX volume fraction achieved through the simulation and experiment was overall below 5%, indicating good agreement between the simulation and experiment. The pinning force intensity could be controlled by regulating the size and volume fraction of SP particles involved in the established SP-CA model, and the DRX behavior and the average grain size of the studied 45CrNi steel treated by high-temperature compression could also be predicted. The established SP-CA model exhibits significant potential for universality and is expected to provide a powerful simulation tool and theoretical foundation for gaining deeper insights into the microstructural evolution of metals or alloys during high-temperature deformation. Full article
Show Figures

Figure 1

14 pages, 7307 KB  
Article
Revealing the Influence of Zn Content on the Microstructure and Mechanical Properties of Bimodal Mg-Zn-Gd-Sm Alloy
by Hansong Xue, Zengjun Wei, Shanyi Lan, Yang Zhou, Ming Zhang, Jun Li, Ying Liu, Jia She, Jia Hu and Bin Jiang
Materials 2025, 18(18), 4226; https://doi.org/10.3390/ma18184226 - 9 Sep 2025
Viewed by 581
Abstract
The development of low-cost and high-performance Mg alloys is an important way to achieve further application of magnesium alloys. In this work, the as-extruded Mg98.3−xZnxGd1Sm0.7 alloy with excellent mechanical properties is successfully prepared by regulating the [...] Read more.
The development of low-cost and high-performance Mg alloys is an important way to achieve further application of magnesium alloys. In this work, the as-extruded Mg98.3−xZnxGd1Sm0.7 alloy with excellent mechanical properties is successfully prepared by regulating the bimodal-grained structure. The effect of the Zn content on the microstructure evolution and mechanical properties of the as-extruded Mg98.3−xZnxGd1Sm0.7 alloy is systematically investigated. The results show that the addition of Zn increases the dynamic recrystallization (DRX) fraction and weakens the basal texture of the as-extruded alloy. The Mg98.05Zn0.25Gd1Sm0.7 alloy exhibits a typical bimodal-grained structure. A large amount of geometrically necessary dislocations (GNDs) are generated at the interface between the soft zone and the hard zone of the bimodal-grained structure during the plastic deformation process, resulting in back stress strengthening, thereby improving the strength of the alloy. And it achieves exceptional mechanical properties with an ultimate tensile strength (UTS) of 330 MPa, a yield strength (YS) of 248 MPa, and an elongation (EL) of 18.5% at room temperature. This paper provides a new idea for introducing a heterogeneous structure and improving the strength of low-cost Mg alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

31 pages, 12792 KB  
Article
Microstructural Stability and Transition to Unstable Friction for FCC Metals: Ag and Ni
by Alexey Moshkovich, Inna Popov, Sergei Remennik and Lev S. Rapoport
Materials 2025, 18(17), 4123; https://doi.org/10.3390/ma18174123 - 2 Sep 2025
Viewed by 813
Abstract
The effect of dislocation pile-ups responsible for the generation or annihilation of dislocations during friction of Ag and Ni was considered. The steady-state friction was accompanied by the formation of twin bundles, intersecting twins, dislocations, adiabatic elongated shear bands, and intense dynamic recrystallization. [...] Read more.
The effect of dislocation pile-ups responsible for the generation or annihilation of dislocations during friction of Ag and Ni was considered. The steady-state friction was accompanied by the formation of twin bundles, intersecting twins, dislocations, adiabatic elongated shear bands, and intense dynamic recrystallization. The mechanisms of microstructural stability and friction instability were analyzed. The theoretical models of dislocation generation and annihilation in nanocrystalline FCC metals in the context of plastic deformation and failure development under friction were proposed. The transition to unstable friction was estimated. The damage of Ag was exhibited in the formation of pores, reducing the contact area and significantly increasing the shear stress. The brittle fracture of Ni represents a catastrophic failure associated with the formation of super-hard nickel oxide. Deformation resistance of the dislocation structures in the mesoscale and macroscale was compared. The coefficient of similitude (K) has been introduced in this work to compare plastic deformation at different scales. The model of the strength–ductility trade-off and microstructural instability is considered. The interaction between the migration of dislocation pile-ups and the driving forces applied to the grain boundaries was estimated. Nanostructure stabilization through the addition of a polycrystalline element (solute) to the crystal interiors in order to reduce the free energy of grain boundary interfaces was investigated. The thermodynamic driving force and kinetic energy barrier involved in strengthening, brittleness, or annealing under plastic deformation and phase formation in alloys and composite materials were examined. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

18 pages, 14435 KB  
Article
Microstructure Evolution and Constitutive Model of Spray-Formed 7055 Forging Aluminum Alloy
by Yu Deng, Huyou Zhao, Xiaolong Wang, Mingliang Cui, Xuanjie Zhao, Jiansheng Zhang and Jie Zhou
Materials 2025, 18(17), 4108; https://doi.org/10.3390/ma18174108 - 1 Sep 2025
Viewed by 605
Abstract
The thermal deformation behaviour of a spray-formed 7055 as-forged aluminium alloy was studied using isothermal hot-press tests under different deformation conditions (strain rates of 0.01, 0.1, 1, and 10 s−1, temperatures of 340, 370, 400, 430, and 460 °C). An Arrhenius [...] Read more.
The thermal deformation behaviour of a spray-formed 7055 as-forged aluminium alloy was studied using isothermal hot-press tests under different deformation conditions (strain rates of 0.01, 0.1, 1, and 10 s−1, temperatures of 340, 370, 400, 430, and 460 °C). An Arrhenius constitutive model was developed using flow stress data corrected for friction and temperature, yielding a correlation coefficient (R) of 0.9877, an average absolute relative error (AARE) of 4.491%, and a deformation activation energy (Q) of 117.853 kJ/mol. Processing maps integrating instability criteria and power dissipation efficiency identified appropriate processing parameters at 400–460 °C/0.08–0.37 s−1. Furthermore, this study investigated how strain rate and temperature influence microstructural evolution. Microstructural characterization revealed that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur simultaneously during thermal deformation. At low temperatures (≤400 °C), DRV and continuous dynamic recrystallization (CDRX) dominated; at 430 °C, deformation microstructures and recrystallized grains coexisted, whereas abnormal grain growth prevailed at 460 °C. The prevailing mechanism of dynamic softening was influenced by the applied strain rate. At lower strain rates (≤0.1 s−1), discontinuous dynamic recrystallization (DDRX) was the primary mechanism, whereas CDRX became dominant at higher strain rates (≥1 s−1), and dislocation density gradients developed within adiabatic shear bands at 10 s−1. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 12820 KB  
Article
Microstructure Evolution and Mechanical Properties of Wire Arc Additively Manufactured DSS2209 Duplex Stainless Steel
by Jian Sun, Liang Liu, Long Zhang, Jun Hong, Feihong Liu, Dongsheng Wang, Fei Zhou and Youwen Yang
Materials 2025, 18(17), 4066; https://doi.org/10.3390/ma18174066 - 30 Aug 2025
Viewed by 608
Abstract
This study investigates the microstructure evolution and mechanical properties of DSS2209 duplex stainless steel fabricated via cold metal transfer wire arc additive manufacturing (CMT-WAAM). The as-deposited thin-wall components exhibit significant microstructural heterogeneity along the build height due to thermal history variations. Optical microscopy, [...] Read more.
This study investigates the microstructure evolution and mechanical properties of DSS2209 duplex stainless steel fabricated via cold metal transfer wire arc additive manufacturing (CMT-WAAM). The as-deposited thin-wall components exhibit significant microstructural heterogeneity along the build height due to thermal history variations. Optical microscopy, SEM-EDS, and EBSD analyses reveal distinct phase distributions: the bottom region features elongated blocky austenite with Widmanstätten austenite (WA) due to rapid substrate-induced cooling; the middle region shows equiaxed blocky austenite with reduced grain boundary austenite (GBA) and WA, attributed to interlayer thermal cycling promoting recrystallization and grain refinement (average austenite grain size: 4.16 μm); and the top region displays coarse blocky austenite from slower cooling. Secondary austenite (γ2) forms in interlayer remelted zones with Cr depletion, impacting pitting resistance. Mechanical testing demonstrates anisotropy; horizontal specimens exhibit higher strength (UTS: 610 MPa, YS: 408 MPa) due to layer-uniform microstructures, while vertical specimens show greater ductility (elongation) facilitated by columnar grains aligned with the build direction. Hardness ranges uniformly between 225–239 HV. The study correlates process-induced thermal gradients (e.g., cooling rates, interlayer cycling) with microstructural features (recrystallization fraction, grain size, phase morphology) and performance, providing insights for optimizing WAAM of large-scale duplex stainless steel components like marine propellers. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

Back to TopTop